用户名: 密码: 验证码:
多体航天器大角度机动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大角度机动作为现代航天器姿态控制关键技术之一,一直为航天控制领域关注。本文考虑参数不确定性,系统研究了多体航天器大角度机动控制问题。考虑天线支撑臂挠性转角变形对天线指向的影响,应用若丹原理,建立了柔性多体航天器动力学方程。通过引入角度和角速度约束,推导多目标跟踪的参考姿态表达式。
     研究了航天器姿态机动的鲁棒控制问题。借鉴逆系统思想,提出期望逆系统的概念,将姿态跟踪问题转化为调节问题,简化了控制器设计。考虑参数不确定性,基于期望逆系统和滑模控制理论设计了鲁棒姿态跟踪控制器,并应用Lyapunov稳定性理论证明了控制系统的稳定性。将逆系统方法与H∞和μ综合方法结合,设计非线性的鲁棒控制器。引入PD控制器,避免混合灵敏度设计时方程出现奇异,方便控制器设计。
     应用RBF神经网络和ESN动态递归神经网络,设计了两种姿态跟踪控制器。基于RBF网络的鲁棒跟踪控制器由RBF网络和滑模补偿器组成,前者用于补偿模型不确定部分和外部干扰力矩,后者用于补偿神经网络的逼近误差和实现期望的控制性能。利用终端滑模的有限时间收敛属性,改进传统梯度下降学习算法,提高了该控制器的性能。基于ESN网络设计了另一种姿态跟踪鲁棒控制器,应用Lyapunov稳定性理论,证明了控制系统的稳定性。应用遗传算法和模拟退火算法对ESN网络的主要特征参数和网络拓扑结构进行优化,解决网络主要特征参数难于选取的难题,提高了网络工作效率。
     提出了刚弹液耦合多体航天器物理实验系统设计方案。应用连通器原理设计液体燃料箱系统,采用齿轮传动系统同步驱动一对反对称安装的快速机动天线。设计方案确保系统相对磁浮台转轴不产生偏心,使磁浮台能正常工作。通过选择不同控制、测量、激振组合,该实验系统可以用于研究刚弹液耦合系统的动力学特性、中心体姿态机动及多目标姿态跟踪控制等多类问题。
The large angle maneuver is one of the key technologies for spacecraft attitude control, which has been the focus of attention. The paper systematically studies large angle maneuver control of spacecraft in the presence of mass parameter uncertainties
     Jourdain’s principle is employed to derive the dynamic equations of multi-body spacecraft with flexible appendages, and the rotation angle of the end of antenna arm caused by the deformations is considered, which effects the tracking accuracy of the antenna. Introducing an angular velocity constraint and an angular constraint, two methods are proposed to compute the reference attitude profiles of the camera and antenna, respectively.
     To simplify the control design problem, this paper derives the desired inverse system, which can convert the attitude tracking problem into the regulator problem. Based on the desired inverse system and sliding mode control, a robust attitude tracking controller is developed in the presence of mass parameter uncertainties and external disturbance. By Lyapunov stablity theory, the closed loop system stability can be achieved. Base on the inverse system method and H_∞control method,μsynthesis technique, the paper designs two nonlinear robust controllers. The controller consists of a linear robust controller and a PD controller. The PD controller avoids the singular problem in the design of Mixed Sensitivity Robust Control.
     Based on radial basis function neural network and echo state network, two neural controllers are developed, respectively. The RBF controller consists of a radial basis function network and a robust controller. The radial basis function network can compensate the parameter uncertainties and external disturbances, and a robust controller can compensate RBFN approximation error and realize the anticipative stability and performance properties. Utilizing the finite time convergent property of terminal sliding mode, an online learning algorithm based on TSM for updating all the parameters of the RBFN is derived, which improves tracking performance of the controller. Simulation results demonstrate the good tracking performance of the control scheme. The robust controller based on echo state network is developed for the attitude tracking. The genetic algorithm is employed to optimize the ESN's primary parameters, which removes the difficulty of choosing the ESN parameters. This control approach requires no prior knowledge about the dynamic model.
     The paper designs a physical simulation experiment system for the rigid-flexible-fluid coupling multi-body spacecraft. Using law of equilibrium in connected vessels, the liquid fuel tank system is designed. The couple of rapid maneuver antennas are drived by planet gear synchronous driving apparatus, which are antisymmetric about the axis of magnetic-bear simulator. The design avoids the eccentric load, and ensures that the magnetic-bear simulator can work well. By choosing controllers, sensors and exciters, many experiment strategies can be realized, including the dynamic characteristics of the rigid-flexible-fluid coupling multi-body spacecraft, the large angle maneuver of the center body of spacecraft and multi-target attitude tracking control, and so on.
引文
[1]钟陪武.美国“国防支援计划”卫星现状.国际太空. 2002, Vol.6:15-17.
    [2]宫颖.卫星空间作战的基本理论和方法研究[硕士论文].西安:西北工业大学, 2005
    [3] http://www.isas.jaxa.jp/e/enterp/missions/halca/achiev.shtml
    [4] Jeffrey Lewis. Autonomous Proximity Operations: A Coming Collision in Orbit? www.cissm.umd.edu/papers/files/autonomous_proximity.pdf.
    [5] http://www.boeing.com/ids/advanced_systems/orbital/oe_057.html
    [6] http://technology.newscientist.com/article/dn7255
    [7] http://space.skyrocket.de/index_frame.htm?http://www.skyrocket.de/space/doc_sdat/xss-11.htm
    [8] http://www.globalsecurity.org/space/systems/x-40.htm
    [9] http://www.esa.int/esaCP/SEMC7BV7D7F_index_0.html
    [10]曾海波.挠性多体卫星指向控制设计研究[博士学位论文].北京:中国空间技术研究院, 2003
    [11]金梁.机动挠性多体空间飞行器的动力学与非线性控制[博士学位论文].北京:中国空间技术研究院, 1988
    [12]张景瑞.空间飞行器姿态跟踪机动的动力学与控制特性的研究[硕士论文].哈尔滨:哈尔滨工业大学硕士论文, 1998
    [13]陈万春.挠性航天器大角度姿态机动控制[博士学位论文].北京:北京航空航天大学博士论文1995
    [14]周宗锡.刚体姿态控制及其在机器春控制中的应用研究[博士学位论文].西安:西北工业大学博士论文, 2002
    [15]李勇.挠性航天器自适应控制方法研究[博士后论文].北京:中国空间技术研究院, 1997
    [16]耿云海.大型挠性充液空间飞行器非线性控制技术[博士学位论文].哈尔滨:哈尔滨工业大学博士论文,2003
    [17] Carrington, C K. Optimal nonlinear feedback control of spacecraft attitude maneuvers [PhD dissertation]. USA: Virginia Polytechnic Institute and State University, 1986
    [18] Hon M C, James D T. Large-Angle slewing maneuvers for flexible spacecraft [PhD dissertation]. USA: Massachusetts Institute of Technology, 1988
    [19] Naveed M H. Optimal reorientation and detumbling of multibody systems by means of internal motions [PhD dissertation]. USA: Stanford University, 1992
    [20] Scrivener S L. Time-optimal multi-axis attitude maneuvers of rigid spacecraft using collocation and nonlinear programming [PhD dissertation]. USA: the Pennsylvania State University, 1993
    [21] Matthew R L. Spacecraft Attitude Tracking Control [Master dissertation]. USA: Virginia Polytechnic Institute and State University, 1999
    [22] Break J A. Optiml Feedback Slewing of Flexible Spacecraft. Journal of Guidance and Control, 1981, Vol.4: 472-479
    [23]段富海,韩崇昭.动态逆方法和微分几何反馈线性化方法的对比.自动化与仪器仪表, 2002, Vol.3: 23-27
    [24] Isidori A. Nonlinear control systems (2nd Edition). Springer-Verlag, New York, 1989
    [25] Shang T W. Input-Output Linearization of Uncertain Systems with Time Delay Control [PhD dissertation]. USA: Massachusetts Institute of Technology, 1993
    [26] Kortney N L. Continuous linearization control methodology for nonlinear dynamic systems[PhD dissertation]. USA: massachusetts institute of technology, 1993
    [27]李春文,冯元琨.多变量非线性控制的逆系统方法.北京:清华大学出版社, 1991
    [28] Hirschorn, R M. Invertibility of multivariable nonlinear control systems. IEEE Trans. Automatic Control, 1979, Vol. 24(8):855-865
    [29] Sheen J T, Bishop R. Spacecraft nonlinear control. The Journal of the Astronautical Sciences, 1994, Vol .42: 361-377
    [30] Bang H, Lee J S, Eun Y J. Nonlilnear Attitude Control for a Rigid Spacecraft by feedback linearnion, KSME International of journal, 2004 Vol.18(2): 203-210
    [31] Zuyev A L. Application of control Lyapunov functions technique for partial stabilization. Mexico: Proceedings of the 2001 IEEE International Conference, 2001:509-513
    [32] Lin Y Y, Lin G L. Non-linear control with Lyapunov stability applied to spacecraft with flexible structures. J Syst and Cont Eng, 2001, Vol.215(2): 131-141
    [33] Ghersin A S, Sanchez P R S. LPV control of a 6-DOF vehicle. IEEE Trans on Cont Syst Tech, 2002, Vol.10: 883-887
    [34]冯璐,龚诚,何长安.刚体飞行器大角度机动的反馈非线性化控制.飞行力学, 1999, Vol.17(4): 29-32
    [35]徐世杰.基于Lyapunov方法的空间飞行器大角度姿态机动控制.宇航学报, 2001, Vol. 22(4):95-99
    [36]张景瑞,李俊峰.基于Lyapunov方法的卫星非线性姿态控制.清华大学学报(自然科学版), 2004, Vol.44(5):670-673
    [37] Scrivener S, Thompson S. Survey of time-optimal attitude maneuvers. Journal of Guidance, Control, and Dynamics, 1994, Vol.17(2): 225-233
    [38] Junkins J L, Turner J D. Optimal continuous torque attitude maneuvers. AIAA-78-1400
    [39] Vadali S R, Junkins J L. Spacecraft large angle rotational maneuvers with optimal momentum transfer. Journal of the astronautical sciences, 1983, Vol.31(2): 217-235
    [40] Skaar S B, G.Kraige L. Large-Angle spacecraft slewing maneuvers using an optimal reaction wheel power criterion. Journal of the astronautical sciences, 1984,Vol.32(1):47 -61
    [41] Carrington C K, Jukins J L. Nonlinear feedback control of spacecraft slew maneuvers. Journal of the astronautical sciences, 1984, Vol.32(1):29-45
    [42] Vadali S R, Junkins J L. spacecraft large angle rotational maneuvers with optimal momentum transfer. Journal of the astronautical sciences, 1983, Vol.31(3):217-235.
    [43] Bilimoria K D, Wie B. Time optimal three-axis reorientation of a rigid spacecraft. Journal of guidance, control and dynamics, 1993, Vol.16(3): 446-452
    [44] Shin W L, Isao Y. Fuel/time optimal control of spacecraft maneuvers. Journal of guidance, control and dynamics, 1997, Vol.20:34-397
    [45] Creamer G, Delahunt P. Attitude determination and contro1 of Clementine during lunar mapping, Journal of Guidance, Control and Dynamics, 1996, Vol.19(3): 505-511
    [46] Ashish T. Optimal nonlinear spacecraft attitude control through Hamilton-Jacobi formulation. The Journal of the Astronautical Sciences, 2002, Vol.50.(1): 99-112
    [47] Lichun L, Chiching Y, Chiaju W. Time-optimal maneuvering control of a rigid spacecraft. ACTA Astronautica, 2007, Vol.60: 791-800
    [48] Utkin V I. Variable structure system with sliding modes. IEEE Transactions Automatic control, 1977, Vol.22(2): 212-222.
    [49] John L C, Srinivas R V. Optimal variable-Structure control tracking of spacecraft maneuvers. Journal of Guidance, Control and Dynamics, 1997, Vol.20(6):1096-1103
    [50] Bong W. Rapid Multitarget Acquisition and Pointing Control of Agile Spacecraft. Journal of Guidance Control and Dynamics. 2002, Vol.25(1): 96-104
    [51]廖晖,周凤岐,周军.三轴轮控小卫星大角度机动变结构控制研究.航天控制, 1999, Vol.17(4):11-15
    [52] John L C. Sliding Mode Control Using Modified Rodrigues Parameters. Journal of Guidance Control and Dynamics. 1996, Vol.19(6):1381-1386
    [53] John L C, Srinivas R V; Markley F L. Optimal variable-Structure control tracking of Spacecraft Maneuvers. Journal of Guidance, Control, and Dynamics, 2000, Vol.23(3):564-566
    [54]张景瑞,荆武兴,徐世杰.空间飞行器大角度姿态跟踪机动问题研究.飞行力学, 1999,Vol.17(3):86-91
    [55] Man Z H, Yu X H. Terminal sliding mode control of MIMO linear systems. IEEE Transactions on Circuit s and System, 1997, Vol.44(11): 1065-1070
    [56] Yu X H, Man Z H. Multi-input uncertain linear systems with terminal sliding mode control. Automatica, 1998, Vol.34(3): 389-392
    [57] Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode cont rol of rigid manipulators. Automatica, 2002, 38(12): 2159 -2167
    [58] Shuanghe Y, Xinghuo Y, Bijan S, Zhihong M. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, Vol.41:1957-1964
    [59] Zames G.. Feedback and optimal sensitivity: model reference transformation multiplicative seminorms and approximate inverses. IEEE Trans. Aut. Contr., 1981, Vol.26:301-320
    [60] Doyle J C , Glover K, Khargonekar P. State-space solutions to standard H2 and H∞control problem, In: ACC'88, 1988, Atlanta:817-823
    [61] Doyle J C, Glover K, State-space formulate for all stabilizing controllers that satisfy an Hinf-norm bound and relations to risk sensitivity. Syst. Contr. Lett.,1988, Vol.11:16-172
    [62] Kharitonov V L. Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differential Equations, 1985, Vol.11:1483-1484
    [63] Kemin Z, Doyle J C, Glover K. Robust and optimal control. Prentice-Hall, Inc, 1995.
    [64] Isidori A. Nonlinear control systems II. Springer-Verlag, London, 1999
    [65] Van D S. L2-gain and passivity Techniques in nonlinear control(2nd ed.).Springer-Verlag, London, 1999
    [66] Charng S W, Bor S C. Unified Design for H2, H∞and Mixed control of spacecraft. Journal Of guidance, Control And Dynamics, 2000, Vol.22(6):1302-1310
    [67] Wen C L, Yun C C, Keck V L. H∞Tracking Control of a Rigid Spacecraft. American Control Conference, 2004
    [68] Wen C L, Yun C C, Keck V L. H∞inverse optimal attitude-tracking control of rigid spacecraft. Journal Of Guidance, Control And Dynamics, Vol.28(3):841-493
    [69] Brent A, Robert H. A high performance robust attitude controller for flexible spacecraft. AIAA-94-3560-CP
    [70] David H, Kemsley A. Survey of Neural Network Research and Fielded Applications. In International Journal of Neural Networks: Research and Applications, 1992 Vol.2(2):123-133
    [71] Hunt K J, Sbarbaro D, Zbikowski R, and Gawthrop P J. Neural networks for control system—a survey. Automatica, 1992, Vol.28:1083-1112
    [72] Philip T, Helen A, Ryaaiotaki B, Kim T. The application of neural networks to control systems: a survey. Signals, Systems and Computers, 1990. Conference RecordTwenty-Fourth Asilomar Conference on Vol.1(5):148-165
    [73] Narendra K S. Neural networks for control: theory and practice. Proceeding of the IEEE, Vol.84:1385-1406
    [74] Narendra K S, Annaswamy A M. Stable adaptive control. Prentice-Hall, Englewood Cliffs, NJ
    [75] Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans. on Neural networks, Vol.1:4-27
    [76] Mun T C. Neural-Network-Based spacecraft Attitude Control And Momentum Management [PHD dissertation]. USA: University of southern California, 2000
    [77] Steinberg M L. Comparison of intelligent, adaptive, and nonlinear flight control laws. Journal of guidance, control and dynamics, 2001, Vol.24:693-699
    [78] Reza D N, Ara A, Kamran D. Neural optimal control of flexible spacecraft slew maneuver. Acta Astronautica, 2004, Vol 55:817-827
    [79] Mun T C. Neural-network-based spacecraft attitude control and momentum management [PHD dissertation].USA: University of southern california, 2000
    [80] Wong H, De Queiroz M S, Kapila V. Adaptive t racking cont rol using synt hesized velocity f rom attitude measurements. Automatica, 2001, Vol.37 (6): 947 - 953
    [81] Wen J, Kreutz K. The attitude control problem. IEEE Transactions on Automatic Control, 1991, Vol.36(10): 1148– 1162
    [82] Nalin A, Chaturvedi D S, Bernstein F, Jasim A, and Fabio B. Globally convergent adaptive tracking of angular velocity and inertia identification for a 3-DOF Rigid Body. IEEE Transactions on control systems technology,2006, Vol.14(5):841-852
    [83]荆武兴,黄文虎.航天器姿态机动的拟欧拉角反馈控制.宇航学报, 1992,Vol.2: 41-47
    [84]荆武兴,韩品尧.基于拟欧拉角信号的连续力矩姿态机动控制.宇航学报,1996, Vol.17(2): 31-37
    [85] Bong W. Rapid Multitarget Acquisition and Pointing Control of Agile Spacecraft. Journal of Guidance Control and Dynamics, 2002, Vol.25(1): 96-104
    [86]孙兆伟,林晓辉,曹喜滨.小卫星姿态大角度机动联合控制算法.哈尔滨工业大学学报, 2003, Vol.35(6):664-670
    [87]黄昭度,纪辉玉.分析力学.北京:清华大学出版社, 1985
    [88]郑兆昌.机械振动.北京:机械工业出版社, 1982
    [89]彭冬亮,聂润兔,徐世杰.大型挠性充液卫星的动力学模型.飞行力学, Vol.19(2): 78-82
    [90] Hablani H B. Design of a payload pointing control system for tracking moving objects. Journal of Guidance, Control, and Dynamics, 1989, Vol.12 (3): 365-374
    [91] Hablani H B. Multiaxis Tracking And Attitude-Control Of Flexible Spacecraft With Reaction Jets. Journal of Guidance Control And Dynamics, 1994. Vol.17(4): 831-839
    [92]李俊峰,徐敏, Steyn W H.低轨道航天器姿态跟踪机动研究.清华大学学报(自然科学版), 2001, Vol.41(2):102-104
    [93] W. Ren, R. W. Beard. Formation feedback control for multiple spacecraft via virtural structures. IEE Proc. Control Theory Appl., 2004, Vol.151(3): 357-368
    [94] Matthew C V, Christopher D H. Decentralized coordinated attitude control within a formation of spacercraft. Journal of Guidance, Control and dynamics, 2006, Vol.29(5): 1101-1109
    [95] Hanspeter S, Rush D R, John L J. Globally Stable Feedback Laws for Near-Minimum-Fuel and Near-Minimum-Time Pointing Maneuvers for a Landmark-Tracking Spacecraft. Journal of the Astronautical Sciences , 1996, Vol.44(4):443-466
    [96]吴敏,桂卫华,何勇.现代鲁棒控制(第二版).中南大学出版社, 2006
    [97] Gu D W, Petkov P H, Konstantinov M M. Robust Control Design with Matlab. Springer Science, 2005
    [98]解学书,钟宜生. H∞控制理论.清华大学出版社, 1994
    [99] Gramling C J, Lee T, Niklewski D J. Relative Navigation For Autonomous Formation Flying Of Spacecraft. AAS/AIAA Space Flight Mechanics Conference, American Astronautical Society, AAS Paper, Aug, 1997, 435-450
    [100] DeCou A B. Orbital Station-Keeping for Multiple Spacecraft Interferometry. Journal of the Astronautical Sciences, 1991, Vol.39 (3): 283-297
    [101] David J I. A study of linear vs nonlinear control techniques for the reconfiguration of satellite formations [PhD Dissertation]. USA: Air Force Institute of Technology, 2001
    [102] Liu H, Li J F. Sliding mode control for low-thrust earth-orbiting spacecraft formation maneuvering. Aerspace Science and Technology, 2006, Vol.10: 636-643
    [103] Ren W, Beard R W. Formation feedback control for multiple spacecraft via virtural structures. IEE Proc. Control Theory Appl, 2004, Vol.151(3): 357-368
    [104] Matthew C V, Christopher D H. Decentralized coordinated attitude control within a formation of spacercraft. Journal of Guidance, Control and dynamics, 2006, Vol.29(5): 1101-1109
    [105] Chen Y P. Sliding-mode controller design for spacecraft attitude tracking maneuvers. IEEE Transactions on Aerospace and Electronic Systems, 1993, Vol.29(4): 1328-1333
    [106] Goeree B B, Fasse E D. Sliding mode attitude control of a small satellite for ground tracking maneuvers. Proceedings of the American Control Conference, 2000, 2: 1134-1138
    [107] Jing W X, Xu S J Nonlinear Attitude tracking control of a spacecraft with thrusters based on error quaternions. Chinese Journal of Aeronautics, 2002, Vol.15:129-138.
    [108] Tang C. Adaptive nonlinear attitude control of spacecraft [PhD Dissertation]. USA: Iowa State University, 1995
    [109] Luo W C.Chu Y C. Hinf Tracking Control of a Rigid Spacecraft. American Control Conference, 2004, July: 2681-2686
    [110] Singh S N, Bossart T C. Exact feedback linearization and control of space station using CMG. IEEE Trans On Automatic Control, 1993, Vol.38 (1): 184 187
    [111] Cheon Y J, Keum J H, Sim E S. Sliding mode control of spacecraft with actuator dynamics. Int Conf on Control, Automation and Systems, 2001:642-646
    [112] Salah L, Franck P, Alain G. Higher order sliding mode control based on integral sliding mode. Automatica, 2007, Vol.43:531–537
    [113]黄显林,王海滨.空间飞行器基于模糊逻辑的连续滑模控制.宇航学报,1999, Vol.20(3):22-27
    [114] Herbert J, Harald H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication. Science, April 2, 2004: 78-80
    [115]孙增圻.智能控制理论与技术.北京:清华大学出版社, 1997
    [116] Li Y, Sundararajan N, Saratchandran P. Neuro-controller design for nonlinear fighter aircraft maneuver using fully tuned RBF networks. Automatica, 2001, Vol.37(8): 1293-1301
    [117] Yu X, Man Z. Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Transactions on circuits and systems-I: Fundamental Theory and Applications, 2002, Vol.49(2):210-215
    [118] Park, J, Sandberg, I W. Universal approximation using radial basis function networks”, Neural Computation, 1991, Vol.3:246-257
    [119] Funahashi, K.,“On the Approximate Realization of Continuous Mappings by neural networks”, Neural Networks Vol. 2, 1998, pp. 183-192
    [120] Flavio N. Neural network based adaptive algorithms for nonlinear control[PhD dissertation]. USA: Georgia institute of technology, 2000
    [121] Passino, K M. Biomimicry for Optimization, Control, and Automation. Springer, 2004
    [122] Lin, F J, Wai, R J. Ultrasonic motor servo drive with on-line trained neural network model-following controller. IEEE Proc. Electric Power Appl. 1998, Vol.145(2):105-110
    [123] Paul G P, Adriana A. Echo state networks for mobile robot modeling and control.. Springer-Verlag, Berlin Heidelberg, 2004
    [124] Deng Z D, Yi Z. Collective behavior of a small-world recurrent neural system with scale-free distribution, IEEE Transactions on neural networks, 2007, Vol.18(5): 1364-1376
    [125] Jaeger H. Adaptive nonlinear system identification with echo state networks. In Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun, K. Obermayer (Eds), MIT Press, Cambridge, MA, 2003: 593-600
    [126] Herbert J. A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the“echo state network”approach. http://www.faculty.iu-bremen. de/hjaeger/index.html
    [127] Michalewicz Z. Genetic Algorithms+Data Structures=Evolution Programs, Berlin Heidelberg: Springer- Verlag, 1996
    [128] Back A D,Chen T. Universal Approximation of Multiple Nonlinear Operators by Neural Networks. Neural Computation 2002, Vol.14: 2561-2566
    [129] Mohamed O, Paul L, Michael S. Meta-learning for Adaptive Identification of Non-linear Dynamical Systems. Proceedings of the 2005 IEEE International Symposium on Intelligent Control Limassol, Cyprus, June 27-29, 2005:473-477
    [130]李智斌.刚弹控耦合系统的动力学特性和实验研究[博士学位论文].北京:清华大学, 2002
    [131]李季苏,牟小刚,张锦江.卫星控制系统全物理仿真.航天控制, 2003, Vol.22(2):38-45
    [132]李季苏,曾海波,李铁寿.多体卫星复合控制物理仿真试验系统.航天控制,2002, Vol.2:27-32
    [133] Jana L S, Mason A P, Christopher D H. Historical Review of Air-Bearing Spacecraft Simulators. Journal of guidance control and dynamics, 2003, Vol.26(4):514-522
    [134]周军,周凤岐.挠性卫星大角度机动变结构控制的全物理仿真实验研究.宇航学报, 1999, Vol.20(1):66-70
    [135]梁晓沨,林成德.挠性卫星实验装置的全物理控制实验研究.厦门大学学报(自然科学版), 2001,Vol.40 sup.1:201-204
    [136] Jana L. S. The Distributed Spacecraft Attitude Control System Simulator [PhD dissertation]. USA: Virginia Polytechnic Institute and State University, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700