用户名: 密码: 验证码:
不同形态砷在土壤中的转化及生物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷化合物的广泛应用以及近来世界各地砷污染问题的普遍增多,受到越来越多的研究者的重视和关注。砷通过污灌、含砷农药的使用、肥料的投入及大气沉降等途径进入农田,进而通过人体和动物的使用进入食物链,最终将危害人类健康。砷化合物在自然界多数以硫化物形式存在,活性和生物有效性都比较低;但进入土壤中的砷化合物主要是以As(Ⅴ)形态存在,因此其活性和生物有效性较高。不同形态砷的毒性和有效性差异很大,通常情况下,As(Ⅲ)的有机衍生物毒性最强,其次是As(Ⅲ)、As(Ⅴ)、DMA(二甲基砷)、MMA(一甲基砷),而AsB(砷甜菜碱)、AsC(砷胆碱)则几乎没有毒性并且主要存在于海洋生物和植物中。砷化合物进入土壤以后,在土壤动物和土壤微生物的作用下,会发生物理、物理化学、生物化学等过程,进而发生形态和价态变化,改变其毒性和生物有效性。由于砷的形态变化可以影响其毒性,研究土壤中砷的形态转化规律、植物有效性及其在植物体内的存在形态等,对防治和预防砷的毒害,提高农产品质量,更好地制定土壤和农产品质量标准具有重要意义。
     本文通过对土壤中不同形态砷的提取方法研究,确定提取土壤中不同形态砷的最优方法;通过室内培养土壤实验,研究有机砷和无机砷进入土壤后的动态转化规律,及其土壤水分含量对各不同形态砷转化的影响;通过盆栽试验,研究进入土壤的有机无机砷化合物对植物的毒性、有效性及其在植物体内的存在形态的影响,通过本研究主要获得以下结果:
     1.超声波提取是提取土壤中不同形态砷最优方法,其对于不同形态砷的回收率除As(Ⅲ)外,均在84%以上,提取量显著高于振荡和离心提取。
     2.土壤室内培养试验表明,进入土壤的砷化合物(As(Ⅴ)、DMA、MMA)主要发生脱甲基化过程,甲基化和还原过程很难发生。As(Ⅴ)进入土壤后主要发生吸附解吸;DMA、MMA进入土壤后脱甲基生成As(Ⅴ),并伴随吸附解吸作用;不同土壤水分含量不能直接影响各种砷化合物形态转化的产物,只能影响其转化过程;DMA、MMA在35%最大田间持水量,70%最大田间持水量,>100%最大田间持水量(淹水)时其完全转化期分别为:120d、60d、30d;150d、60d、60d。同样环境条件下,DMA的脱甲基化速率明显快于MMA;DMA、MMA两种有机砷的最快转化的土壤水分条件分别为>100%最大田间持水量和70%最大田间持水量。
     3.外源砷进入土壤以后会通过挥发作用有一部分进入到空气当中,其中DMA和MMA的挥发较多,无机砷As(Ⅴ)则几乎不发生挥发;在70%最大田间持水量时,DMA、MMA的挥发率占总砷的比例分别为18.1%、12.0%。
     4.对植物中砷形态的研究结果表明,在第二季盆栽小油菜中,主要存在形态为As(Ⅲ)和As(Ⅴ),并且在DMA和As(Ⅴ)处理同浓度时,小油菜体内含量和形态都没有显著差异。原因是由于经过2个多月的盆栽第一季试验后,DMA已经基本转化为As(Ⅴ)了。
     5.外源砷进入土壤后,随着浓度的增加对小油菜的生物量影响越大,尤其表现在DMA和MMA。DMA的含量达到60mg/kg时,使小油菜致死。不同形态砷的生物毒性为:DMA>MMA> As(Ⅴ);砷的移动性为:DMA≥MMA> As(Ⅴ)。DMA、MMA处理在同浓度水平时,小油菜的地上部分中的总砷含量显著高于As(Ⅴ)处理。
     6. As(Ⅴ)处理小油菜植株内主要存在形态为As(Ⅲ)和As(Ⅴ);DMA处理小油菜植株中的主要存在形态为DMA,其次为As(Ⅴ)和As(Ⅲ);MMA处理小油菜中存在4种形态的砷,主要存在形态为MMA,其次为As(Ⅴ)和As(Ⅲ),再次为DMA。说明植物吸收利用的主要为土壤中有效态含量较高的形态,但也会随植物吸收过程而产生形态变化。在同浓度水平下,二甲基砷酸钠盐的毒性和有效性显著低于二甲基砷酸,二甲基砷酸钠盐使小油菜的致死浓度为60mg/kg,而二甲基砷酸的致死浓度为15mg/kg,甚至更低。
     本研究的相关结论,在一定程度上揭示了土壤水分含量对土壤中不同形态砷转化的影响,探索了DMA、MMA、As(Ⅴ)在土壤中的动态转化过程;以及不同形态砷的植物有效性和其在植物中的形态,为进一步研究土壤砷的修复和转化机制,减少植物吸收利用机制及其在国际和国家标准中的形态和含量的制定提供参考依据。
More and more attention is paid to arsenic toxicity with the arsenicals applied extensively and the problems on arsenic contamination increasing around the world. Combined with the process of arsenic-containing water irrigation, application of arsenic-containing pesticides and fertilizer, and atmospheric deposition, arsenic enters farmlands and will threaten people’s health through the food chain. In ordinary conditions, the predominant asenicals is As-S compounds in nature environment with less mobility and low bioavailability. But the As(Ⅴ) is the predominant form in soils with more availability. There is a great difference of toxicity and bioavailability among the different As forms. Generally, the greatest toxicity is the tri-organic derivative, secondly is As(Ⅲ), As(Ⅴ), DMA, MMA. The AsB and AsC almost have no toxicity, which mainly exists in marine animal and plant. Under the actions of soil animals and microorganisms, the forms and valence of arsenicals can be changed through physical, physico-chemical, biochemical processes, and the toxicity and plant-availbality also vary. Because of the toxicity varying with the valence chaning, study on the transformation of arsenic forms,plant-avalibality, and the existing forms in plants will make great sense for prevention of the As toxicity, improvement of agriculture product quality and betterly establishing the standards of soil and the quality of agricultural products.
     In this paper, study on the method for extracting different form of arsenic in soils, transformation of inorganic and organic arsenic in soils, impact of different soil moisture on the asenic forms, influence of organic and inorganic arsenic compounds on the plant toxicity, availability and arsenic forms in plants were conducted through pot experiments and soil incubation experiments.The main results are as following:
     1. The optimum method for extracting different forms of arsenic in soils is that using ultrasonic extraction. The recovery percentage of different forms of arsenic, excepting As(III), are all above 84%, and the corresponding extracting amount is significantly higher than that using oscillatory and centrifugal extraction method.
     2. Soil incubation experiment shows: demethylation is the mainly process for all the arsenicals containing As(Ⅴ),DMA,MMA when they entering into soils, while methylation and reduction process was not observed. A series of process of arsenic occurred, like adsorption-desorption process for As(Ⅴ), demethylation from DMA, MMA to As(Ⅴ) combined with adsorption -desorption effect; Different soil moisture content can influence the conversion process directly and no obvious effect of water content on the product of various arsenicals was observed.; Under 35%, 70%, >100% of the maximum field capacity, the completely transformation times of DMA were 120d, 60d, 30d respectively, and 150d, 60d, 60d for MMA transformation;. Under the same condition, the demethylation speed of DMA is apparently faster than MMA; The optimal soil moisture for the transformation of DMA and MMA are >100%, 70% of the maxmun field capacity.
     3. The arsenic added into soil can partly volatilize into the air with more volatilized amount for DMA and MMA and the inorganic As(Ⅴ) hardly volatiled. The volatilizing percentage of DMA and MMA acctounted for the total arsenic respectively are 18.1% and 12.0%.
     4. Through the study on arsenic forms in plant, As(Ⅲ)and As(Ⅴ) are the predominant form in small Rape plant in the second season pot experiment, and there are no significantly difference for concentration and arsenic forms in small Rape between the treatments of DMA and As(Ⅴ) with the same concentration, which may be connected with the fact that DMA almost transformed into As(Ⅴ) after the first season pot experiment.
     5. With the outer source arsenic added into soils, more effects on the biomass of small rape can be observed with the concentration of arsenic increased especially for DMA and MMA treatments. It could cause the death of the small Rape the concentration of DMA reached 60mg/kg. The toxicity of different arsenic decreased in this order: DMA>MMA> As(Ⅴ); The mobility decreased in the order of DMA≥MMA> As(Ⅴ). The total arsenic of the small Rape above ground part for DMA and MMA treatments is significantly higher than that for As(Ⅴ) treatment.
     6. The As(Ⅴ) and As(Ⅲ) are the predominant form in small Rape for As(Ⅴ) treatment. DMA is the predominant form with less amount of As(Ⅴ) and As(Ⅲ) for DMA treatment. MMA is the predominant form for MMA treatment although less amount of As(Ⅴ), As(Ⅲ) and DMA was also detected. The above results showed that plant mainly absorbed As which is available with highest amount in soils, but the forms of arsenic in plant could vary with plant absorbing processes. Under the same concentration, the dimethylarsinic acid is more toxic than disodium methanearsonate, and the concentration causing plant death were 15(or even lower) and 60 mg/kg,respetively.
     Through this study, the effect of soil water content on the transformation of arsenic form was proclaimed to some extent, and the dynamic transformation process of DMA, MMA, As(Ⅴ) in soils and the plant-availability of different forms of arsenic, and the arsenic forms in the plant were also explored in some degree;All these obtained results can provide important reference for further research on remediation and transformation of arsenic in soils, and the mechanism for reducing the account by plant uptake and establishment of standard for soil and agricultrural product quality of As concentration and forms in our country or around the world.
引文
1. Baker M.等.酸性水环境中铅汞砷硒的甲基化作用,《环境中的重金属》,中国科学院环境化学研究, 1983.
    2.白云飞.土壤底泥砷形态提取与水样砷形态保存实验研究[硕士学位论文].北京:中国地质大学, 2007。
    3.岑慧贤,吴群河,陈志澄.各形态和浓度砷对生菜生长的影响试验.农业环境与发展, 1996, 16(4): 21-22.
    4.陈同斌.土壤溶液中的砷及其与水稻生长效应的关系[J].生态学报, 1996, 16(20): 147-153.
    5.陈同斌,刘更另.土壤中砷的吸附和砷对水稻的毒害效应与pH值的关系.中国农业科学, 1993, 26(1): 63-68.
    6.方宇,江桂斌,何滨,王国平.砷形态分析中的样品前处理方法.环境污染治理技术与设备[J]. 2002, 3(2): 46-51.
    7.胡家恕,童富淡,邵爱萍等.砷对大豆种子萌发的伤害.浙江农业大学学报, 1996, 22(22): 121-125.
    8.黄泽春,陈同斌,雷梅,胡天斗.超富集植物蜈蚣草中砷化学形态的EXAFS研究.植物学报,2004,46(1): 46-50
    9.国家环保局开发监督司.中国环境监测[J], 1994, 1(1): 1.
    10.郭效中,刘天余.洛克沙砷、黄霉素及杆菌肽锌在畜禽日粮中的应用及研究[J].饲料研究, 2000, (10): 1-4.
    11.简放陵,青常乐.砷的后效和对萝卜的临界值研究.西南农业大学学报, 1992, 14(1): 76.
    12.李道林,何方,马成泽,田超.砷对土壤生物学活性及蔬菜毒性的影响.农业环境保护. 2000, 19(3): 148-151.
    13.李荣华.厌氧条件下水稻土中铁还原对砷形态的影响[硕士学位论文].陕西:西北农林科技大学, 2005.
    14.刘演兵,韩恒斌.砷形态分析方法研究进展.环境科学进展, 1994, 2(4): 1-12.
    15.鲁艳兵,温琰茂.施用污泥的土壤重金属元素有效性的影响因素[J].热带亚热带土壤科学, 1998, 7(1): 68-71.
    16.李银生,曾振灵,陈杖榴,邱江平.洛克沙砷对养猪场周围环境的污染.中国兽医学报, 2006, 26(6): 665-667.
    17. Ma Ming-sheng,X.Chris Le,胡斌,江祖成.高效液相色谱/氢化物发生/原子荧光快速检测尿砷形态.分析科学学报,2000, 141: 22-29.
    18.苗金燕,何峰,魏世强,刘刚.紫色外源砷的形态分配与化学、生物有效性.应用生态学报, 2005, 16(5): 899-902.
    19.彭长宏,唐谟堂.砷污染防治与含砷木材防腐剂的开发应用.安全与环境学报, 2001, 1(4): 10-13.
    20.潘佑民,杨国治.湖南土壤背景值及研究方法.北京:中国农业科学出版社, 1988.
    21.钱宇红.超声波提取原子荧光光度法测定紫菜中的无机砷含量.化学分析计量, 2008, 7(3): 70-71.
    22.尚爱安.土壤中重金属的生物有效性研究进展[J].土壤, 2000, 32(6): 294-300.
    23.沈东升,何增耀,吴方正.砷在土壤中的有效性及其价态转化[J].农业环境保护, 1992, 11(5): 206-208.
    24.宋红波,范辉琼,杨柳燕等.砷污染土壤生物挥发的研究[J].环境科学研究, 2005, 18(1): 61-64.
    25.涂从,金燕.土壤砷有效性研究[J].西南农业大学学报, 1992, 14(6): 477-482.
    26.武斌,廖晓勇,陈同斌,阎秀兰.石灰性土壤中砷形态分级方法的比较及其最佳方案[J].环境科学学报, 2006, 26(9): 1467-1473.
    27.王春旭,李生志.环境中砷的存在形态研究[J].环境科学, 1993, 14(4):53-57
    28.翁焕新,张宵宇,邹乐君,张兴茂,刘广深.中国土壤中砷的自然存在状况及其成因分析.浙江大学学报(工学版), 2000, 34 (1): 88-92.
    29.夏立江,华珞,韦东普.部分地区蔬菜中的含砷量[J].土壤, 1996(2): 105.
    30.王永,徐仁扣,王火焰.可变电荷土壤对As(Ⅲ)和As(Ⅴ)的吸附及二者的竞争作用[J].土壤学报, 2008, 45(4): 622-627.
    31.王真辉,林位夫.农田土壤重金属污染及其生物修复技术.海南大学学报(自然科学版), 2002, 20 (4): 386-393.
    32.肖玲,赵允格.石灰性土壤中有效砷提取剂的选择[J].陕西环境, 1996, 3(3): 18-21.
    33.谢正苗,黄昌勇,何振立.土壤中砷的化学平衡[J].环境科学进展, 1998, 6(1): 22-37.
    34.杨文婕,刘更另.砷对植物衰老的影响.植物生理学通讯, 1997, 33(1): 54-55.
    35.张敦普,许国旺,魏复盛.砷形态分析方法进展[J].分析化学, 2001, 29(8): 971-977.
    36.张慧娟,米杰,鲍为仁.煤中砷的超声波和微波辐照氧化脱除研究.煤炭转化. 2005, 28(2): 61-63.
    37.周康民,汤志云,肖灵,等.土壤及水中As价态分析方法研究[J].地质学刊, 2008, 32(3): 189-197.
    38.赵其国.发展与创新现代土壤科学.土壤学报, 2003, 40(3): 321-327.
    39.曾希柏,李莲芳,白玲玉.农业利用方式对土壤砷累积的影响[J].应用生态学报, 2007, 18(2): 310-316.
    40. Akkari K H, Frans R E, Lavy T L. Factors affecting degradation of MSMA in soil. Weed Sci. 34:781-787.
    41. Beretka J and Nelson P. The current state of utilisation of fly ash in Australia. In“Ash A Valuable Resource”. South African Coal Ash Association, 1994, 1: 51 -63.
    42. Carbonell-Barrachina A, Aarabi M A, Delaune R D, Gambrell R P and Patrick W H J. Bioavailability and uptake of arsenic by wetland vegetation: effects on plant growth and nutrition. J. Environ. Sci. Health 1998, 33: 45–66.
    43. Chiu V Q& Hering, J G. Arsenic adsorption and oxidation at manganite surfaces. 1. method for simultaneous determination of adsorbed and dissolved arsenic species.Environmental Science and Technology, 2000, 34, 2029–2034.
    44. Chun-gang Yuan,Gui-bin Jiang and Bin He. Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativaL., and analysis by HPLC-HG-AFS[J].Article, 2005, 20: 103-110.
    45. ClaussenF A. J.Chromatogr.Sci., 1997, 35: 568-572.
    46. Deuel et al. Arsenic solubility in a reduced environment, S S S A P, 1972, 36:276-278.
    47. Deuel L E & Swoboda A R.Arsenic toxicity to cotton and soybeans.J. Environ.Qual. 1972, 1:317-320.
    48. Frankenberger W T & Losi ME.Application of bioremediation in the cleanup of heavy elements and metalloids. In Bioremediation: science and application(ed HD)Skipper & Rf Turco),Soil Science of America,Special Publication no. 1995, 43:173-210.
    49. Gao S, Burau R G. Environmental factors affecting rates of arsine evolution from and mineralization of arsenicals in soil [J]. Environment Quality, 1997, 26: 753-763.
    50. Geiszinger A, G?ssler W, Kühnelt D, et al. Determination of arsenic compounds in earthworms [J]. Environmental Science and Technology, 1998, 32: 2238-2243.
    51. Georgiadis M, CAI Y, Helena M. Extraction of arsenate and arsenite species from soils and sediments. Environmental Pollution, 2006, 141: 22-29
    52. Gulz P A . Arsenakkumulation verschiedener Nutzpflanzen in Na¨hrlo¨sung. BGS Bulletin 23 Landwirtschaftliche Lehrmittelzentrale LMZ (Hrsg.), Zollikofen. 1999.
    53. Gulz P A and Gupta S K. Arsenaufnahme von Kulturpflanzen. Agrarforschung, 2000, 7: 360–365.
    54. Hanaoka K, Hasegawa S, Kawabe N, et al. Arobic and anaerobic degradation of several arsenicals by sedimentary micro-organisims. Appl. Organomet. Chem. 1990, 4: 239-243.
    55. Helgesen H, Larsen E H. Bioavailability and speciation of arsenic in carrots grown in contaminated soil. Analyst, 1998, 123: 791-796.
    56. Huang J H, Scherr F, Matzner E. Demethylation of dimethylarsinic acid and arsenobetaine in different organic soils. Water Air Soil Pollutant, 2007, 182: 31–41.
    57. Huang J H, Scherr F, Matzner E. Mobile arsenic species in unpolluted and polluted soils. Science of the Total Environment , 2007, 377: 308-318.
    58. Jacobs L W, Keeney D R and Walsh L M. Arsenic residue toxicity to vegetable crops grown on Plainfield sand. Agron. J. 1970, 62: 588–591.
    59. Jiǐina Szákováet al. Response of pepper (Capsium annum L.) on Soil Amendment by Inorganic and Organic Compounds of Arsenic.Arch Environ Contam Toxic, 2007, 52:38-46.
    60. Kumaresan M & Riyazuddin P.Overview of speciation chemistry of arsenic.Curr.Sci, 2001, 80(7): 837-846.
    61. Lafferty B J, Loeppert R H. Methyl arsenic adsorption and desorption behavior on iron oxides. Environmental Science and Technology, 2005, 39: 2120–2127.
    62. Leonard A. Arsenic. In: Merian E, in coorporation with Clarkson, et al. eds. Metals and their compounds in the environment. Occurrence, Analysis and Biological Relevance. 2nd ed. Weinheim, VCH, 1991: 751-773.
    63. Liu Z L, Carbrey J M, Agre P, Rosen B.P, Biochem. Biophys.Res. Commun. 2004, 316, 1178.doi: 10.1016/J.BBRC. 2004.03.003
    64. Macur R E,Jackson C R,Botero L M, McDermott T R & Inskeep W P.Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil.Environ.Sci.Technol, 2004, 38: 104-111.
    65. Maeda S.In Arsenic in the Environment, Part1:Cycling and Characterization (J.O.Nriagu,Ed.) Wiley, New York, 1994: 155-187.
    66. Mandal B K, Suzuki K T.Identification of dimethylarsinous and monomethyarsonous acids in human urine of the arsenic-affected areas in West Bengal, India. Chemical Research in Toxicology, 2001, 14: 371-378.
    67. Manning B A, Martens D A. Speciation of arsenic(III)and arsenic(V)in sediment extracts by high-performance liquid chromatography--hydride generation atomic absorption spectrophotometry[J].Environmental Science & Technology, 1997, 31(1): 171-177.
    68. Marn A,Lopez-Gonzalvez A,Barbas C.Development and validation of extraction methods for determination of zinc and arsenic speciation in soils using focused ultrasound-Application to heavy metal study in mud and soils[J].Analytica Chimica Acta, 2001, 442(2): 305-318.
    69. Masscheleyn P H, Delaune R D, Patrick W H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 1991, 25: 1414-1419.
    70. Mester Z, Woller A. Detemination for arsenic speciation by HPLC-ultrasonic atomization AFS. Journal of Analytical Atomic Spectrometry, 1995, 10(9): 609- 613.
    71. Nriagu J D, Pacyna J M. Quantitative assessment of worldwide contamination of air water and soils by trace metals.Nature, 1988, 333: 134-139.
    72. Nriagu J O. Arsenic: Historical perspectives. In: Nriagu JO.ed. Arsenic in the Environment: Part I. Cycling and characterization. Wiley & Sons, New York, 1994: 3-15.
    73. Oken B M & Hossner L R. Plant uptake and determination of arsenic species in soil solution under flooded conditions.J.Environ.Qual. 1995, 24: 301-306.
    74. Oliveira V, Sarmiento A M, G'omez-Ariza J L. New preservation method for inorganic arsenic speciation in acidmine drainage samples. Talanta, 2006, 69: 1182-1189.
    75. Otte M L and Ernst W H O.Arsenic in the vegetation of wetlands, In Arsenic in the Environment. Part I: Cycling and Characterization, Ed. J O Nriagu. pp. 1994: 356–379. AnnArbor.
    76. Petrick J S , Ayala - fierro F ,cullen W R ,et al. Monomethylarsonous acid (MMAsⅢ) is more toxic than arsenic in Chang human hepatocytes [J ] . Toxicol Appl Pharmacol, 2000, 163: 203 - 207.
    77. Peterson P J, Benson L M & Porter E K.Biogeochemistry of arsenic on polluted sites in plants(ed NW Lepp),Applied science, London 1979: 272-342.
    78. Pickering I J, Prince R C, George M J, Smith R D, George G N, Salt D E, Plant Physiol. 2000, 122, 1171. doi:10.1104/PP.122.4.1171
    79. Pizarro I, Gomez M,Camara C, Palacios M A. Arsenic speciation in environmental and biological samples extraction and stability studies. Analytica Chimica Acta, 2003, 495: 85–98.
    80. Pongratz R. Arsenic speciation in environmental samples of contaminated soil [J].The Science of the Total Enviroment, 1998, 224: 133-141.
    81. Raab A, Williams P N, Meharg A, Feldmann J. Uptake and translocation of inorganic and methylated arsenic species by plants. Chem. 2007, 4, 197–203. doi:10.1071/EN06079
    82. Rubinos D, Barral M T, Ruiz M, Rial ME,Alvarez M & Diaz-Fierro F. Phosphate and arsenate retention in sediments of the Anllons river (northwest Spain).Wat. Sci. Technol, 2003, 48: 159-166.
    83. Sadiq M. Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Soil Air Pollution, 1997, 93: 117-136.
    84. Smith E, Naidu R, Alston A M. Arsenate in the soil environment:A review. Advance in Agronomy, 1998, 64:149-195.
    85. Thomas P, Finnie K and Williams J G. Feasibility of identification and monitoring of arsenic species in soil and sediment samples by coupled high-performance liqud chromatography-inductively coupled plasma spectrometry J.Anal.At. Spectrom, 1997, 2: 1367-1372.
    86. Tlusto? P, G?ssler W, SzákováJ, et al. Arsenic compounds in leaves and roots of radish grown in soil treated by arsenite, arsenate and dimethylarsinic acid. Applied Organometallic Chemistry, 2002, 16: 216 -220.
    87. Tlusto? P, G?ssler W, SzákováJ, et al.Arsenic compounds in the leaves and roots of radish grown in three soils treated by dimethylarsinic acid. Plant Soil Environ. 2004, 50 (12): 540–546.
    88. Thoresby P, Thornton I. Heavy metals and arsenate in soil, pasture herbage and barley in some ineralised areas in Britain: significance to animal and human health.In Trace Substances in Environmental Health XIII, (Hemphill D D Ed), University of Missouri, Columbia, 1979: 93-103.
    89. Von Endt D W, Kearny P C, Kaufman D D. Degradation of monosodium methanearsonic acid by soil microorganisims. Agric. Food Chem. 1968, 16(1): 17-20.
    90. WHO.Arsenic compounds, environmental health criteria. 1998, 224, 2nd edn, Geneva.
    91. Woolson E A Axley J H and Kearney P C. Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.). Soil Sci. Soc. Amer.Proc. 1971b, 35: 101–105.
    92. Woolson E A. Generation of alkylarsines from soil [J]. Weed Science, 1977, 25(5): 412-416.
    93. Woolson E A, Aharonson N, Iadevaia R. Application of the high-performance liquid chromatography-flamelessatomic absorption method to the study of alkyl arsenateal herbicide metabolism in soil.Journal of Agricultural and Food Chemistry, 1982, 30: 580-584.
    94. Xu J and Thornton I. Arsenic in garden soils and vegetable crops in. Cornwall, England: implicatins for human health, Environ. Geochem. Health. 1985, 7: 131–133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700