用户名: 密码: 验证码:
节理裂隙岩体隧道爆破成型效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国钻爆法施工的隧道约占隧道工程总量的95%以上,钻爆法进行隧道开挖过程中,超欠挖现象及塌方事故频繁发生,影响施工质量与安全,地质条件中节理裂隙对岩体爆破效果的影响最为显著。本文依托吉林省交通厅科研项目“节理裂隙岩体隧道爆破技术研究”,以吉林省图们至珲春高速公路高岭隧道为例,运用爆破机理研究、现场资料收集分析和ANSYS/LS-DYNA数值模拟三种手段,从节理裂隙的存在降低岩体的力学性能和改变岩体的破坏形式两方面来研究其对隧道爆破成型效果的影响作用。从应力波传播机理入手,研究节理强度对爆炸应力波的阻隔作用;根据光面爆破作用原理,研究节理产状对光面爆破成型效果的影响作用。通过对高岭隧道五个II级围岩掌子面和五个III级围岩掌子面节理分布统计和周边爆破效果整理,理论联系实际,分析节理裂隙的存在对爆破成型效果的影响。对岩体条件进行假设,根据爆破特征确立爆破岩体模型、破坏准则、炸药模型及其状态方程,利用ANSYS/LS-DYNA动态有限元程序模拟不同产状节理岩体在爆炸荷载作用下的破碎过程,研究其爆破成型效果,并对不同强度节理和不同宽度节理对爆炸应力波的阻隔作用进行模拟分析。
The geological conditions are fairly complicated in China. Tunneling engineering plays a significant role in highway, railway, and other transportation line projects. In addition, drilling and blasting method is the main method for the construction of tunnels in China. This method accounts for over 95 percent of tunnel engineering in China. However, during the process of using the drilling and blasting method, the over-under-excavated phenomenon and collapse accidents usually happen. The over-under- excavated phenomenon can have a negative influence on the quality and safety of the construction of tunnels. Currently the study of the over-under- excavated phenomenon caused by natural factors is more widely studied than the study of over-under-excavated phenomenon that is caused by human factors; the study of slope and open-pit jointed rock mass blasting technology is concerned more than the study of tunnel jointed rock blasting technology. To conclude, the study about the phenomenon of over-under- excavated of the jointed rock mass tunnel caused by natural factor is even less concerned. This paper is based on the scientific and technological project of the transportation department in Jilin Province“The Study of Jointed Rock Mass Tunnel Blasting Technology”, the Gaoling Tunnel on Tuhui high way is used as an example to investigate the effect of jointed and fractured rock mass to the shape blasting of the tunnel.
     The factors that caused the phenomenon of over-under-excavated are listed below: first, it not fully concerns about the effect of geologic situation; second, it uses the improper blasting parameters. Natural rock mass is not homogeneous mass, plenty of faults, jointed rock mass, fractures and other disadvantages which can lead the deterioration of the rock mechanic parameters so that the rock mass have the non-continuous property and obvious anisotropy. The fracture and the other weak structures have two different effects on the blasting result. On the one hand, joint fissure has an impact on the rock mass mechanical property; the existence of the weak surface makes the propagation of the stress wave more complicated and it becomes a barrier to the stress wave which decreases the effect of blasting energy. Also, it leads the leakage of detonation gas and the pressure that influence the blasting effect. On the other hand, joint fissure influences the rock mass destruction form; the existence of the weak surface breaks the integrity of the rock mass which leads the formation of the original fracture inside the rock mass. And it changes the stress state of the rock unit structure. Meanwhile, it leads the change of the rock mass destruction form and influences the blasting effect.
     The paper talks about the influence that cost from joint fissure to the mechanical properties and the destruction form of the rock mass from the following three aspects separately:
     (1)Commences from blasting mechanism: Analyzing the reflection and the transmission phenomenon of blasting stress wave and studying the joint fissure strength’s barrier effect to the blasting stress wave. According to the smooth surface blasting mechanism, stress analyzing and the damage criterion, to study the effect that the joint fissure shape may have to the blast-forming result.
     (2)Commences from the on site data: By statistical sorting of the joint fussier distribution and the peripheral blasting effect of five surrounding rock tunnel faces in level 2 and five surrounding rock tunnel faces in level 3, to analyze the effect of existence of the joint fissure to the blast-forming result.
     (3)Commences from the numerical simulation values: By supposing the rock mass situation and according to the blasting characteristics of the rock mass, the rock mass model, damage criterion, dynamite model and the state equation are assured. By using ANSYS/LS-DYNA finite elements program to simulate the breaking process of different occurrence joint rock mass under the effect of blasting load. Researching the effect that the joint rock may have on the tunnel blasting forming result. And barrier effects of different strengths of joint and different width of joint is towards the blasting stress wave were simulating-analyzed.
     The influence of joint fracture to the mechanical property of the rock mass mainly incarnate at:
     Because of the various structural plane existed in the rock mass the propagation of blasting stress wave is more complex. Through analyzing the reflection and transmission phenomenon of the blasting stress wave on the joint interface, it establishes the mathematical expression about the stress of both sides of the rock mass of the joint under the blasting stress wave. The results showed that: the stress in both sides of the joint rock is affected by the attenuation of blasting stress wave and the reflection and transmission of the blasting stress wave on the joint interface. The propagation of the blasting stress wave is main effected by the blasting source, the distance between the joint and the blasting source, the relationship of wave impedance matching of rock and filling material in joint as well as the width of joint. Among them the relationship of wave impedance matching of rock and filling material in joint plays a main role. The stress which is close the blasting source is the sum of the incident stress, the reflection stress and the transmission stress of the blasting stress wave. The stress which is far from the blasting source is the sum of the transmission stress of the blasting stress wave. When the physical and mechanical properties of filling material of the joint and the rock are similar, the blasting stress wave can smoothly through the joint. Not consider its role in stress wave barrier, only consider the normal attenuation of stress. When the physical and mechanical properties of filling material of the joint and the rock are different, joint has a significant influence barrier action on the stress wave.
     Using the ANSYS/LS-DYNA simulation calculation program, the rock material and joint material is assumed to be ideal elastic-plastic body. Blasting load uses of the JWL equation of state which is consider the detonation gas. Use equivalent stress of the unit to show the barrier action on the blasting stress wave of the joint. It uses the combination of different intensity and different width of the joint. It selects for three different strength of joint-joint 1, joint 2 and joint 3, in each group of strength of joint it selects three different widths of joint-5cm, 10cm and 15cm. It sets up nine models to study. Simulation results are show by stress ratio of both sides of the joint under the blasting stress wave. The theoretical method and the numerical simulation show the same law: the weaker strength of the joint, the wider of the joint, the closer of the joint to the blasting source, the barrier action on the blasting stress wave of the joint is stronger. The theoretical method is well in accordance with numerical simulation in the stress ratio of both sides of the joint under the blasting stress wave.
     The influence of joint fracture to the destructive form of the rock mass mainly incarnate at:
     The investigation shows that since the blasting wave are limited by the joint interface, it makes a shallow and a wide blasting funnel in the rock planes which are vertical to the tunnel axis. Thus it is easy to get a deep and narrow blasting funnel in the rock planes which are parallel to the tunnel axis. On this basis, this paper proposes that the effect of the joint aptitude to the tunnel blasting effect is mainly influenced by the smoothness of its tunnel face. And the effect of the joint inclination to the tunnel blasting effect is mainly influenced by the smoothness of the contour line around it. Thus this paper predigests the investigation to the plane problem.
     According to the smooth surface blasting mechanism,based on analysis of the unit body stress it investigates the influence that was made by joint structure surface to the smooth surface’s blasting destruction. The investigation shows that: when the angle between the structure plane and the direction of the blast hole line satisfy special conditions, the rock mass would form a smooth blasting fracture towards the direction of the blast hole line. This is also the blasting contour of the designed smooth surface. When the angle between the structure surface and the blast hole line doesn’t satisfy this condition, the rock mass would fracture towards the direction of the joint. The structure surface after the damage doesn’t take the tensile stress which influenced the stress situation of the acting surface that is vertical to it. So it forms the“z-shape”fracture surface.
     To form a smooth surface blasting contour, the condition is that the angle between the structure surface and the blast hole line has to be larger than a certain value. This value depends on the joint surface’s shear strength and its poisson ratio. The angle is usually about 70 degrees. The stronger the shear strength of the joint surface and the smaller the poisson ratio, the influential area is smaller, which means the stronger of joint surface has a lesser influence. When the joint becomes almost vertical to the blast hole line, the strength of the structure surface has no effect on the smooth surface blasting.
     Combined with specific engineering, in the Gaoling Tunnel, When the angle between the closing joint structure surface and the blast hole line in the level 2 surrounding rock is during 68 to 90 degrees, and in the level 3 surrounding rock when the angle between the closing joint structure surface and the blast hole is during 69 to 90 degrees; the structure surface has no effect on the smooth surface blasting. When the angle between the closing joint structure surface and the blast hole line in the level 2 surrounding rock is less than 68 degrees, and in the level 3 surrounding rock when the angle is less than 69 degrees; a“z-shape”fracture surface would appear after explosion. The larger the distance between the blast hole or the structure surfaces, the larger the convexity and the concavity of the fracture surfaces will be. When the angle is less than 45 degrees, the convexity and concavity will raise up with the angle’s degree. When the angle is 45 degrees the convexity and concavity is the largest. When the angle is larger than 45 degrees the convexity and concavity decrease with the angle’s degree. When the angle between the closing joint structure surface and the blast hole line is certain, the convexity and concavity will be smaller by decreasing the distance between the blast hole. The distribution statistic and the blasting effects of the test objects showed consistency in the calculated results.
     On the basis of engineering project, it establishes a simplified calculation model. Using the ANSYS/LS-DYNA numerical value simulating program, it considering the assumed condition, it simulates the effects that a single closing joint may have on the blasting-forming effect. By using the MISES yield criterion; the effective stress up to the limit of the yield criterion, the material starts to get into the plastic status, and the destruction appears. The angle between the joint and the blast hole line that are 30 degrees, 45 degrees, 60 degrees, 70 degrees, 80 degrees and 90 degrees are selected. The results show that when the angle is 30 degrees, 45 degrees and 60 degrees, the over-under-excavated phenomenon appears at the intersect position of the joint and the peripheral hole. When the angle is 70 degrees, 80 degrees and 90 degrees, the contour line is approximately equal to the designed contour line. The joint will then have no influence on the blasting effect. Here the numerical value is basically same as the conclusion in the fifth chapter.
     The data acquired on the job site showed that the when the filling joint extends over the designed contour line, the contour structure surface would explode with the blasting layer. This is what causes the over-excavated phenomenon. The wider the joint, the weaker the strength, and the longer the extension is, the over-excavated phenomenon is more serious. When the closing joint exists and makes the concentration coefficient is bigger than 0.8 to 1, the under-excavated would appear. The larger the concentration coefficient, the larger the amount of under-excavated phenomenon would occur.
     In conclusion, it uses the blasting mechanism, the data from the field, the numerical simulation to investigate the influence which results from the shape of the joint to the blasting-forming effect, and the barrier effect which results from the strength of the joint to the blasting stress. The results by the three methods match well. The paper offers a reference to the study of joint fractured tunnel blasting.
     Main creative spots of the paper:
     (1)Commences from the reflection and the transmission of the blasting stress wave in the joint to investigate the barrier effect of the joint strength to the blasting stress wave. The investigation about this aspect is fewer, this paper systematically considers the condition of the blasting source, the distance between the joint and the blasting source, the wave impedance matching coefficient between the filling material and rock. It establishes a mathematical expression about the stress ratio of both sides of the rock mass of the joint under the blasting stress wave to represent the barrier effect’s strength. The simulation of the numerical value and the theoretical calculation matches well. Thus this offers some reference on the study of the damage mechanism of the filling joint under blasting stress wave.
     (2)It proposes that the main factor that influences the blasting tunnel effect on the joint tendency is the smoothness of its tunnel face. The main factor that influences the blasting tunnel effect of the joint dip angle is the smoothness of its surrounding contour. This paper is concerned only on the blasting effect of the joint dig angle. The spatial problem is simplified to plane problem.
     (3)Commences from the smooth surface damage mechanism. The investigation concluded that the influence was caused from the joint to the smooth surface blasting forming effect. When the angle between the structure surface and the blast hole locker line is above a certain numerical value, the rock mass would form a smooth blasting fracture surface towards the direction of the blast hole line which is the designed contour line of the smooth blasting surface. The critical value of the inclination depends on the shear strength and the poisson ratio. The angle is usually around 70 degrees. When the angle is below 70 degrees, it will form a“z-shape”fractured surface along the joint surface and the structure which is vertical to the joint surface. When the angle is 45 degrees, the“z-shape”fracture surface has the largest convexity and convexity. The convexity and concavity will be smaller by decreasing the distance between the blast hole. The result is verified by using three separate mechanisms i.e. theoretical calculation, the statistics of the field data, and the numerical value simulation. It provides a theoretical basis to the optimal operation of the blasting parameters.
     (4)The ANSYS/LS-DYNA method is more often used to predict the transmission of the blasting stress wave, the blasting fragmentation, and the blasted ore pile shape in the joint fractured rock mass. This paper made a preliminary exploration of the existence of the joint fracture and the tunnel blasting-forming effect. This paper also analyzes the over-under-excavated phenomenon that was caused by the joint. The conclusion was beneficial for it made a basis for a future quantitative study.
     (5)In regards to the influence that comes from the joint occurrence to the blasting-forming effect and the barrier effect of the blasting stress wave influenced by the strength of the joint. This paper investigates the blasting mechanism, the field data, and the numerical simulation. The conclusions verified each other and offered some reference for the study of joint fractured rock mass tunnel blasting.
引文
[1]刘伟.21世纪初我国公路隧道的关键技术[J].公路,2000,11:82-86.
    [2]中国力学学会工程爆破专业委员会著.全国工程爆破学术会议论文选(第四辑)工程爆破文集[C].北京:冶金工业出版社,1993.
    [3]陈士海.现代钻爆理论与技术[M].北京:煤炭工业出版社,1998.
    [4]齐金铎.现代爆破理论[M].北京:冶金工业出版社,1997.
    [5]郭文章,冯顺山,王树仁等.节理岩体爆破研究进展[J].工程爆破,1999,5(4):72-77.
    [6]OBERT L.R.I.4583,U.S.Bureau of Mine,1950:31.
    [7]ASH R.L.PH.D.SYMP.On Rock Mechanics, New York, 1963:263-271.
    [8]FOURNEY W.L.1st Int.SYMP.On Rock Frag.By Blasting,Lulea,Sweden, 1983:503-531.
    [9]MARGOLIN L.G.破坏的数值模拟[J].第一届国际爆破破岩会议文集.1985:218-226.
    [10]DANELL R.E.2th Int.SYMP.On Rock Frag.By Blasting,U.S.A,1987: 486-493.
    [11]敖聪利,尚嘉兰.应力波遇裂隙的反射和透射[J].爆破,1989,1:19-23.
    [12]尚嘉兰,郭汉彦.岩体裂隙对应力波传播的影响[J].防护工程学术交流会论文集,1979:91-98.
    [13]王明洋,钱七虎.爆炸应力波通过节理裂隙带的衰减规律[J].岩土工程学报,1995,17(2):42-46.
    [14]张奇.应力波在节理处的传递过程[J].岩土工程学报,1986,8(6):99-105.
    [15]张奇.层状岩体光面爆破效果的理论分析[J].爆炸与冲击,1988,8(1): 60-66.
    [16]李夕兵,赖海辉,古德生.爆炸应力波斜入射岩体软弱结构面的透反射关系和滑移准则[J].中国有色金属学报,1992:9-14.
    [17]李夕兵,陈寿如.应力波在层状矿岩结构中传播的新算法[J].中南矿冶学院学报,1993,24(6):738-742.
    [18]李夕兵,古德生,赖海辉.爆炸应力波遇夹层后的能量传递效果[J].有色金属,1993,45(4):1-6.
    [19]李夕兵.论岩体软弱结构面对应力波传播的影响[J].爆炸与冲击,1993,13(4):334-342.
    [20]何思为,陈庆寿,张杰坤.岩体结构对爆炸荷载的力学效用[J].矿冶工程,1992,12(3):10-14.
    [21]陈庆寿,何思为.含两组结构面模型的超动态应变测试[J].第三届全国岩石力学学术会议,1992:27-37.
    [22]于亚伦,赵进谦.裂隙发育岩体爆破块度的预测[J].中国矿业,1993,2(5): 59-63.
    [23]张继春,徐小荷.岩体断裂几何形状的分形研究[J].中国有色金属学报,1993,3(4): 11-15.
    [24]张继春.节理岩体爆破的损伤机理及其块度模型[J].中国有色金属学报,1999,9(3): 666-671.
    [25]李宁,G.Swoboda.爆破荷载的数值模拟与应用[J].岩石力学与工程学报,1994,13(4):357-364.
    [26]郭文章,王树仁,刘殿书等.节理岩体爆破块度预测的力学模型探讨[J].爆破,1997,14(3):31-34.
    [27]郭文章,王树仁,刘殿书.岩石爆破层裂机理的研究[J].工程爆破,1997,3(3): 1-4.
    [28]郭文章,王树仁,陈寿峰等.节理岩体爆破数值模型及模拟研究[J] .岩土力学,1998,19(3):1-9.
    [29]盛谦,黄正加,邬爱清.三峡节理岩体力学性质的数值模拟试验[J] .长江科学院院报,2001,18(1):35-37.
    [30]赵坚,陈寿根,蔡军刚.用UDEC模拟爆炸波在节理岩体中的传播[J].中国矿业大学学报,2002,31(2):111-115.
    [31]张电吉.岩体中的节理裂隙对爆破效果影响机理研究[J].有色金属, 2003, 55(3): 34-36.
    [32]王鲁明,赵坚,华安增.节理岩体中应力波传播规律研究的进展[J].岩土力学,2003, 24(增刊):602-606.
    [33]楼晓明.乌龙泉矿裂隙岩体爆破参数优化的研究[硕士学位论文][D].武汉:武汉科技大学,2004.
    [34]韦晓乾.应力波在节理岩体中传播模型实验研究[硕士学位论文][D].南宁:广西大学,2007.
    [35]GNIRK P.F.9th SYMP. On Rock Mechanics.Colorado School of Mines, 1968:321-345.
    [36]LARSON W.C.Pugleise J.M.U.S.BMRI 7863,1974
    [37]DA GAMA C.D.Proc.1st Int.Symp.On Rock Frag.By Blasting.Lulea Sweden,1983: 565-579.
    [38]SINGH D.P,et al.Proc.1st Int.Symp.On Rock Frag.By Blasting.Lulea Sweden,1983: 533-559.
    [39]FERDYCE D.L,FOURNEY W.L.节理对应力波传播的影响[J].第四届国际岩石爆破破碎学术会议论文集,北京:冶金工业出版社,1995:212-223.
    [40]A.K.CHAKRABORTY,P.PAL.ROY,Blast Performance in small tunnels—A critical evaluation in underground metal mines[J].Tunneling and Underground Technology,1998,13(3):245-252.
    [41]A.K.CHAKRABORTY, J.L.JETHWA, A.G.PAITHANKER, Effects of joint orientation and rock mass quality on tunnel blasting[J].Engineering Geology,1994,37(3):247-262.
    [42]A.K.CHAKRABORTY,A.K.RAINA,M.RAMULU.Development of rational models for tunnel blast prediction based on a parametric study[J]. Geotechnical and Geological Engineering,2004.22:477-496.
    [43]王卫星,邹定祥,马柏令.岩体弱面分布对爆破块度分布的影响及其计算机模拟[J].金属矿山,1986,3:15-19.
    [44]YANG ZG,RUSTAN A.1st Int.Symp.On Rock Frag.By Blasting.Lulea Sweden,1983: 581-603.
    [45]杨祖光.多排同段爆破技术的应用及其机理研讨[J].江西冶金,1987,7(6): 26-28.
    [46]郭文章,王树仁,张奇等.节理岩体爆破的破裂规律分析[J].振动与冲击,1999,18(2):30-35.
    [47]陈亚军,陈宪,陈国颜等.岩体构造对爆破作用的影响[J] .新疆大学学报(自然科学版),2003,20(3):318-321.
    [48]毕贵权.裂隙介质中波传播特性试验研究[硕士学位论文][D].西安:西安理工大学,2004.
    [49]陆文.岩体节理裂隙对爆破应力波阻隔作用的试验研究[J].岩土力学, 2004, 1:6-9.
    [50]李建军,段祝平.节理裂隙岩体爆破试验研究[J].爆破,2005,22(3):12-16.
    [51]张海波,王媛,王鲁明等.裂隙岩体动力特性的试验模拟研究[J].河海大学学报(自然科学版),2007,35(3):309-311.
    [52]REVEY G.F. Effects and control of overbreak in underground mining[J]. Mining Engineering.1998,50(8):63-67.
    [53]MAERZ N.H, IBARRA J.A, FRANKLIN J.A. Overbreak and underbreak in underground openings part 1: measurement using the light section method and digital image processing[J]. Geotechnical and Geological Engineering, 1996,14(4):307-323.
    [54]FRANKLIN J.A ,MAERZ N.H ,IBARRA J.A. Overbreak and underbreak in Underground openings part2:causes and implications[J]. Geotechnical and Geological Engineering.1996,14(4):325-340.
    [55]ABEL J.F. Average percentage of overbreak beyond payment line[J]. MN-461 course notes, Colorado School of Mines, Golden, CO, USA, 1982.
    [56]MARTNA J. Selective overbreak in the Suorva-Vietas tunnel caused by rock pressure, Proceeding of the International Symposium on Underground Openings, Lucerne, Switzerland, 1972:141-145.
    [57]吴继敏,A.Mahtab.节理岩体中地下洞室超挖预测[J].工程地质学报,1999, 7(1): 3-8.
    [58]佘健,钟新樵.公路隧道超欠挖统计规律研究[J].重庆交通学院学报, 2000, 19(2): 15-20.
    [59]赵会兵.钻爆法施工隧道的超欠挖概率统计规律研究[J].铁道工程学报,1999,16(3): 106-110.
    [60]王明年,关宝树.用自适应有限元法研究超欠挖对隧道稳定性的影响[J].地下空间,1999,16(1):12-19.
    [61]何林生,吴永清,王明年.钻爆法施工隧道的超欠挖控制[J].广东公路交通,1998,S1: 86-90.
    [62]孙少锐.裂隙岩体地下洞室超欠挖预测及评价研究[博士学位论文][D].南京:河海大学,2004.
    [63]孙少锐,吴继敏,魏继红.隧洞超挖问题中的广义分数维研究[J].岩石力学与工程学报,2005,24(24):4478-4483.
    [64]李良广,陆宏伟.隧道控制爆破[J].北方交通,2006,5:114-116.
    [65]苏永华,孙晓明,赵明华.隧道围岩超挖的分形特征研究[J].中国矿业大学学报,2006, 35(1):89-93.
    [66]尹俊宏,徐萍.大断面地下洞室爆破成形控制关键技术研究[J].工程爆破,2007,13(4): 28-32.
    [67]王鸿渠,陈建平.爆破工程地质[M].北京:人民交通出版社,1980.
    [68]戴俊.爆破工程[M].北京:机械工业出版社,2005.
    [69]陈建平,高文学.爆破工程地质学[M].北京:科学出版社,2005.
    [70]刘永平.隧道脆性——准脆围岩连续损伤特征研究[博士学位论文][D].长春:吉林大学,2005.
    [71]戴俊.岩石动力学特征与爆破理论[M].北京:冶金工业出版社,2002.
    [72]阜新矿业学院译.煤矿掘进技术译文集(第三集)光面爆破[M].北京:煤炭工业出版社, 1979.
    [73]中国科学技术情报研究所重庆分所.光面爆破和锚喷支护[M].重庆:科学技术出版社重庆分社,1976.
    [74]蔡福广.光面爆破新技术[M].北京:中国铁道出版社,1994.
    [75]杨军,熊代余.岩石爆破机理——庆贺钮强教授80华诞学术论文集[C].北京:冶金工业出版社,2004.
    [76]戴俊,杨永琦.损伤岩石周边控制爆破分析[J].中国矿业大学学报,2000, 29(5): 496-499.
    [77]王树仁,程玉生.钻眼爆破简明教程[M].中国矿业大学出版社,1989.
    [78]GUO WENZHANG,FENG SHUNSHAN,WANG HAIFU.Analysis of the Elastic-Plastic Dynamic Finite Element on a Jointed Rock Mass[J].Journal of Beijing Institute of Technology,1999,8(2):56-62.
    [79]段宝福,费鸿禄.岩体性质与爆破效果的灰关联度分析[J].爆破,1998,15(3):20-23.
    [80]LIEBERMAN G.M.Holder continuity of the gradient of solutions of uniformly parabolic equations with co normal boundary conditions[J].Anndi Math Pura ed Appl, 1987,148:77-99.
    [81]阳生权.爆破地震累积效应理论和应用初步研究[博士学位论文][D].长沙:中南大学, 2002.
    [82]刘殿书.岩石爆破破碎的数值分析[博士学位论文][D].北京:中国矿业大学北京研究生部,1992.
    [83]喻长智.岩石爆破混沌模型与条形药包爆破应力波衰减规律的研究[博士学位文][D].长沙:中南大学,2001.
    [84]闫长斌,徐国元等.爆破动荷载作用下围岩累积损伤效应声波测试研究[J].岩土工程学报,2007,29(1):84-89.
    [85]谭海文,吴仲雄等.岩体节理裂隙对巷道掘进爆破影响的研究与实践[J].金属矿山,2007,9:35-38.
    [86]王和平.不耦合装药爆破开挖隧道的作用机理[J].铁道建筑,2007,9:46-50.
    [87]吴永强,南世卿,孙艳秋.矿岩爆破性分区的研究及应用[J].矿治,1999,8(4):21-25.
    [88]张宪堂,陈士海.考虑碰撞作用的节理裂隙岩体爆破块度预测研究[J].岩石力学与工程学报,2002,21(8):1141-1146.
    [89]THOMAS J.A,ALLAN M.R.Impact-induced Tensional Failure in Rock[J].J Geo Res,1993,98(E1):1185-1203.
    [90]LIU C,THOMAS J A.Stress Wave Attenuation in Shock-Damaged Rock[J]. J Geo Res,1997,102(B3):5243-5250.
    [91]HE HONGLIANG,AHRENS TJ. Mechanical Properties of Shock-Damaged Rocks[J].Int J Rock Mech Min Sci & Geomech Abstr,1994,31(5):525-533.
    [92]M.N.BAGDE,A.K.RAINA,A.K.CHAKRABORTY.Rock mass characterization by fractal dimension[J].Engineering Geology,2002,63:141-155.
    [93]中华人民共和国城乡建设环境保护部.土方与爆破工程施工及验收规范(GBJ201-83) [S].北京:人民交通出版社,1983.
    [94]中国力学学会工程爆破专业委员会.中华人民共和国爆破安全规程(GB6722-2003)[S].北京:人民交通出版社,2003.
    [95]中国力学学会工程爆破专业委员会编.爆破工程[M].北京:冶金工业出版社,1992.
    [96]采矿手册编辑委员会.采矿手册(第二卷)[M].北京:冶金工业出版社,1990.
    [97]冯叔瑜,马乃耀.爆破工程(上册)[M].北京:中国铁道出版社,1980.
    [98]张宪堂.节理裂隙岩体爆破效果预测研究[硕士学位论文][D].青岛:山东科技大学,2000.
    [99]杨善元译.固体中的应力瞬变[M].北京:煤炭工业出版社,1981.
    [100]LARSON D.B.Explosive Energy Coupling in Geologic material[J].Rock Mech. Min.Sci&Gepmech,1982,19:157-166.
    [101]POOLE D.D.Acoustic Evaluation of Rock Quality[J].Tunnels&Tunneling, 1984, 11:41-42.
    [102]张奇.光面爆破机理研究[硕士学位论文][D].西安:西安矿业学院,1984.
    [103]齐伟.岩体力学[M].长春:吉林人民出版社,2001.
    [104]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984.
    [105]于学馥.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [106]唐春安.岩石破裂过程的灾变[M].北京:煤炭工业出版社,1993.
    [107]J.C.耶格,N.G.W.库克.岩石力学基础[M].北京:科学出版社,1981.
    [108]夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002.
    [109]吉林省公路勘测设计院.高岭隧道工程地质勘察报告[R].2002.
    [110]中华人民共和国交通部.公路隧道设计规范(JTG D70-2004)[S].北京:人民交通出版社,2004.
    [111]杨文渊.工程爆破常用数据手册[M].北京:人民交通出版社,2002.
    [112]U.兰格福斯,B.基尔斯特略.岩石爆破现代技术[M].北京:冶金工业出版社,1983.
    [113]费鸿禄,段宝福,孙树魁.节理岩体爆破的研究现状[J].工程爆破,1996,2(1):60-68.
    [114]ZHU HONGBING, WU LIANG.Application of gray correlation analysis and artificial neural network in rock mass blasting[J].Jouranl of CoalScience&Engineering,2005,11(1):56-62.
    [115]XU SI,ZHOU JUN,MU CHUNLAI.Blow-up Analysis for a Nonlinear Diffusion System with Nonlinear Coupled Boundary Conditions[J].Journal of Southwest China Normal University(Natural Science),2007.32(3):47-52.
    [116]RUBIN A.M,AHRENS T.J.Dynamic Tensile Failure Induced Velocity Deficits in Rock[J].Geophys Res Lett.1991,18(2):219-223.
    [117]佴磊,于清扬.岩土工程数值法[M].长春:吉林大学出版社,2007.
    [118]TAYLOR L.M,CHEN E.P,KUSZMAUL J.S.Microcrack induced Damage Accumulation in Brittle Rock under Dynamic Loading[J].Computer Method in App.Mech.& Engng., 1986,55:301-320.
    [119]GRADY D.E,KIPP M.L.Continuum Modelling of Explosive Fracture in Oil Shale [J].Int J Rock Mech Sci &Geomech Abstr,1987,17:147-157.
    [120]王志亮.基于LS-DYNA的工程爆破效应数值分析与岩石爆破损伤本构研究[D].合肥:中国科技大学博士后研究工作报告,2006.
    [121]张强勇.多裂隙岩体三维加锚损伤断裂模型及其数值模拟与工程应用研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,1998.
    [122]赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003.
    [123]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [124]HALLQUIST J.O.LS-DYNA Keyword User’s Manual.Nonlinear Dynamic Analysis of Structures[M].LSTC.Livermore:1999.
    [125]郭文章.节理岩体爆破过程数值模型及其实验研究[博士学位论文][D].北京:中国矿业大学北京研究生部,1997.
    [126]PREECE,D.S,THOME,B.J.A Study of Detonation Timing and Fragmentation Using 3-D Finite Element Techniques and a Damage Constitutive Model[J].Rock Fragmentation by Blasting,1996,10:147-156.
    [127]恽寿榕,涂侯杰,梁德寿等.爆炸力学计算方法[M].北京:北京理工大学出版社,1995.
    [128]高焕焕.爆破荷载对邻近洞室及支护结构的影响机理研究[硕士学位论文][D].西安:西安理工大学,2008.
    [129]席道瑛,郑永来,张涛.大理岩和砂岩动态本构的试验研究[J].爆炸与冲击,1995, 3:56-60.
    [130]张强勇,朱维申,向文等.节理岩体断裂破坏强度计算及工程应用[J].山东大学学报(工学版),2005,35(1):98-105.
    [131]肖同社,杨仁树.节理岩体爆生裂纹扩展动态焦散线模型实验研究[J].爆炸与冲击,2007,27(2):159-164.
    [132]杨仁树,岳中文,肖同社等.节理介质断裂控制爆破裂纹扩展的动焦散试验研究[J].岩石力学与工程学报,2008,27(2):244-250.
    [133]夏红兵,徐颖.爆破荷载作用下裂隙岩体内损伤范围的观测研究[J].岩土力学,2007, 28(4):38-42.
    [134]R.LAWN,DAVID B.Nonlinear stress-strain curves for solids containing closed cracks with friction[J].J. Mech. Phys. Solids., 1998, 46:85-113.
    [135]钟冬望,杨军,高文学等.裂隙岩体的损伤本构模型探讨[J].工程爆破,1999.35(1): 47-52.
    [136]尹双增.断裂损伤理论及应用[M].北京:清华大学出版社,1992.
    [137]沈为.损伤力学[M].武汉:华中理工大学出版社,1995.
    [138]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [139]余寿文.冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [140]单仁亮,陈石林,李宝强.花岗岩单轴冲击全程本构特性的试验研究[J].爆炸与冲击, 2000,20(1):24-29.
    [141]高文学.岩石动态响应特性及其损伤模型研究[博士学位论文][D].北京:北京理工大学,1999.
    [142]杨军,高文学,金乾坤.岩石动态损伤特性实验及爆破模型[J].岩石力学与工程学报,2001,20(3):256-261.
    [143]杨军,金乾坤.应力波衰减基础上的岩石爆破损伤模型[J].爆炸与冲击,2000,20(3): 36-40.
    [144]KULATILAKE,P.H.S.,FIEDLER,R.,PANDA,B.B.,1997a.Box fractal dimension as a measure of statistical homogeneity of jointed rock masses[J].Eng.Geol.48,217-230.
    [145]XIE,H.,WANG,J.A.,KWASNIEWSKI,M.A.,1997.Multifractal characterization of rock fracture surfaces[J].Int.J.Rock Mech.Min.Sci.36,1921-1926.
    [146]陈东义,符希宏,田文东.岩体结构面控制爆破的试验研究[J].采矿技术,2003, 3(1):21-25.
    [147]盛金昌,速宝玉,詹美礼.裂隙岩体的弹塑性本构模型及有限元分析[J].河海大学学报(自然科学版),1999,27(5):45-48.
    [148]王志亮,郑田中,李永池.岩石时效损伤模型及其在工程爆破中应用[J].岩土力学,2007,28(8):48-52.
    [149]刘建民,陈文涛,丁泰山.地下洞室超挖问题非线性有限元分析[J].探矿工程,2007, 8:70-72.
    [150]罗伟,朱传云,祝启虎.隧洞光面爆破中炮孔堵塞长度的数值分析[J].岩土力学,2008, 29(9):2487-2491.
    [151]刘运通,高文学.爆炸荷载下岩石损伤的数值模拟研究[J].岩石力学与工程学报,2001, 20(6):789-792.
    [152]冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社. 2002.
    [153]高红.岩土材料屈服破坏准则研究[博士学位论文][D].武汉:中国科学院研究生院,2007.
    [154]张平,李宁.不同应变速率下非贯通裂隙介质的力学特性研究[J].岩土工程学报, 2006,18(6):92-98.
    [155]E.Z.WANG,N.G.SHRIVE.A 3-D ellipsoidal flaw model for brittle fracture in
    compression[J].International Journal of Solids and Structures,1999,36:4089- 4109.
    [156]朱泽奇.坚硬裂隙岩体开挖扰动区形成机理研究[博士学位论文][D].武汉:中国科学院研究生院,2008.
    [157]夏红兵,徐颖,宗琦等.爆炸荷载作用下裂隙岩体内损伤范围的观测研究[J].岩土力学,2007,28(4):46-50.
    [158]王利.岩石弹塑性损伤模型及其应用研究[博士学位论文][D].北京:北京科技大学,2006.
    [159]JIANG Z X,ZHENG S N,SONG X F.Blow-up Analysis for a nonlinear Diffusion Equation with nonlinear boundary conditions[J].Applied Math Letters,2004,17: 193-199.
    [160]丁希平.深孔台阶爆破应力场及若干设计参数的数值分析研究[博士学位论文][D].北京:铁道部科学研究院,2001.
    [161]杨军,金乾坤.岩石爆破理论模型和数值计算[M].北京:科学出版社,1999.
    [162]周能娟.节理裂隙岩体隧道爆破有限元分析[硕士学位论文][D].长春:吉林大学,2007.
    [163]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2003.
    [164]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [165]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显示动力分析[M].北京:清华大学出版社,2005.
    [166]尚晓江,苏建宇.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2005.
    [167]李裕春,时党勇,赵远. ANSYS10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006.
    [168]YANG R,BRWDEN W.F,KATSABNIS P.D.A New Constitutive Model for Blast Damage [J].Int.J.Rcok Mech.Min.Sci.1996,33:245-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700