用户名: 密码: 验证码:
局部绕流冲刷机理及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
局部绕流冲刷是丁坝和桥墩等水工建筑物周围常见的水力现象,是造成该类工程破坏的重要原因之一。局部绕流流态呈显著三维特性,绕流形成的紊动漩涡与局部冲刷有密切联系。本文采用数值模拟方法对建筑物周围的绕流流场、局部冲刷及抛石防冲体的稳定性进行了研究,取得了如下主要成果:
     在三维水流模拟中引入修正的非平衡k-ε紊流模型,计算了未冲刷前的平整床面和形成冲坑后的斜坡床面两种地形条件下的桥台绕流,结果与实验吻合良好,较好地反映了建筑物周围的流速分布和漩涡发展规律。
     以实测的局部冲坑为已知边界,模拟了冲刷发展过程中的水流变化,初步揭示了局部冲刷的机理。模拟结果表明初始时桥墩附近的水流径向流速沿水深方向呈现近均匀分布,该区域水体紊动剧烈。出现冲坑后,冲坑底部形成主漩涡,漩涡中心流速比边缘处大,为强迫涡。随着冲深加大,主漩涡尺度增大,冲坑底部出现新的紊动涡核,紊动动能在冲坑内充分扩散并消耗,使得底部水流流速下降,冲刷速率逐渐降低,直至冲刷停止。
     提出了一个修正斜坡上输沙率公式的新方法,建立了基于该方法的泥沙数学模型。新提出的修正方法只需做一次修正就能同时反映重力对输沙率大小和方向的影响,与实验资料的对比证明其比以前的方法有更好的修正效果,且能够避免在数值计算过程中出现奇点。建立的泥沙模型中应用了上述改进方法,并在推移质离散插值过程中考虑了重力作用对输沙率插值方向的影响。模型应用于对桥台和丁坝的局部冲刷模拟,取得了与实测冲坑形态较一致的结果,分析表明竖轴漩涡对尾部冲坑形态有重要影响。
     采用朗肯涡模型对旋涡流场进行了简化,推导了受竖轴旋涡作用的块石起动流速公式,结果表明旋涡作用能使块石起动流速显著降低,导致块石在低速水流中仍可能被卷走。结合丁坝实测的旋涡尺度和强度推导了以颗粒粒径、丁坝长、水深及束窄率表示的临界起动公式,研究对实际工程有参考价值。
Local scour is a common occurrence around hydraulic structures like spur-dikes and bridge foundations. This affair is a main reason of failure of bank protections and bridges. The flow structure around structures is in strength three-dimensional character and the formed vortex is the chief attribution of local scour. In this dissertation, the flow field and the equilibrium scour hole are simulated with numerical model. And the stability of the riprap at foundations is studied. The main achievements are as follows:
     A non-equilibrium k-εturbulent model is introduced to flow model to improve the simulating precision of the circumfluence. The flows around an abutment in a flat bed and scoured bed are simulated respectively. The computed results are in good agreement with the experimental data; and the whirl flow velocity field distribution and development of vortex around the abutment are well reflected.
     The flow around an experimental cylindrical pier in the measured developing scour beds is simulated and the mechanism of local scour is explored simply. The simulated results show that the flow becomes almost uniform in the vertical direction near the nose of the cylinder, and the turbulence is fierce in this region. When the scour hole occurs, the horseshoe vortex is formed at the scoured bed. The horseshoe vortex is a forced vortex type of flow, as the swirl velocity increases in the outward direction from the center of the vortex. Along with the increase of the scour hole and the horseshoe vortex falling into the scour hole, a new turbulent core appears in the scour hole and the turbulence disperses into the scour hole under the transport of the horseshoe vortex. The turbulent energy exhausts in the scour hole and the scouring power of the flow becomes weaker and weaker, until the scour ceases.
     A new method is promoted to correct the sediment transport rate on slopes, and a sediment transport model is developed. The new modification method can consider both the quantitative and directional influence of gravity on the sediment transport at the same time. The result shows good performance than former correction methods when compared with experimental data. The new method has an advantage that it can avoid the occurrence of infinite value in numerical computation. In the sediment transport model, the bed load transport rate is interpolated separated in the x and y directions rather than interpolated as an integer scalar. This change can improve the interpolation precision. The model is applied in simulating of local scour around an abutment and spur-dike. The computed scour holes are in good agreement with the experimental results. Analysis of the scour hole shows the tail vortex has important effect on the scour-hole shape downstream of the structures.
     The Rankine vortex model is used to simplify the flow with vertical vortex. The adsorption affinity of the vortex towards the rocks around a spur dike, The resulting stress on the rocks was used to derive the critical incipient velocity formula for rocks. The critical incipient velocity of the rock is lower than that in the classical formula, which will lead to the rock being rolled away in slow-speed flow. According to the vortex dimension and strength around the experimental spur-dike, a new critical incipient velocity formula is obtained. In this formula, the sediment diameter, length of spur-dike, flow depth and restriction ratio of the flow width are considered. This research has consulting value for the realistic projects.
引文
[1]钱宁,周文浩.黄河下游河床演变.北京:科学出版社, 1965.
    [2]周景芍,郝守英,符建铭.河道整治工程对洪水河势的控制作用.人民黄河, 1998, 20(4):12-14.
    [3]马继业.黄河下游丁坝坝头局部冲刷的研究[硕士学位论文].武汉:武汉水利电力大学. 1995.
    [4]李曾三主编.开封市黄河志.开封, 1991.
    [5]铁道部科学研究院铁道建筑所.铁路桥梁浅基防护调查总结. 1973.12.
    [6] Smith D W. Why do bridges fail? Civil Engineering, ASCE, 1977, 11:58-62.
    [7] Richardson E V, Davis S R. Evaluating scour at bridges. Publication No. FHWA NHI 01-001, Hydraulic Engineering Circular No. 18, Federal Highway Administration, U.S. Department of Transportaion.2001.
    [8]雷俊卿.桥梁安全耐久性与病害事故分析.中国安全科学学报. 2005, 15(2):86-90.
    [9]候秀丽.桥梁工程重大坍塌事故调查与分析[硕士学位论文].长沙:中南大学, 2006.
    [10] Kamojjala S, Gattu N P, et al. Analysis of 1993 upper Mississippi flood highway damage. Proceedings 1st International Conference on water Resources Engineering, Sao Antonio, Texas, 14-18 Aug, 2:1061-1065.
    [11]韩玉芳.丁坝的造床作用研究[博士学位论文].南京:南京水利科学研究院, 2003.
    [12] F Douglas Shields Jr., Charles M. Cooper, and Scott S. Knight. Experiment in stream restoration. J Hydraul Eng, ASCE, 1995, 121(6):494-502.
    [13]应强等.丁坝水力学.北京:海洋出版社, 2004.
    [14]李洪.丁坝水力学特性研究[博士学位论文].成都:四川大学, 2003.
    [15]余文畴等.国外丁坝研究综述.人民长江, 1979, 3:51-61.
    [16] Rajaratnam N, Nwachukwu B A. Flow near groin-like structures. J Hydraul Eng, ASCE, 1983, 109(3):463-480.
    [17] Kwan T F, Melville B W. Local scour and flow measurements at bridge abutments. J Hydraul Res, 1994, 32:661-673.
    [18] Graf W H, Yulistiyanto B. Experiemnts on flow upstream of a cylinder. Proc. of XXVII Congr. IAHR, SanFrancisco, USA, 1997, Theme A, p.238-243.
    [19] Graf W H, Yulistiyanto B. Experiments on flow around a cylinder; the velocity and vorticity fields. J Hydraul Res, 1998, 36(4): 637-653.
    [20]彭静,河原能久.丁坝群近体流动结构的可视化实验研究.水利学报, 2000, (3):42-45.
    [21]张柏山,吕志咏,祝立国.绕丁坝流动结构实验研究.北京航空航天大学学报. 2002, 28(5):585-588.
    [22]齐鄂荣,邱兰等.二维矩形突起物绕流流动结构的实验研究.水动力学研究与进展A辑, 2006, 21(3):388-394.
    [23] Dey S, Barbhuiya A K. Turbulent flow field in a scour hole at a semicircular abutment. Can J Civ Eng, 2005, 32:213-232.
    [24]窦国仁.丁坝回流及其相似率研究.水利水电科技情报, 1978, (3):1-24.
    [25]吴桢祥,吴建平.丁坝紊动场及其工程意义.郑州工学院院报, 1994, 15(2):22-27.
    [26]陆永军,周耀庭.治导建筑物绕流机理及其下游流场的探讨.水动力学研究与进展A辑, 1990, 5(2):23-31.
    [27]冯永忠.错口丁坝回流尺度的研究.河海大学学报, 1995, 23(4):69-76.
    [28]李国斌,韩信,傅津先.非淹没丁坝下游回流长度及最大回流宽度研究.泥沙研究, 2001, (3):69-731.
    [29]马永军,陈稚聪,丁翔.吸、喷水法减小丁坝下游回流尺度的试验研究.水科学进展, 2003,14(6):763-768.
    [30] Albert Molinas, Khaled Kheireldin, Baosheng Wu. Shear stress around vertical wall abutment, J Hydraul Eng, ASCE, 1998, 124(8):822-830.
    [31] Dey S, Barbhuiya A K. Velocity and turbulence at a wing-wall abutment. Sādhāna, 2004, 29(5):449-476.
    [32] Tawatchai Tingsanchali, Selvaratnam Mahesawran. 2-D depth-averaged flow computation near groyne. J Hydraul Eng, ASCE, 1987, 116(1):71-86.
    [33]陆永军,徐成伟.用k-ε紊流模式模拟丁坝绕流.水利学报, 1991, (3):67-73.
    [34] Yulistiyanto B, Zech Y, Graf W H. Flow around a cylinder: shallow-water modeling with diffusion-dispersion. J Hydraul Eng, ASCE, 1998, 124(4):419-429.
    [35]程年生,李昌华.丁坝绕流的k-ε紊流模型数值解.水利水运科学研究, 1989, (3):11-23.
    [36]潘军峰,冯民权,郑邦民,闵涛.丁坝绕流及局部冲刷坑二维数值模拟.四川大学学报(工程科学版), 2005, 37(1):15-18.
    [37]冯民权,郑邦民.定床上丁坝流场数值模拟.水力发电学报, 2005, 24(6):78-82.
    [38]李国斌,李昌华.天然河道淹没丁坝群水流计算平面二维流带模型.泥沙研究, 1994, (4):40-49.
    [39]李国斌,韩信.天然河道淹没丁坝群水深平均平面二维数学模型研究.水动力学研究与进展A辑, 2001, 16(2):230-237.
    [40]黄文典,李嘉,李志勤.淹没丁坝平面二维水流数值模拟研究.四川大学学报(工程科学版), 2005, 37(1):19-23.
    [41] Ouillon S, Dartus D. Three-dimensional computation of flow around groyne. J Hydraul Eng, ASCE, 1997, 123(11):962-970.
    [42] Istiarto I. Flow around a cylinder in a scoured bed. [Phd Dissertation]. Lausanne, EPFL. 2001.
    [43]彭静,河源能久,玉井信行.线性与非线性紊流模型及其在丁坝绕流中的应用.水动力学研究与进展A辑, 2003, 18(5):589-594.
    [44]崔占峰,张小峰.三维紊流模型在丁坝中的应用.武汉大学学报(工学版), 2006, 39(1):15-20.
    [45]何国建,方红卫,府仁寿.桥墩群对河道水流影响的三维数值分析.水动力学研究与进展A辑, 2007, 22(03):345-351.
    [46] Liang Ge, Fotis Sotiropoulos. 3D unsteady RANS modeling of complex hydraulic engineering flows. I: Numerical model. J Hydraul Eng, ASCE, 2005, 131(9):800-808.
    [47] Liang Ge, Seung Oh Lee, et al. 3D unsteady RANS modeling of complex hydraulic engineering flows. II: Model validation and flow physics. J Hydraul Eng, ASCE, 2005, 131(9):809-820.
    [48] Andrew McCoy, George Constantinescu, and Larry Weber. Coherent structures with groyne fields: A numerical investigation using LES. World Water Congress 2005 173, 400.
    [49]周宜林.淹没丁坝附近三维水流运动大涡数值模拟.长江科学院院报, 2001, 18(5):28-31,36.
    [50]周宜林,道上正规,桧谷治.非淹没丁坝附近三维水流运动特性的研究.水利学报, 2004, (8):46-53.
    [51]华祖林.拟合曲线坐标下弯曲河段水流三维数学模型.水利学报, 2000, (1):1-8.
    [52]夏云峰,薛鸿超.非正交曲线同位网格三维水动力数值模型.河海大学学报(自然科学版), 2002, 30(6):74-78.
    [53]黄国鲜,周建军,林斌良.河道演变三维数值模拟计算网格的选择和生成研究.水动力学研究与进展A辑, 2006, 21(5):565-571.
    [54]黄国鲜,周建军.复杂边界下三维水流数学模型的建立和验证.水力发电学报, 2007, 26(4):66-70.
    [55]何国建.三维水沙及水质数学模型的研究与应用[博士学位论文].北京:清华大学水利系, 2007.
    [56] Hao Zhang, Hajime Nakagawa, et al. Prediction of 3D flow field and local scouring around spur dykes. Annual J Hydraul Eng, JSCE. 2005, 49:1003-1008.
    [57]邢领航,华祖林.基于三角单元外心下的幂率格式在丁坝绕流中的应用.水科学进展, 2007, 18(3):362-367.
    [58] Melville B W, Coleman S E. Bridge scour. Water Resources Publications, LLC. 2000.
    [59] Melville B M. Local scour at bridge sites. University of Auckland, School of Engineering, Auckland, New Zealand, Rep. No.117. 1975.
    [60] Ettema. Scour at bridge piers. University of Auckland, School of Engineering, Auckland, New Zealand, Rep. No.216. 1980.
    [61] Nagagawa H, Suzuki K. An application of stochastic model of sediment motion to local scour around a bridge pier. Proceedings 16th International Association for Hydraulic Research Congress, Sao Paulo, Brazil, 27 July-1 Aug, 1975, 2:228-235.
    [62] Michiue M, Hinokidani O. Calculation of 2-dimensional bed evolution around spur-dike. Ann J Hydraulic Eng, JSCE, 1992, 36:61-66 (in Japanese).
    [63]黄科院.砂土充填土工合成材料长管袋坝模型试验研究.郑州:黄河水利科学研究院,2000.
    [64] Rajaratnam N, Nwchukwu B A. Erosion near groyne-like structures. J Hydraul Res., 1983, 21(4):277-287.
    [65] Hoffmans G J C M, Pilarczyk K W. Local scour downstream of hydraulic structures. J. Hydraul. Eng, ASCE, 1995, 121(4):326-340.
    [66] Tomasz, Mioduszewski, Shiro Maen. Pressure and scouring around a spur dike during the surge pass. Annual J Hydraul Eng, JSCE. 2003, 43.
    [67] Tomasz Mioduszewski, Shiro Maen. Water pressure fluctuation around a spur dike. DPRI, Kyoto University, Symposium on dynamic water pressure and bed response in the water Dec. 2002.
    [68] Gill M A. Erosion of sand beds around spur-dikes. Journal of the Hydraulic Division, ASCE, 1972, 98(9):1587-1602.
    [69] Zaghloul N A. Local scour around spur-dikes. J Hydro, 1983, 60:123-140.
    [70]汪德胜.漫水丁坝局部冲刷的研究.水动力学研究与进展, 1988, 3(2):60-69.
    [71]方达宪,王军.丁坝坝头床沙起冲流速及局部最大冲深计算模式的探讨.泥沙研究, 1992, (4):77-84.
    [72]王亚玲,周玉利,高冬光.桥台冲刷机理和计算方法.西安公路学院院报, 1994, 14(4):36-41.
    [73]蒋焕章.丁坝局部冲刷计算.交通部公路科学研究所印, 1985.
    [74]高冬光,田伟平等.桥台的冲刷机理和冲刷深度.中国公路学报, 1998, 11(1):54-62.
    [75] Lim Siow-Yong. Equilibrium clear-water scour around an abutment. J Hydraul Eng, ASCE, 1997, 123(3):237-243.
    [76] Lim Siow-Yong, Cheng Nian-sheng. Prediction of live-bed scour at bridge abutments. J Hydraul Eng, ASCE, 1998, 124(6):635-638.
    [77] Roger A. Kuhnle, Carlos V. Alonso, F. Douglas Shields Jr. Local scour associated withangled spur dikes. J Hydraul Eng, ASCE, 2002, 128(12):1087-1093.
    [78] Rahman M M, Haque M A. Local scour at sloped-wall spur-dike-like structures in alluvial rivers. J Hydraul Eng, ASCE, 2004, 130(1):70-74.
    [79]张红武,许雨新.黄河下游河道整治近期研究综述.人民黄河, 1999, 21(3):8-11.
    [80]詹义正,王军,谈广鸣等.桥墩局部冲刷的试验研究.武汉大学学报(工学版), 2006, 39(5):1-9.
    [81] Melville B W. Local scour at bridge abutments. J Hydraul Eng, ASCE, 1992, 118(4):615-631.
    [82] Melville B M. Pier and abutment scour: integrated approach. J Hydraul Eng, ASCE, 1997, 123(2):125-136.
    [83]王亚玲.国内外桥台冲刷计算的主要成果及发展趋势.公路, 1999, (9):5-7.
    [84] Bertoldi D A, Jones J S. Time to scour experiments as an indirect measure of stream power around bridge piers. Proceeding of the International Water Resource Engineering Conference, Memphis, Tennessee, August 1998, 264-269.
    [85]苏德慧.丁坝冲刷过程试验研究.水动力学研究与进展A辑, 1993, 8(增刊):631-635.
    [86] Cardoso A H. Bettess R. Effects of time and channel geometry on scour at bridge abutments. J Hydraul Eng, ASCE, 1999, 125(4):388-399.
    [87] Giuseppe, Oliveto and Willi, H. Hager. Temporal evolution of clear-water pier and abutment scour. J Hydraul Eng, ASCE, 2002, 128(9):811-820.
    [88] Giuseppe, Oliveto and Willi, H. Hager. Further results to time-dependent local scour at bridge elements. J Hydraul Eng, ASCE, 2005, 131(2):97-105.
    [89] Coleman S E, Lauchlan C S, Melville B W. Clear-water scour development at bridge abutments. J Hydraul Res, 2003, 41:521-531.
    [90] Yanmaz A M, Altmbilek H D. Study of time-dependent local scour around bridge piers. J Hydraul Eng, ASCE, 1991, 117(10):1247-1268.
    [91] Chang Wen-Yi, Lai Jihn-Sung, Yen Chin-Lien. Evolution of scour depth at circular bridge piers. J Hydraul Eng, ASCE, 2004, 130(9):905-913.
    [92] William Miller, Jr. Model for the time rate of local sediment scour at a cylindrical structure [PhD Dissertation]. University of Florida. 2003.
    [93] Kothyari U C, Garde R J, Ranga Raju K G. Temporal variation of scour around circular bridge piers, J Hydraul Eng, ASCE, 1992, 118(8):1091-1106.
    [94] Mia M F, Nago H. Design method of time-dependent local scour at circular bridge pier. J Hydraul Eng, ASCE, 2003, 129(6):420-427.
    [95] Dey S, Barbhuiya A K. Time variation of scour at abutments. J Hydraul Eng, ASCE, 2005, 131(1):11-23.
    [96] van Rijn L C. Sediment transport, Part I: Bed load transport. J Hydraul Eng, ASCE, 1984, 110(10):1431-1456.
    [97]赵士清,窦国仁.在三峡工程变动回水区中一维全沙数学模型的研究.水利水运科学研究, 1990, (2):115-23.
    [98]韩其为,何明民.水库淤积和河床演变的(一维)数学模型.泥沙研究, 1987, (3):14-29
    [99]杨国录.河流数学模型.北京:海洋出版社, 1993.
    [100]李义天.冲积河道平面变形计算初步研究,泥沙研究, 1988, (1):32-44.
    [101]李义天,吴伟明.三峡水库变动回水区(平面二维及一维嵌套)泥沙数学模型研究及应用.长江三峡工程泥沙与航运关键技术研究专题研究报告集(下册),武汉:武汉工业大学出版社, 1993:1167-1219.
    [102] Zhou J J, Lin B N. 1D mathematical model for suspended sediment by lateral integration. J Hydraul Eng, ASCE, 1998, 124(7):712-717.
    [103]陆永军,张华庆.水库下游冲刷的数值模拟-模型的构造.水动力学研究与进展, 1993, 8(1):491-498.
    [104] De Vriend H J, Geldof H J. Main flow velocity in short river bends. J Hydraul Eng, ASCE, 1983, 109(7):991-1011.
    [105]周建军.平面二维不恒定流及河床变形数学模拟方法研究[博士学位论文].北京:中国水利水电科学研究院, 1988.
    [106]陈国祥,金海生.用k-ε模式解平面二维弯道水流.河海大学学报, 1988, 16(2):104-1113.
    [107]李义天.平面二维泥沙数学模型研究[博士学位论文].武汉:武汉水利电力学院, 1987.
    [108]李义天.冲淤平衡状态下床沙质级配初探.泥沙研究, 1987, 1:82-87.
    [109]谢鉴衡,魏良琰.河流泥沙数学模型的回顾与展望.泥沙研究, 1987, (3):1-13.
    [110]黄国鲜.弯曲和分汊河道水沙输运及其演变的三维数值模拟研究[博士学位论文].北京:清华大学水利系, 2006.
    [111] van Rijn L C. Mathematical modeling of suspended sediment in nonuniform flows. J Hydraul Eng, ASCE, 1986, 112(6):433-455.
    [112] Yasuyuki Shimizu, Hajime Yamaguchi, Tadaoki Itakura. Three-Dimensional Computation of Flow and Bed Deformation. J Hydraul Eng, ASCE, 1990, 116(9):1090-1108.
    [113] Olsen N R B, Melaaen M C. Three-dimensional Calculation of Scour around Cylinders. J Hydraul Eng, ASCE, 1993, 119(9):1048-1054.
    [114] Wang S Y, Jia Y. Computational modeling and hydroscience research. Advance in Hyro-Science and Engineering, Proceedings of 2nd International Conference on Hydro-Science and Engineering. Tsinghua University Press, 1995:2147-2157.
    [115] Wu Weiming, Rodi Wolfgang, Wenka Thomas. 3D numerical modeling of flow andsediment transport in open channels. J Hydraul Eng, ASCE, 2000, 126(1):4-15.
    [116] Fang H W, Rodi W. Three-dimensional calculations of flow and suspend sediment transport in the neighborhood of the dam for the Three Gorges Project (TGP) Reservoir in the Yangtze River. J Hydraul Res, 2003, 41(4):379-394.
    [117]陆永军.三维紊流泥沙数学模型及其应用[博士后研究报告].南京:南京水利科学研究院, 2002.
    [118]夏云峰.感潮河道三维水流泥沙数值模型研究与应用[博士学位论文].南京:河海大学, 2002.
    [119]假冬冬,邵学军,周刚.大系数法与壁面函数结合在丁坝绕流三维数值模拟中的应用.水利水运工程学报, 2008(1):36-41.
    [120]彭静.丁坝水流及冲刷—可视化与三维数值模拟.郑州:黄河水利出版社, 2004.
    [121] Zhang Hao. Study on flow and bed evolution in channels with spur dykes. [PhD Dissertation]. Kyoto University, Japan, 2005.
    [122] Nobuhisa Nagata, Takashi Hosoda, et al. Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. J Hydraul Eng, ASCE, 2005, 131(12):1074-1087.
    [123]崔占峰.三维紊流水沙数学模型研究及应用[博士学位论文].武汉:武汉大学, 2006.
    [124] Dou Xibing, Jones J. Sterling. A new sediment transport formula for local scour prediction. Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000,104, 410.
    [125] Jia Yafei, Kitamura Tadanori, Wang Sam S. Y. Simulation of scour process in plunging pool of loose bed-material. J Hydraul Eng, ASCE, 2000, 127(3):219-229.
    [126] Wu W, Wang S S Y. Empirical-numerical analysis of headcut migration. International Journal of Sediment Research, 2005, 20(3):233-243.
    [127] Sumer B M, et al. Influence of turbulence on bed load sediment transport. J Hydraul Eng, ASCE, 2003, 129(8):585-596.
    [128] Zanke U C E. On the influence of turbulence on the initiation of sediment motion. International Journal of Sediment Research, 2003, 18(1):17-31.
    [129] Smart G M. Sediment transport formula for steep channels. J Hydraul Eng, ASCE, 1984, 110(3):267-276.
    [130] Damgaard J S, Whitehouse R J S, Soulsby R L. Bed-load sediment transport on steep longitudinal slopes. J Hydraul Eng, ASCE, 1997, 123(12):1130-1138.
    [131] Subhasish Dey, Koustuv Debnath. Sediment pickup on streamwise sloping beds. Journal of Irrigation and Drainage Engineering, ASCE, 2001, 127(1):39-43
    [132] van Rijn L C. Principles of sediment transport in rivers, Estuaries and Coastal Seas, AQUAPublications, Amsterdam, the Netherlands. 1993
    [133] Wu W M. Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. J Hydraul Eng, ASCE, 2005, 130(10):1013-1024.
    [134]潘庆燊,余文畴,曾静贤.抛石护岸工程的试验研究.泥沙研究, 1981, (1):56 -60.
    [135]刘宝山.对桥墩基础抛石防护的水力计算及实践的几点认识.泥沙研究, 1984, (3):54 -63.
    [136]陆浩.抛石防护桥墩冲刷水力计算.泥沙研究, 1993, (3):46-52.
    [137]姚仕明,卢金友.抛石护岸工程试验研究.长江科学院院报, 2006, 23(1):16-19.
    [138] Parola A C. Stability of riprap at bridge piers. J Hydraul Eng, ASCE, 1994, 119(10):1080-1093.
    [139] Chiew Y M. Mechanics of riprap failure at bridge piers. J Hydraul Eng, ASCE, 1995, 121(9):635-643.
    [140] Chiew Y M, Lim F H. Failure behavior of riprap layer at bridge piers under live-bed conditions. J Hydraul Eng, ASCE, 2000, 126(1):43-55.
    [141] Launchlan C S, Melville B W. Riprap protection at bridge piers. J Hydraul Eng, ASCE, 2001, 127(5):412-418.
    [142]章梓雄,董曾南.粘性流体力学.北京:清华大学出版社. 1998.
    [143] Rodi W. Turbulence models and their applications in hydraulics. 3rd Ed. IAHR Monograph, Balkema, Rotterdan. The Netherlands. 1993.
    [144] Shih T H, et al. A new k-εeddy viscosity model for high Reynolds number turbulent flows. Comput Fluids, 1995, 24(3):1119-1130.
    [145] Yakhot V, Orzag S A. Renormalization group analysis of turbulence: basic theory. J Scient Comput, 1986, 1:3-11.
    [146] Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics: The finite volume method. Wiley, New York, 1995.
    [147] Speziale C G, Thangma S. Analysis of a RNG based turbulence model for separated flows. NASA, CR-189600, ISASE Rept. No.92-3. 1992.
    [148] Shyy W, et al. Computational techniques for complex transport phenomena. New York: Cambridge University Press, 1997.
    [149]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社, 2004.
    [150]金忠青. N-S方程的数值解和紊流模型.河海大学出版社, 989.
    [151] Krishnappan B G, Lau Y L. Turbulence modeling of flood plain flows. J Hydraul Eng, ASCE, 1986, 112(4):251-266.
    [152] Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transferin three-dimensional parabolic flows. Int. J. Heat Mass Transfer, 1972, 15:1797-1806.
    [153] Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 1983, 21:1525-1532.
    [154] Stone H L. Iterative solution of implicit approximations of multi-dimensional partial differential equations. SIAM J Numerical Analysis, 1968, 5:530-558.
    [155]陶文铨.计算传热学的近代进展.北京:科学出版社, 2000.
    [156] Barbhuiya A K. Clear water scour at abutments. [PhD Dissertation]. Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721 302, Indian.2003.
    [157]陈小莉,马吉明.桥台局部冲刷坑内水流运动的三维数值模拟.水动力学研究与进展,2007,22(6):689-695.
    [158] Dey S, Raikar R V. Characteristics of horseshoe vortex in developing scour holes at piers. J Hydraul Eng, ASCE, 2007, 133(4):399-413.
    [159]王兴奎,邵学军,李丹勋.河流动力学基础.北京:中国水利水电出版社, 2002.
    [160]中国水利学会泥沙专业委员会.泥沙手册.中国环境科学出版社, 1992.
    [161] van Rijn L C. Mathematical modeling of morphological processes in the case of suspend sediment transport. Delft Hydr. Communication No. 382. 1987.
    [162] Celik I, Rodi W. Modeling suspended sediment transport in non-equilibrium situations. J Hydraul Eng, ASCE, 1988, 114(10):1157-1191.
    [163]张瑞瑾,谢鉴衡等.河流泥沙动力学.北京:水利电力出版社,1989.
    [164] Fang H W, Wang G Q. Three-dimensional mathematical model of suspended sediment transport. J Hydraul Eng, ASCE, 2000, 126(8):578-592.
    [165] Zhou J J, Spork V, Koengeter J, Rouve G. Bed conditions of non-equilibrium transport of suspended sediment. International Journal of Sediment Research, 1997, 12(3):241-247.
    [166] Phillips B C, and Sutherland A J. Spatial lag effects in bed load sediment transport. J Hydraul Res, Delft, The Netherlands, 1989, 27(1):115-133.
    [167] Tran Truc. Two-dimensional morphological computations near hydraulic structures. [PhD dissertation], Asian Institute of Technology, Bangkok, Thailand. 1991.
    [168] Rahuel J L, Holly F M, Chollet J P, Belleudy P J, Yang G. Modeling of riverbed evolution for bedload sediment mixtures. J. Hydraul. Eng, ASCE, 1989, 115(11):1521-1542.
    [169] Ikeda S. Incipient motion on sand particles on side slopes. J. Hydraul Eng, ASCE, 1982a, 108(1):95-114.
    [170] Chiew Y M, Parker G. Incipient sediment motion on non-horizontal slopes. J Hydraul Res, 1994, 32(5):649-660.
    [171] Dey S, Dey Sarker, et al. Sediment threshold under stream flow on horizontal and sloping beds. J Eng Mech, 1999, 125(5):545-553.
    [172] Dey S. Threshold of sediment motion on combined transverse and longitudinal sloping beds. J Hydraul Res, 2003, 41(4):405-415.
    [173] Dey S. Critical bed shear for initial movement of sediments on a combined lateral and streamwise slope. Nordic Hydrol, 2004, 35(2):153-164.
    [174] Ikeda S. Lateral bed transport on side slopes. J Hydraul Eng, ASCE, 1982b, 108(11):1369-1373.
    [175] Yamasaka M, Ikeda S, Kizaki S. Lateral sediment transport of heterogeneous bed materials. Trans JSCE, 1987, 387(II-8):105-114 (in Japanese).
    [176] Sekine M, Parker G. Bed-load transport on transverse slope. I. J Hydraul Eng, ASCE, 1992, 118(4):513-535.
    [177] Talmon A M, van Mierlo M C L M, Struiksma N. Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. J Hydraul Res, 1995, 33(4):495-517.
    [178] Kovacs A, Parker G. A new vectorial bedload formulation and its application to the time evolution of straight river. J Fluid Mech, 1994, 267:153-183.
    [179] Seminara G, Solari L, Parker G. Bed load at low Shield stress on arbitrarily sloping beds: Failure of the Bagnold hypothesis. Wat Resour Res, 2002, 38(11):1249-1264.
    [180] Parker G, Seminara G, Solari L. Bed load at low Shields stress on arbitrarily sloping beds: Alternative entrainment formulation. Wat Resour Res, 2003, 39(7):1183-1192.
    [181] Francalanci S, Solari L. Bed load transport equation on arbitrarily sloping bed. J Hydraul Eng, ASCE, 2007a (in press).
    [182] Damgaard J S, Whitehouse R J S, Soulsby R L. Bed load sediment transport on steep streamwise slopes. J Hydraul Eng, ASCE, 1997, 123(12):1130-1138.
    [183] Engelund F. Flow and bed topography in channel bends. J Hydraul Div, 1974, 100(11):1631-1648.
    [184] Parker G. Discussion of‘Lateral bed load transport on side slope’by S. Ikeda. J Hydraul Eng, ASCE, 1984, 110(2):197-199.
    [185] van Rijn L C (1984). Sediment pick-up functions. J Hydraul Eng, ASCE, 1984, 110(10):1494-1502.
    [186] Francalanci S, Solari L. Gravitational effects on bed load transport at low Shields stress: Experimental Observations. Wat Resour Res, 2007b, 43(3):W03424, doi: 10.1029/2005 WR004715.
    [187] Debnath K. Sediment threshold and pick-up on stream wise sloping beds. [PhD Dissertation], Dept. of Appl. Mech., Regional Eng. College at Durgapur, Univ. of Burdwan, India. 2000.
    [188]陶文铨.数值传热学(第2版).西安:西安交通大学出版社, 2001.
    [189] Hayase T, Humphrey J A C, Greif R. A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures. Journal of Computational Physics, 1992, 98:101-118.
    [190] van Rijn L C. Entrainment of fine sediment particles; development of concentration profiles in a steady, uniform flow without initial sediment load. Rep. No. M1531, Part II, Delft Hydraulic Laboratory, Delft, the Netherlands.1981.
    [191] Lin B L, Falconer R A. Numerical modeling of three-dimensional suspended sediment for estuarine and coastal waters. J Hydr Res, Delft, the Netherlands, 1996, 34(4):435-456.
    [192] Zhou J J, Lin B N. 2-D mathematical model for suspended sediment part I- Model theories and Validations. Journal of Basic Science and Engineering, 1995, 3(1):78-98.
    [193] Wang Z B, Ribberink J S. The validity of a depth-integrated model for suspended sediment transport. J Hydr Res, Delft, the Netherlands, 1986, 24(1):53-66.
    [194]张红武等.河流力学研究.郑州:黄河水利出版社, 1999, 146-147.
    [195] Sumer B M, Freds?e J. Scour at the round head of a rubble-mound breakwater. Coastal Engineering, 1997, 29(3-4):231-262.
    [196]崔占峰,张小峰,冯小香.丁坝冲刷的三维紊流模拟研究.水动力学研究与进展A辑, 2008, 23(1):33-41.
    [197]毛昶熙等.闸坝工程水力学与设计管理.北京:水利电力出版社, 1995.
    [198]毛佩郁,毛昶熙.抛石护岸防冲的几个问题.水利水运科学研究, 1999, (2):146-157.
    [199]林炳尧.斜坡上块石的起动流速与抛石体的稳定坡度.泥沙研究, 1998, (4):21-27.
    [200]孔祥柏,胡美英,吴济难等.丁坝对水流影响的试验研究.水利水运科学研究, 1983, (2):67-77.
    [201] Milne-Thomson L M. Theoretical Hydrodynamics. London: Macmillan, 1968.
    [202]陈小莉,马吉明.受漩涡作用的水下块石的起动流速.清华大学学报(自然科学版), 2005, 45(3): 315-318.
    [203]钱宁,万兆惠.泥沙运动力学.北京:科学出版社, 1983.
    [204] Ling Chi-Hai. Creteria for incipient motion of spherical sediment particles. J Hydraul Eng, ASCE, 1995, 121(6):615-626.
    [205]陈小莉,马吉明.竖轴旋涡对丁坝坝头块石颗粒起动的影响.水力发电学报, 2007, 26(5): 97-101.
    [206] Dey S, Barbhuiya A K. Clear-Water Scour at Abutments in Thinly Armored Beds. J Hydraul Eng, ASCE, 2004, 130(7):622-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700