用户名: 密码: 验证码:
基于离散元方法的沥青混合料劲度模量虚拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一直以来,由于分析工具的限制,有关沥青混合料的研究均局限于基于现象学的经验方法,即通过大量的假设及实验,从宏观角度分析和研究沥青混合料的各种性能。这种方法不仅耗时耗资,且结果的变异性较大,再现性差,使沥青混合料路用性能与材料设计体系之间存在较大差距。本文将沥青混合料作为由碎石料和沥青玛蹄脂(矿粉+沥青+空隙)组成的两相体系,从沥青玛蹄脂的力学特性研究出发,以基于虚拟试验的沥青混合料微观力学分析为目标,采用离散单元方法,根据各相的几何及物理信息,运用随机生成多面体(三维)或多边形(二维)技术重构其微观结构,建立微观力学模型,进行沥青玛蹄脂、级配矿料及沥青混合料的力学试验研究,以获得模型参数及验证微观结构模型的可靠性,通过数值模拟预测沥青混合料的劲度模量和各参数对其力学性质的影响。
     本文方法克服了传统数字重构的局限性,实现了采用不规则多边形和多面体单元模拟级配矿料,进而模拟沥青混合料微观结构组成;利用自定义粘弹性接触模型模拟沥青玛蹄脂及沥青混合料中的粘弹性接触作用,从微观尺度分析了沥青玛蹄脂粘弹性力学特性,实现了常规试验与一般力学方法难以达到的目标;通过对级配矿料室内静三轴试验,校准了虚拟试验结果,对级配矿料的回弹模量力学特性进行了评价;通过室内动态模量试验,校准了离散元模型参数,提出了基于虚拟试验的沥青混合料动态模量预测方法,并与试验结果及其他预估模型结果比较分析,结果表明采用离散元微观力学方法能够达到更高的预测精度。
     本研究创新性地从沥青混合料的微观结构出发,应用离散元方法,对沥青混合料进行了深入研究,从微观尺度深入分析了沥青混合料在外力作用下的内部力学响应,为沥青混合料设计方法及分析沥青路面破坏机理开辟了一条崭新的途径。
Research on asphalt mixture has limited by analysis tools and only empirical methods have been commonly used for a long time. These empirical methods were based on phenomenology, where the macroscale performances of asphalt mixtures were analyzed through laboratory or field tests and making a lot of hypothesises. Obviously, these methods are expensive and time-consuming, and their results are variant and unrepeatable. A direct result from these methods is the seperate beween the design system and road performances of asphalt mixtures. The overall macro- mechanical behaviors of the asphalt mixture are determined by the micromechanics within the cemented particulate system. Based on the heterogeneous multiphase nature of aspahlt material, it appears that a micromechanical model would be best suited to properly simulate such a material. Therefore, this dissertation research presents a micromechanical methodology to predict asphalt mixture stiffness and analyze the effects of its macro-scale properties on the overall mechanical performances of the mixture with discrete element method. Asphalt mastic (fine aggregates, fines, asphalt binder, and air voids) and aggregates are considered as the two basic constituents of asphalt mixture. Random polygon (2D) and polyhedron (3D) algorithms were developed to build the microstructure of asphalt mixture, where the randomly created polygon or polyhedron particles represent aggregates, and the inter-place of aggregate particles is filled with the uniformed balls bonded with viscoelastic contact model to represent asphalt mastics. Laboratory tests were completed including DSR (Dynamic Shear Rheology) tests of asphalt mastic and Uniaxial compressive dynamic modulus tests of asphalt mixtures to serve two purposes: (1) privide input parameters for discrete element simulation; and (2) calibrate simulation results with tests of asphalt mixtures.
     The contributions of his dissertation work include: (1) an algorithm was developed for randomly creating the irregular polygon or polyhedron particles, with which gradation, shape and distribution of aggregates can be considered. (2) the micromechanical model of asphalt mixture were developed, where the user-written Burger’s model and contact stiffness model are employed to represent viscoelastic behaviors of asphalt mastic and the elastic properties of aggregates respectively, and the flip and bonding models are used to consider the strength properties at contact points. (3) Static tri-axial tests of graded stones were simulated and calibrated. The micromechanical properties of graded stones were evaluated by calculating the standard parameter: resilient moduli (MR). (4) Review of the research on dynamic modulus of asphalt mixtures was conducted. The research history, current efforts and commonly used methods were summarized in this dissertation paper. (5) Simulation of asphalt mixtures was conducted, and the dynamic modulus and phase angles were predicted. The process of the dynamic modulus virtual tests can be monitored with the software developed in this research.
     The performances of asphalt mixtures were investigated with discrete element method by analysis of microstructure in this dissertation work. This research effort cuts a new way for mixture design and damage mechanism analysis of asphalt pavement: not only avoids a lot of laboratory tests, but also gives a more detailed analysis on the micro-scale behaviors under the outer loading conditions.
引文
[1]严家伋.道路建筑材料[M].人民交通出版社, 2001
    [2]张登良.沥青与沥青混合料[M].人民交通出版社, 1993
    [3]沈金安.沥青及沥青混合料路用性能[M].人民交通出版社, 2001
    [4]吕伟民.沥青混合料设计原理与方法[M].同济大学出版社, 2001
    [5]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社, 2006
    [6]卢永贵,赵可.沥青玛蹄脂性能试验研究[J].中国公路学报, 2004, Vol.14(4)
    [7]公路沥青路面施工技术规范. JTG F40-2004
    [8] E. Ray Brown, John E. Haddock, Campbell Crawford. Investigation of stone matrix asphalt mortars[J]. Transportation Research Record, 1996, 1530: 95-102
    [9]刘丽,郝培文编译. SMA沥青胶浆的研究[J].中外公路, 2004, Vol.24(5)
    [10]中国工程建设标准化歇会公路工程委员会.公路沥青玛蹄脂碎石路面技术指南. SHC F40-01-2002
    [11] D. A. Anerson, H. U. Bahia, R. Dongre. Rheological Properties of Mineral Filler Asphalt Mastics and its Importance to Pavement Performance[J]. ASTM STP1147, 1992: 131-153
    [12]Jian-Shiuh Chen. Rheological Properties of Asphalt-Mineral Filler Mastics[J]. Transportation Research Board, 75th Annual Meeting, Washington, D.C., 1996
    [13]Jian-Shiuh Chen, Chun-Hsiang Peng. Analyses of Tensile Failure Properties of Asphalt-Mineral Filler Mastics[J]. Journal of Material in Civil Engineering, 1998
    [14]R. Gubler, Y. Liu, D. A. Anderson, M. N. Partl. Investigation of the System Filler and Asphalt Binders by Rheological Means[J]. Association of Asphalt Paving Technologists (AAPT), 1999, Vol.68: 284-304
    [15]Aroon Shenoy, K. Stuart, W. Mogawer. Do Asphalt Mixtures Correlate Better with Mastics or Binders in Evaluating Permanent Deformation?[J]. Transportation Research Board, 82nd Annual Meeting, Washington, D.C., 2003
    [16]Yong-Rak Kim, D.N. Little, I. Song. Mechanistic Evaluation of Mineral Fillers on Fatigue Resistance and Fundamental Material Characteristics[J]. Transportation Research Board, 82nd Annual Meeting, Washington, D.C., 2003
    [17]Ota J. Vacin, J. Stastna, L. Zanzotto. Creep Compliance of Polymer Modified Asphalt, Asphalt Mastic and Hot Mix Asphalt[J]. Transportation Research Board, 82nd Annual Meeting, Washington, D.C., 2003
    [18]Roman Lackner, Markus Spieql, Ronald Blab, Josef Eberhardsteiner. Is Low-Temperature Creep of Asphalt Mastic Independent of Filler Shape and Mineralogy?-Arguments from Multiscale Analysis[J]. Journal of Materials in Civil Engineering, 2005, Vol.17(5): 485-491
    [19]Cristian Druta. A Micromechanical Approach for Predicting the Complex Shear Modulus and Accumulated Shear Strain of Asphalt Mixtures from Binder and Mastics[D]. Ph.D. Dissertation, Louisiana State University, 2006
    [20]Brice Delaporte, HervéDi Benedetto, Pierre Chaverot, Gilles Gauthier. Linear Viscoelastic Properties of Bituminous Materials: from Binders to Mastics[J]. Annual Meeting and Technical Sessions, 2007
    [21]W.G. Butlar, R.Roque. Evaluation of Empirical and Theoretical Models to Determine Asphalt Mixture Stiffnesses at Low Temperatures[J]. AAPT.1996
    [22]W.G.Buttlar, R.Roque ,Micromechanical Modeling to Predict the Stiffness of Asphalt Concrete[J]. 5th Pan American Congress on Applied Mechanics, 1997
    [23]W G Buttlar, D Bozkurt, G. Al-Khateeb, et al. Understanding Asphalt Mastic Behavior through Micromechanics[J]. Transportation Research Record, 1999, 1681: 157-159
    [24]Kuo-Neng G. Chang, Jay N. Meegoda. Micromechanical Simulation of Hot Mix Asphalt[J]. Journal of Engineering Mechanics, 1997, 5
    [25]Shashidhar Naga, P. Romero. Factors Affecting the Stiffening Potential of Mineral Fillers[J]. Transportation Research Record, 1998, 1638: 94-101
    [26] N Shashidhar, A Shenoy. On Using Micromechanical Models to Describe Dynamic Mechanical Behavior of Asphalt Mastics[J]. Mechanics of Materials, 2002, Vol.34 (10): 657-669
    [27]Yong-Rak Kim, D.N. Little. Linear Viscoelastic Analysis of Asphalt Mastics[J]. ASCE Journal of Materials in Civil Engineering, 2004, Vol.16(2): 122-132
    [28]A. R. Abbas. Simulation of the Micromechanical Behavior of Asphalt Mixtures Using the Discrete Element Method[D]. Ph.D. Dissertation, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, 2004
    [29]Abbas A., Masad E., Papagiannakis T., Shenoy A. Modeling Asphalt Mastic Stiffness Using Discrete Element Analysis and Micromechanics-Based Models[J]. The International Journal of Pavement Engineering, 2005, Vol.6(2): 137-146
    [30]邹桂莲,张肖宁,袁燕.应用流变学的方法研究填料对沥青胶浆高温性能的影响[J].公路, 2004, 3
    [31]刘丽,李剑,郝培文,梅庆斌.硅藻土改性沥青胶浆性能研究[J].重庆交通学院学报, 2004, 2
    [32]刘丽.沥青胶浆技术性能及评价方法研究[D].长安大学硕士论文, 2004
    [33]傅志勇.沥青混合料高温性能试验方法研究[D].长沙理工大学硕士论文, 2005
    [34]邹桂莲,张肖宁,韩传代.应用DSR评价沥青胶浆路用性能的研究[J].哈尔滨建筑大学学报, 2001, Vol.34(3)
    [35]段守荣,任瑞波.应用动态剪切流变仪(DSR)评价沥青胶浆路用性能的研究[J].中南公路工程, 2001, Vol.26(4)
    [36]袁迎捷.基于Superpave的沥青胶浆流变特性与级配优化研究[D].长安大学博士论文, 2004
    [37]邵显智,谭忆秋,邵敏华.几种矿粉指标对沥青胶浆的影响分析[J].公路, 2004, 5
    [38]邵显智,谭忆秋,孙立军.几种矿粉指标与沥青胶浆的关联分析[J].公路交通科技, 2005, Vol.22(2)
    [39]李智慧,谭忆秋,周兴业.沥青胶浆高低温性能评价体系的研究[J].石油沥青, 2005, Vol.19(5)
    [40]李智慧.沥青胶浆高低温性能的评价研究[D].哈尔滨工业大学硕士论文, 2005
    [41]郑南翔,张永满,张宜洛.沥青胶浆的低温性能试验研究[J].重庆交通学院学报, 2005, Vol.24(1)
    [42]张永满,赵慧丽.沥青胶浆路用性能研究[J].公路交通科技, 2005, Vol.22(10)
    [43]张争奇,王永财.沥青胶浆对沥青混合料高低温性能的影响[J].长安大学学报(自然科学版), 2006, Vol.26(2)
    [44]刘丽,郝培文.沥青胶浆粘度特性分析[J].河北工业大学学报, 2006, Vol.35(2)
    [45]黎霞,田小革.用动蠕变试验确定沥青混凝土动态粘弹性参数[J].国外公路, 2000, Vol.20(1)
    [46]周志刚,傅搏峰.用粘弹性理论评价沥青混合料的高温稳定性[J].公路交通科技, 2005, Vol.22(11)
    [47]封基良.沥青BBR小梁试验的流变分析[J].武汉理工大学学报(交通科学与工程版), 2006, Vol.30(2)
    [48]张熙颖.沥青混合料低温抗裂性能研究及粘弹性分析[D].吉林大学硕士学位论文, 2005
    [49]周志刚,钱国平,郑健龙.沥青混合料粘弹性参数测定方法的研究[J].长沙交通学院学报, 2001, Vol.17(4)
    [50]钟志海.沥青砼的粘弹性及其参数的确定方法[J].公路与汽运, 2005, 4
    [51]封基良,黄晓明.沥青粘结料粘弹性参数确定方法的研究[J].公路交通科技, 2006, Vol.23(5)
    [52]郑健龙. Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用[J].长沙交通学院学报, 1995, Vol.11(3): 32-42
    [53]刘福明,邓英才,桂增俭.用流变学原理评价改性沥青的高温稳定性[J].天津建设科技, 2002, 1
    [54]郑健龙,吕松涛,田小革.沥青混合料粘弹性参数及其应用[J].郑州大学学报(工学版), 2004, Vol.25(4)
    [55]吕松涛,田小革,郑健龙.沥青混合料粘弹性参数的测定及其在本构模型中的应用[J].长沙交通学院学报, 2005, Vol.21(1)
    [56]李军强.粘弹性材料线性本构方程及动力学应用[D].西安理工大学博士后出站报告, 2005
    [57]郑健龙.沥青路面温度收缩开裂的热粘弹特性研究[D].长安大学博士论文, 2001
    [58]关宏信.沥青混合料粘弹性疲劳损伤模型研究[D].中南大学博士论文, 2005
    [59]延西利,封晨辉,梁春雨.沥青与沥青混合料的流变特性比较[J].长安大学学报(自然科学版), 2002, Vol.22(5)
    [60]桂齐彬. SBS改性沥青及沥青玛蹄脂性能研究[D].北京市市政工程研究院硕士, 2000
    [61]褚浩然.基于粘弹理论沥青材料的高低温性能评价[D].哈尔滨工业大学硕士, 2002
    [62]Peterson, Robert L., H. R. Soleymani, R. M. Anderson, R. S. McDaniel. Recovery and Testing of RAP Binders from Recycled Asphalt Pavements [J]. Transportation Research Board, 78th Annual Meeting, Washington, D.C., 1999
    [63]SHRP-A-367, Binder Characterization and Evaluation, Volume 1, Strategic Highway Research Program, National Research Council, 1993
    [64]SHRP-A-368, Binder Characterization and Evaluation, Volume 2: Chemistry, Strategic Highway Research Program, National Research Council, 1993
    [65]SHRP-A-369, Binder Characterization and Evaluation, Volume 3: Physical Characterization, Strategic Highway Research Program, National Research Council, 1993
    [66]SHRP-A-370, Binder Characterization and Evaluation, Volume 4: Test Methods, StrategicHighway Research Program, National Research Council, 1993
    [67]Dongre Raj, J. D’Angelo, G. Reinke. A New Criterion for Superpave High Temperature Binder Specification [J]. Transportation Research Board, 83rd Annual Meeting, Washington, D.C., 2004
    [68]Baumgaertel M., Winter H. H.. Determination of Discrete Relaxation and Retardation Time Spectra from Dynamic Mechanical Data. Rheologica Acta, 1989, Vol.28: 511-519
    [69]周进川.用恒高温频率扫描试验评价沥青混合料的高温性能[J].石油沥青, 1999, 6
    [70]沙庆林.高等级公路半刚性沥青路面.人民交通出版社,1999
    [71]沈金安.我国高速公路沥青路面建设目前应关注的几个问题.www.chinahighway.com 2003
    [72]Witczak, M.W., and O.A. Fonseca, Revised Predictive Model for Dynamic (Complex) Modulus of Asphalt Mixtures, In Journal of the Transportation Board, National Research Council, Washington, D.C., No. 1540, 1996, pp. 15-23.
    [73]Proubet, Jean. application of computational Geomechanics to description of soils behavior (geomechanics). thesis (PhD.), University of Southern California, 1991
    [74]Yue, Z. Q., Bekking, W, and Morin, I (1995),‘‘Application of digital image processing to quantitative study of asphalt concrete microstructure’’Transp. Res. Rec. 1492, Transportation Research Board, National Research Council, Washington, D.C., 53–60.
    [75]Zhang, J., Wong, T.F., and Davis, D.M., "Pressure-Induced Microcracking and Grain Crushing in Berea Sandstone: Acoustic Emission and Quantitative Microscopy Measurements," Mechanics of Materials, vol. 9, pp. 1-15, 1990.
    [76]Zhu, Yan. Shukla, Arun. Sadd, Martin H., The effect of microstructural fabric on dynamic load transfer in two dimensional assemblies of elliptical particles, Journal of the Mechanics & Physics of Solids. v. 44, Aug. 1996, p. 1283-303.
    [77]Huang, Tien-kuen, Mechanical behavior of interconnected concrete-block retaining wall, Journal of Geotechnical & Geoenvironmental Engineering. v. 123, Mar. 1997, p. 197-203
    [78]Hunt, M. L., Discrete element simulations for granular material flows: effective thermal conductivity and self-diffusivity, International Journal of Heat & Mass Transfer. v. 40 no13, Sep. 1997, p.3059-68.
    [79]Mazars, and Z.P. Bazant ; under the auspices of Centre national de la recherche scientifique, France and National Science Foundation, USA., London and New York, Elsevier Applied Science, 1989.
    [80]Anandarajah, A. Procedures for elastoplastic liquefaction modeling of sands. Journal ofEngineering Mechanics-ASCE.v 120, July 1994, p. 1563-87
    [81]Anandarajah, A. Sobhan, Khaled. Kuganenthira, N., Incremental Stress-strain Behavior of Granular Soil, Journal of Geotechnical Engineering v. 121, Jan. 1995, p. 57-68.
    [82] Zhanping You, Development of a micromechanical modeling approach to predict Asphalt mixture stiffness using the discret element method. thesis (PhD.), University of Illinois at Urbana-Champign, 2003
    [83]Alar Abbsa,Simulation of the micromechanical behavior of Asphalt mixture using the discret element method. thesis (PhD.), Washiington state University, 2004
    [84]王泳嘉等.离散单元法软件系统2D-Block的现代化特点.岩石力学与工程学报.2000,19(增): 1057-1060
    [85]Bernhard Peters, Algis Dziugys. Numerical simulation of the motion of granular material using object-oriented techniques.Computer Methods in Applied Mechanics and Engineering,2002, 191(17-18):1983-2007.
    [86]Cundall P.A A computer model for simulating progressive large scale movements in blocky system. In: Muller Led. Proceedings of Symposium of the International Society of Rock Mechanics. Rotterdam: A.A. Balkema, 1971(1): 8-12.
    [87]Cundall P.A. The measurement and analysis of acceleration in rock slopes.Ph.D. Dissertation,University of London, Imperial college of Science and Technology, 1971
    [88]Cundall P.A. and O.D.L.Strack. A discrete numerical method for granular assemblies.Geotechnique, 1979, 29(1): 47-65
    [89]Itasca Consulting Group, Inc. UDEC?niversal Distinct Element Code), Version 3.1 Minneapolis: ICq 2000.
    [90]Itasca Consulting Group, Inc. 3DEC (3-Dimensional Distinct Element Code), Version 2.0.Minneapolis: ICq 1998.
    [91]Itasca Consulting Group, Inc. PFC2D (Particle Flow Code in 2 Dimensions), Version 3.0.Minneapolis: ICq 2002.
    [92]Itasca Consulting Group, Inc. PFC3D (Particle Flow Code in 3 Dimensions), Version2.0.Minneapolis: ICq 1999.
    [93]S.P. Hunt, A.G Meyers, V Louchniko}.Modeling the Kaiser effect and deformation rate analysis in sandstone using the discrete element method. Computers and Geotechnics, 2003, 30: 611-621
    [94]Williams, J.R. and Mustoe, GWW Proceedings of the 2nd International Conference on Discrete Element Methods, Massachusetts Institute of Technology, IESL Publications. U.Engineering Mechanics-ASCE.v 120, July 1994, p. 1563-87
    [81]Anandarajah, A. Sobhan, Khaled. Kuganenthira, N., Incremental Stress-strain Behavior of Granular Soil, Journal of Geotechnical Engineering v. 121, Jan. 1995, p. 57-68.
    [82] Zhanping You, Development of a micromechanical modeling approach to predict Asphalt mixture stiffness using the discret element method. thesis (PhD.), University of Illinois at Urbana-Champign, 2003
    [83]Alar Abbsa,Simulation of the micromechanical behavior of Asphalt mixture using the discret element method. thesis (PhD.), Washiington state University, 2004
    [84]王泳嘉等.离散单元法软件系统2D-Block的现代化特点.岩石力学与工程学报.2000,19(增): 1057-1060
    [85]Bernhard Peters, Algis Dziugys. Numerical simulation of the motion of granular material using object-oriented techniques.Computer Methods in Applied Mechanics and Engineering,2002, 191(17-18):1983-2007.
    [86]Cundall P.A A computer model for simulating progressive large scale movements in blocky system. In: Muller Led. Proceedings of Symposium of the International Society of Rock Mechanics. Rotterdam: A.A. Balkema, 1971(1): 8-12.
    [87]Cundall P.A. The measurement and analysis of acceleration in rock slopes.Ph.D. Dissertation,University of London, Imperial college of Science and Technology, 1971
    [88]Cundall P.A. and O.D.L.Strack. A discrete numerical method for granular assemblies.Geotechnique, 1979, 29(1): 47-65
    [89]Itasca Consulting Group, Inc. UDEC?niversal Distinct Element Code), Version 3.1 Minneapolis: ICq 2000.
    [90]Itasca Consulting Group, Inc. 3DEC (3-Dimensional Distinct Element Code), Version 2.0.Minneapolis: ICq 1998.
    [91]Itasca Consulting Group, Inc. PFC2D (Particle Flow Code in 2 Dimensions), Version 3.0.Minneapolis: ICq 2002.
    [92]Itasca Consulting Group, Inc. PFC3D (Particle Flow Code in 3 Dimensions), Version2.0.Minneapolis: ICq 1999.
    [93]S.P. Hunt, A.G Meyers, V Louchniko}.Modeling the Kaiser effect and deformation rate analysis in sandstone using the discrete element method. Computers and Geotechnics, 2003, 30: 611-621
    [94]Williams, J.R. and Mustoe, GWW Proceedings of the 2nd International Conference on Discrete Element Methods, Massachusetts Institute of Technology, IESL Publications. U.学,1995
    [111]张健全,于友江.岩层移动动态过程的离散单元法分析.水文地质工程地质,2004, 31(2): 9-13.
    [112]焦玉勇.三维离散单元法及其应用.博士学位论文.武汉:中国科学院武汉岩土力学研究所,1998
    [113]王刚,金峰,徐艳杰.离散元构造的流变模型.岩土力学,2001, 22(3): 343-346.
    [114]夏开文,唐志平.基于细观弹性接触的多相颗粒材料本构模型.中国科技大学学报,2000, 30(4): 422-429, 433
    [115]王文强.离散单元法及其在材料和结构力学响应分析中的应用.博士学位论文.合肥:中国科学技术大学,2000
    [116]胡霞光.沥青混合料微观力学分析综述.长安大学学报(自然科学版).2005,25(2):6-10
    [117]刘玉.沥青混合料细观结构模型的离散元数值分析.硕士学位论文.郑州:河南工业大学,2005
    [118]殷跃平,张加桂,陈宝荪等.三峡库区巫山移民新城址松散堆积体成因机制研究.工程地质学报,2000, 8(3): 265-271
    [119]肖裕行,王泳嘉,王思敬.二维离散单元法接触处理的新算法.岩石力学与工程学报,1999, 18(4): 409-413
    [120]陈龙斌,胡晓军,唐志平.离散元数值模拟中查找邻居元关系的改进算法.计算力学学报,2000, 17(4): 497-499.
    [121]罗海宁,焦玉勇.对三维离散单元法中块体接触判断算法的改进.岩土力学,1999, 20(2):37-40
    [122]陈春光,姚令侃,苏凤环.三维离散单元法数值模拟中查找邻居元的一种新算法.计算机应用,2004, 24(1):149-151
    [123]魏群著.散体单元法的基本原理数值方法及程序.科学出版社,1991
    [124]池永.土的工程力学性质的细观研究——应力应变关系剪切带的颗粒流模拟.博士学位论文.上海:同济大学,2002
    [125]Dehlen.G.L.The Effect of Non-Linear Material on the Behavior of Pavements Subject to Traffic Loads. Ph. D. Dissertation, University,1969
    [126]Uzan, J. Characterization of Granular Material. Transportation Research Record 1022, TRB, National Research Council, Washington DC,1985, 52-59.
    [127]Bathurst, R. J., and Rothenburg, L. 1989. Investigation of Micromechanical Features ofIdealized Granular Assemblies Using DEM, Proc. 1st U.S. Conference on Discrete Element Methods (Golden, Colorado, October 1989), Session 2B, Granular Media I, Paper 3. Mustoe, G. G.W. et al., Eds. Golden, Colorado: CSM Press.
    [128]Bonnaure, F, Gest, G., Gravois, A., and Uge, P. 1977. A New Method of Predicting the Stiffness of Asphalt Paving Mixtures, J. Assoc. Asphalt Paving Tech., 46, 64-100.
    [129]Buttlar, W.G., and You, Z. 2001. Discrete Element Modeling of Asphalt Concrete: A Micro-Fabric Approach, J. Trans. Res. Record, National Research Council, Washington, D.C., No. 1757, Geomaterials 2001, 111-118.
    [130]Buttlar, W.G., Wagoner, M., You, Z., and Brovold, S. T. 2004. Development of Hollow Cylinder Tester in the Fundamental Property Test of Pavement Mixture, J. Assoc. Asphalt Paving Tech. (AAPT), 73, 367-400.
    [131]Chang, C.S., Shi, Q.S. and Zhu, H. 1999. Micromechanical Modeling for Elastic Moduli of Bonded Granules, ASCE J. Engng. Mech., 6, 514-520.
    [132]Chang, G. K. and Meegoda, J. N. 1999. Micro-mechanic Model For Temperature Effects of Hot Mixture Asphalt Concrete, J. Trans. Res. Record, No. 1687, National Research Council, Washington, D.C., 95-103.
    [133]Chang, G. K. and Meegoda, J. N. 1999. Micromechanical Simulation of Hot Mixture Asphalt, ASCE J. Engng. Mech., 123(5), 495-503.
    [134]Christensen, D. W., Pellien, T. and Bonaquist, R.F. 2003. Hirsch Models for Estimating the Modulus of Asphalt Concrete, J. Assoc. Asphalt Paving Tech.,72, 97-121.
    [135]Christensen, R. M., and Lo, K. H. 1979. Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models, J. Mech. Phys. Solids, 27, 315-330.
    [136]Dai, Q. and You, Z. 2006. Prediction of Creep Stiffness of Asphalt Mixture with Micromechanical Finite Element and Discrete Element Methods, Journal of Engineering Mechanics, ASCE, in press.
    [137]Dai, Q. and Sadd, M.H. 2004. Parametric Model Study of Microstructure Effects On Damage Behavior of Asphalt Samples, International Journal of Pavement Engineering, Vol. 5(1), pp.19-30.
    [138]Dai, Q., Sadd, M.H. and You, Z. 2006. A Micromechanical Finite Element Model for Viscoelastic Creep and Viscoelastic Damage Behavior of Asphalt Mixture, International Journal for Numerical and Analytical Methods in Geomechanics, in press.
    [139]Dai, Q., Sadd, M.H., Parameswaran, V. and Shukla, A. 2005. Prediction of Damage Behaviors in Asphalt Materials using a Finite Element Micromechanical Model and Image Analysis, ASCE Journal of Engineering Mechanics, Vol. 131(7), pp.668-677.
    [140]Hashin, Z. and Shtrikman, S. 1963. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, J. Mech. Phys. Solids, Vol. 11, 137.
    [141]Hefer, A.W., Little, N.D., Lytton, L.R. 2005. A Synthesis of Theories and Mechanisms of Bitumen-Aggregate Adhesion Including Recent Advances in Quantifying the Effects of Water, Proc. Association of Asphalt Paving Technologists, vol. 74.
    [142]Heukelom, W. and Klomp, A. J. G. 1964. Road Design and Dynamic Loading, Proceedings, Association of Asphalt Paving Technologists, Ann Arbor, Michigan, Vol. 33.
    [143]Hirsch, T.J. 1962. Modulus of Elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate, Journal of the American Concrete Institute, Vol 59, No. 3, 427-452.
    [144]Kanitpong, K. and Bahia, H. U. 2004. Sensitivity of Moisture Damage of HMA to Asphalt Binder Cohesion and Adhesion Properties, Proceedings of the 17th ASCE Engineering Mechanics Division Conference (CD-Rom), University of Delaware, Newark, USA, June 13-16.Kerner, E.H., Proc. Phys. Soc. London 1956. pp. 808
    [145] Zhanping You, Development of a micromechanical modeling approach to predict Asphalt mixture stiffness using the discret element method. thesis (PhD.), University of Illinois at Urbana-Champign, 2003
    [146]Kose, S., Guler, M., Bahia, H.U., and Masad, E. 2000. Distribution of Strains within Asphalt Binders in HMA Using Image and Finite Element Techniques, J. Trans. Res. Record, No. 1728, National Research Council, Washington, D.C., 21-27.
    [147]Li, G; Li, Y; Metcalf, JB; Pang, S-S. 1999, Elastic Modulus Prediction of Asphalt Concrete, Journal of Materials in Civil Engineering, Volume: 11 Issue: 3, pp 236-241.
    [148]Masad, E. and Bahia, H. 2002. Effect of Loading Configuration and Material Properties on Nonlinear Response of Asphalt Mixtures, Journal of the Association of the Asphalt Paving Technologists.
    [149]Masad, E. Somadevan, N., Bahia, H.U., and Kose, S. 2001. Modeling and Experimental Measurements of Strain Distribution in Asphalt Mixes, Journal of Transportation Engineering, 127(6), 477-485.
    [150]Masad, E., Jandhyala, V.K., Dasgupta, N., Somadevan, N., Shashidhar, N. 2002. Characterization of Air Void Distribution in Asphalt Mixes Using X-Ray Computed Tomography, Journal of Materials in Civil Engineering, Vol. 14, No. 2., pp 122-129.
    [151]Masad, E., N. Somadevan, H.U. Bahia HU, and S. Kose 2000. Modeling And Experimental Measurements Of Strain Distribution In Asphalt Mixes, J. Trans. Res.Record, Vol 127, No. 6, National Research Council, Washington, D.C.
    [152]Nicholson V. 1932. Adhesion Tension in Asphalt Pavements, Its significance and Methods Applicable in its Determination, Proceedings of the Association of Paving Technologists, 28 -48.
    [153]Nijboer, L. W. 1948. Plasticity as a factor in the design of dense bituminous road carpets, Elsevier Science, New York.
    [154]Papagiannakis, A.T., Abbas, A. and Masad, E. 2002. Micromechanical Analysis of the Viscoelastic Properties of Asphalt Concretes, Proc. 81st Transportation Research Board Annual Meeting, Washington, D.C.
    [155]Paul, B. 1960. Prediction of Elastic Constants of Multiphase Materials, Transactions of the Metallurgical Society of AIME, Vol. 218, 36-41.
    [156]Sadd, M.H. and Dai, Q. 2001. Effect of Microstructure on the Static and Dynamic Behavior of Recycled Asphalt Material, Year 1 Final Report #536108, University of Rhode Island Transportation Center.
    [157]Sadd, M.H. and Dai, Q. 2005. A Comparison of Micromechanical Modeling of Asphalt Materials Using Finite Elements and Doublet Mechanics, Mechanics of Materials, Elsevier, Vol. 37(6), 641-662.
    [158]Sadd, M.H., Dai, Q., Parameswaran, V., and Shukla, A. 2004b. Simulation of Asphalt Materials Using a Finite Element Micromechanical Model and Damage Mechanics, J. Trans. Res. Record, No. 1832, 86-94.
    [159]Sadd, M.H., Dai, Q., Parameswaran, V., Shukla, A. 2004a. Microstructural Simulation of Asphalt Materials: Modeling and Experimental Studies, J. Matl. in Civil Engng., ASCE 16(2), 107-115.
    [160]Saville, V.B. and Axon, E.O. 1937. Adhesion of Asphaltic Binders to Mineral Aggregates, Proceedings of the Association of Asphalt Paving Technologists, 86-101.
    [161]van der Poel, C. 1955. Time and temperature effects on the deformation of asphaltic bitumens and bitumen-mineral mixtures, Soc. of Petr. Engrs. J., 47–53.
    [162]Wang, L., H. Paul, T. Harman, J. D'Angelo, 2004. Characterization of Aggregates and Asphalt Concrete Using X-ray Computerized Tomography, J. Assoc. Asphalt Paving Tech., Vol. 73, pp. 467-500.
    [163]Wang, L; Wang, Y; Mohammad, L; Harman, T. 2002. VOIDS DISTRIBUTION AND PERFORMANCE OF ASPHALT CONCRETE, International Journal of Pavements, Vol. 1, Issue 3, pp 22-33
    [164]Wang, LB; Frost, JD; Lai, JS. 2004. Three-Dimensional Digital Representation ofGranular Material Microstructure from X-Ray Tomography Imaging. Journal of Computing in Civil Engineering, Vol. 18, Issue 1, pp 28-35
    [165]Witczak, M. W., Bari, M. and Quayum, M. M. 2001. Sensitivity of Simple Performance Test Dynamic Modulus |E*|, NCHRP 9-19 Subtask C4bReport, Arizona State University, Department of Civil and Environmental Engineering, Tempe, AZ.Wool, R. 2001. A material fix, Nature, 409, 794-797.
    [166]You, Z. 2003. Development of a Micromechanical Modeling Approach to Predict Asphalt Mixture Stiffness Using Discrete Element Method, Ph.D. dissertation of Department of Civil and Environmental Engineering at the University of Illinois at Urbana-Champaign, 512 pages, published by UMI, a Bell & Howell Information Company, Ann Arbor, MI.
    [167]You, Z. and Buttlar, W.G. 2002. Stiffness Prediction of Hot Mixture Asphalt (HMA) Based upon Microfabric Discrete Element Modeling (MDEM), Proc. of the 4th International Conference on Road & Airfield Pavement Technology, Vol. 1, pp. 409-417, People's Communications Publishing House, China.
    [168]You, Z. and Buttlar, W.G. 2004. Discrete Element Modeling to Predict the Modulus of Asphalt Concrete Mixtures, Journal of Materials in Civil Engineering, ASCE, Vol. 16, Issue 2, pp. 140-146.
    [169]You, Z. and Buttlar, W.G. 2005. Application of Discrete Element Modeling Techniques to Predict the Complex Modulus of Asphalt–Aggregate Hollow Cylinders Subjected to Internal Pressure, Journal of the Transportation Research Board, National Research Council, No. 1929, pp. 218-226. Washington, D.C.
    [170]You, Z. and Buttlar, W.G. 2006. Micromechanical Modeling Approach to Predict Compressive Dynamic Moduli of Asphalt Mixture Using the Distinct Element Method, Journal of the Transportation Research Board, National Research Council, Washington, D.C., Accepted for publication
    [171]You, Z., Dai, Q., and Gurung, B., Development of a Finite Element Model for Asphalt Mixture to Predict Compressive Complex Moduli at Low And Intermediate Temperatures, Geotechnical Special Publication (GSP: Asphalt Concrete: Simulation, Modeling, and Experimental Characterization, American Society of Civil Engineers (ASCE), pp. 21-28, 2006
    [172]Yue, Z.Q. and Morin, I. 1996. Digital image processing for aggregate orientations in asphalt concrete, Canadian Journal of Civil Engineering, Vol.23, No.2, pp.480-489.
    [173]Yue, Z.Q. and Morin, I. 1997. Digital image processing for aggregate orientations inasphalt concrete: Reply to Discussion by Ashraf M. Ghaly, 1997, Canadian Journal of Civil Engineering, Vol.24, pp.334.
    [174]Yue, Z.Q., Bekking, W., and Morin, I. 1995. Application of digital image processing to quantitative study of asphalt concrete microstructure, Transportation Research Record 1492, Transportation Research Board, Washington D.C., pp.53-60.
    [175]Yue, Z.Q., Chen, S., and Tham, L,G. 2003. Finite element modeling of geomaterials using digital image processing. Computers and Geotechnics 2003; 30:375-97.
    [176]Zhong, X., and Chang, C. S. 1997. Modeling mechanical behavior of cemented granular materials. Proc., 9th Int. Conf. of the Int. Assn. For Comp. Methods and Advance in Geomechanics, J. Yuan, ed., Balkema, Amsterdam, 975-980.
    [177]Zhong, X., And Chang, C. S. 1999. Micromechanical Modeling for Behavior of Cementitious Granular Materials, ASCE J. Engng. Mech., 1280-1285.
    [178]Zhu, H. 2001. A contact mechanism based theory of Maxwell matrix composites, Intl. J. Solids Structures, Vol. 38, 26-27, 4477-4488.
    [179]Zhu, H. and Nodes, J.E. 2000. Contact Based Analysis of Asphalt Pavement with the Effect of Aggregate Angularity, Mech. of Materials, Vol. 32, No. 3, pp. 193-202.
    [180]Zhu, H., Rish, III J.W., and Batra, S. 2001. A constitutive study of two-phase materials Part II. Maxwell binder, Comp. and Geotech., 28 (5), 309-323.
    [181]Zhu, H., Chang, S. C., and Lou, A. K. 2000. 2-D Normal compliances for elastic and visco-elastic binder contact with finite particle size effect, Intl. J. Solids Structures, 37(52), 7703-7716.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700