用户名: 密码: 验证码:
半刚性基层材料的疲劳特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半刚性基层材料的疲劳性能是沥青路面结构性能的重要基础。不同材料组成、结构类型和环境条件下的半刚性基层材料的疲劳规律及参数不同。材料的疲劳变形规律表明,现行半刚性基层材料的弯拉模量设计值不能真实反映材料的实际力学性状,直接选用室内试件的模量测定值作为路面结构分析的材料参数,将导致计算结果出现较大偏差。因此,有必要系统研究半刚性基层疲劳特征规律和动态模量的衰变规律,明确反复荷载作用下半刚性基层的损伤形成及演化行为,为完善半刚性基层沥青路面设计指标提供重要依据。
     本文在总结国内外已有研究成果的基础上,比较分析了现有疲劳性能研究的室内试验方法,确定四点弯曲疲劳试验的标准试验方法。针对三种结构类型的水泥稳定碎石(悬浮密实结构、骨架密实结构和骨架空隙结构)、两种结构类型的二灰稳定碎石(悬浮密实结构和骨架密实结构)、均匀密实结构水泥稳定细料土以及水泥稳定砂砾开展了室内疲劳试验,并进而对半刚性基层材料疲劳性能的外部和内部影响因素进行评价。在此基础上,本文对半刚性基层材料的疲劳预估模型进行了理论和现场修正。依据室内疲劳试验和现场ALF试验,对半刚性基层的疲劳变形和模量衰变规律开展了系统研究,在深入分析半刚性基层材料疲劳性能的基础上研究确定了半刚性基层路面的疲劳设计参数。
     本文建立了四种不同半刚性基层材料的室内疲劳预估模型。提出了支承条件下和浸水条件下的室内疲劳试验方法,分析评价了支承条件和浸水条件对基层材料疲劳性能的影响。考虑外部和内部影响因素,对室内疲劳预估模型进行理论修正;同时,通过水泥稳定碎石基层的现场ALF试验,提出了水泥稳定碎石基层材料现场修正的疲劳损坏预估模型。半刚性基层材料梁试件底部拉应变在疲劳试验中的增加过程呈三阶段发展。应变增长第二阶段中应变与作用次数呈线性关系。通过梁底部拉应变发展第二阶段的应变曲线与回归直线的两个切点确定了应变稳定增加转折点与极限破坏转折点。半刚性基层材料的模量衰变曲线分为下降较快、降速稳定和急剧下降三个阶段,本文得出了半刚性基层材料在第二阶段的动态模量衰变率值。以半刚性基层材料室内弯拉模量衰变曲线的阶段过渡点和中点作为特征点,确定特征点处的模量衰变比值,并由初始动态弯拉模量值确定衰变后相应的动态弯拉模量值,并进行了ALF现场试验验证,进而提出了各种半刚性基层材料相应的弹性模量设计参考值。
Based on the indoor test and existing results abroad and home, this paper develops a research on the fatigue property of four normal kinds of semi-rigid base materials. It presents test results of performance for three structural types of cement stabilized crushed rock including suspend-dense structure framework-dense structure and framework-pore structure, for two structural types of lime fly-ash stabilized crushed rock including suspend-dense structure and framework-dense structure, for cement stabilized soil and for cement stabilized gravel. By the probability analysis of Weibull on the results of fatigue test, the paper has a serial of fatigue prefigurative models. What’s more, amends these models linking to the factual pavement performance. The test method of the bending fatigue performance under supporting condition and under soaking condition was put forward. Then the test was done and the influences was analyzed.
     Based on having indoor fatigue test, dynamic modulus deterioration laws of four common semi-rigid base materials have been studied. The paper has analyzed tension strain at the bottom of samples and presented the calculation method as well as value of the limit tension strain. Deterioration laws of each material modulus under fatigue loading have been analyzed. Modulus deterioration has three stages. Deterioration rate differs from stress level. The higher the stress level is, the greater the deterioration rate is. At last, the relationship between deterioration laws of dynamic modulus and structural type of semi-rigid base course materials was investigated. The paper summarized the selection method of modulus of semi-rigid base course materials in every country. Based on having indoor fatigue test, dynamic modulus deterioration laws of semi-rigid base materials have been studied. Modulus deterioration has three stages. The stage transition point and neutral point of modulus deterioration curve is proposed as the specific points. The deteriorated dynamic modulus is determined by the initial dynamic modulus. At last, the corresponding design effective modulus of the various working status of semi-rigid base course materials has been determined.
引文
[1]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社, 2001.
    [2] JTG D50-2006,公路沥青路面设计规范[S]。北京:人民交通出版社,2006
    [3]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004:70-200
    [4]沙庆林.高等级公路半刚性基层沥青路面[M].北京:人民交通出版社,1998:338-360
    [5]王旭东,沙爱民,许志鸿.沥青路面材料动力特性与动态参数[M]北京:人民交通出版社,2002:122-152
    [6]沙爱民,半刚性路面材料结构与性能[M].北京:人民交通出版社,1998:92-107
    [7]高镇同,疲劳性能测试[M].北京:国防工业出版社,1980:2-93
    [8]陈传尧,疲劳与断裂[M].武汉:华中科技大学出版社,2001
    [9]程育仁,缪龙秀,侯炳麟.疲劳强度[M].北京:中国铁道出版社,1990:132-145
    [10] Suresh著,王光中等译.材料的疲劳[M].北京:国防工业出版社.1993
    [11]姚祖康.对国外沥青路面设计指标的评述[J].公路,2003,(2):18~25.
    [12] Development and validation of a mechanistic recursive-incremental deterioration model for cement stabilized base courses Dr..Christian Busch TRB2006Annual CD-ROM
    [13] Judycki J. Comparison of fatigue criteria for flexible and semi-rigid pavements[C].. Proceedings , 8th International Conference on Asphalt Pavements,Seattle,1 997,Vol.2.
    [14]武和平.高等级公路路面结构设计方法[M].北京:人民交通出版社.1999:91-107
    [15]沙爱民,张登良,许永明.无机结合料稳定级配砂砾的疲劳特性研究[J].土木工程学报, 1993,26(1):68-73
    [16]叶国铮.水泥稳定砂砾的疲劳特性和优化设计[J].中国市政工程,1995,3(70):13-17
    [17]王昌衡.水泥稳定细粒土强度及疲劳特性的室内研究[D]长沙:湖南大学,1984
    [18]刘忠根等.半刚性基层材料室内试验研究[J].吉林建筑学院学报,2003,20(1):38-42
    [19]王建明.石灰增钙渣混合料疲劳特性研究[J].粉煤灰综合利用,1998,2:49-51
    [20]宋玉普,吕培印.混凝土轴心拉-压疲劳性能研究[J].建筑结构学报.2003,23(4):36~41
    [21]张立翔.混凝土疲劳损伤强度可靠置信限分析[J].工程力学.2004,21(4):139~43
    [22]欧进萍,林燕清.混凝土高周疲劳损伤的性能劣化试验研究[[J] .土木工程报.1999,32(5):17~18
    [23]谢建斌.循环荷载下路面用钢纤维混凝土的弯曲疲劳研究[J].兰州理工大学学报.2004,30(2):104~109
    [24]丁达伟.低温钢纤维混凝土梁抗折疲劳特性的试验研究[D].淮南:安徽理工大学,2006.
    [25]姚卫星,杨晓华.疲劳裂纹随机扩展模型进展.力学与实践[J] .1995, 17 (3) :1~7
    [26]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [27]童小燕,王德俊,徐濒.疲劳损伤过程的热能耗散分析[J].金属学报,1992, 28 (4) :163~169
    [28]吴佩刚,赵光仪,白利明.高强混凝土抗压疲劳性能研究[J].土木工程学报, 1994,27(3) :33-40
    [29]鞠杨,樊承谋,潘景龙,谢和平.变幅疲劳载荷下钢纤维混凝土的损伤演化行为研究[J].试验力学,1997,12(1):110-118
    [30] Butler J. E. The performance of concrete containing high proportions of steel fiber with particular reference to rapid fatigue loading, FRCC Recent Development.ACI,1989, 12(3) ::32~38
    [31] G.Spadea,F.Bencardino.Behavior of fiber-reinforced concrete beams under cyclic loading. Journal of structural engineering,ASCE,1997,123(5) :660~668
    [32]王玉英.金属材料的多轴疲劳行为与寿命评估[D].南京:南京航空航天大学,2005.
    [33]慕遂峰.高应变状态下混凝土累积损伤本构规律研究[D].重庆:重庆大学,2005
    [34] Lemaitre J. How to use damage mechnics. Nuclear Engineering and Design[J]. 1984, 80(2)
    [35]谢和平,鞠扬,草毓利.经典损伤定义中的“弹性模量法”探讨.力学与实践[J],1997
    [36]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法[M].北京:人民交通出版社,2002:80-112
    [37]沈成康.断裂力学[M].上海:同济大学出版社,1996:43-87
    [38]曾春花.疲劳分析方法及应用[M].北京:国防工业出版社,1991:20-100
    [39]高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986:18-66
    [40]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D].武汉:中南大学,2003
    [41]葛折圣.沥青稳定基层疲劳性能研究[J].华东公路.2001,130(3):62-66
    [42]杨群等.沥青稳定基层与半刚性基层疲劳设计分析[J].公路交通科技,2001,18(6):5-8
    [43]魏昌俊.半刚性基层的弯拉和劈裂疲劳特性[J].重庆交通学院学报, 1998,17(1):58-61
    [44]杨锡武.水泥(石灰)粉煤灰混合料路面基层研究[J].重庆交通学报,1997,16(2):48-52
    [45]许志鸿.沥青混合料疲劳性能研究[J].交通运输工程学报,2001,1(1):20-24
    [46]王旭东等.水泥结级配集料疲劳特性的研究[J].公路交通科技,1993:8-12
    [47]丛林.半刚性基层材料性能参数的试验研究[J].建筑材料学报,2001,4(4):380-390
    [48]陈贺新.半刚性沥青路面混合料的疲劳与开裂分析[J].交通标准化,2003,114(115):65-68
    [49]赵炜诚.粉煤灰贫混凝土的疲劳性能研究[J].同济大学学,2004,32(4):475-479
    [50]王绍怀.沥青混合料疲劳破坏预测方法的研究[J].哈尔滨建筑大学学报, 2002,18(5):55-79
    [51]刘爱萍.二灰碎石基层疲劳性能的模型试验研究[J].四川大学学报,2001,33(2):22-26
    [52]蒋应军.水泥稳定碎石基层收缩裂缝防治研究[D].西安:长安大学,2001
    [53]胡力群.半刚性基层材料结构类型与组成设计研究[D].西安:长安大学,2004
    [54]黄达.上下层布式钢纤维混凝土疲劳断裂性能的研究[D].武汉:武汉理工大学,2002
    [55]高维成.水泥混凝土路面疲劳特性研究[D].西安:长安大学,2000
    [56]梁军林.水泥混凝土路面断裂破坏机理及应用研究[D].西安:长安大学,2004
    [57]石成恩.活性粉末混凝土的弯曲疲劳寿命研究[D].福州:福州大学,2004
    [58]杨志刚.层布式混杂纤维混凝土抗折疲劳性能试验研究[D].武汉:武汉理工大学,2004
    [59]张敏霞.循环荷载水泥土的疲劳特性及损伤行为研究[D].福州:福州大学,2004
    [60]王宏畅,黄晓明,傅智.半刚性基层材料路用性能的试验研究[J].公路交通科技, 2005.11.
    [61]易成,谢和平,孙华飞.钢纤维混凝土疲劳断裂性能与工程应用[M].北京:科学出版社,2003:20-78
    [62]支喜兰,韩冰.土工格栅加筋半刚性基层材料的抗弯拉及疲劳性能试验分析[J].重庆交通学院学报, 2005,24(4):62-66
    [63]韩毅,邢凯.水对沥青路面疲劳寿命影响初探[J].黑龙江交通科技,2005,132(2):28-29
    [64]邓学钧,黄晓明,杨军.半刚性路面疲劳特性的环道试验研究[J].东南大学学报, 1995,25(1):94-99
    [65]孟书涛.半刚性基层沥青路面性能加速加载试验研究[J].公路交通科技,1997,14(1):59-64
    [66]谢文忠,余叔藩.半刚性基层沥青路面结构疲劳寿命的环道试验研究[J].中国公路学报,1990,3(3):11-20
    [67]潘友强,杨军.国内外足尺加速路面试验研究概况[J].中外公路, 2005,12 :23-26
    [68]马良珵,冯任贤,徐德炳.应变电测与传感器技术[M].北京:中国计量出版社,1993:2-300.
    [69]罗开玉,李伯全.基于虚拟仪器技术的应变测试系统[J].江苏大学学报(自然科学版),2005,3:106-108
    [70]刘笃喜,王文军,蔡春桥.面向对象的电阻应变虚拟测试系统设计与实现[J].测控技术,2002,21(1):114-116.
    [71]朱劲松,宋玉普.定侧压混凝土双轴抗压疲劳变形特性试验研究[J].建筑结构学报,2004. 25(3):85~98.
    [72]卢喜经.混凝土疲劳断裂及尺寸效应研究[D].大连:大连理工大学,2000.
    [73]吴赣昌.沥青路面温度裂缝尖端的应力强度因子分析[J].中国公路学报,1995 (2):18-37
    [74]吴赣昌,凌天清.半刚性基层温缩裂缝的扩展机理分析[J].中国公路学报.1998(1) :21-28
    [75]周富杰,孙立军.沥青罩面层荷载应力的三维有限元分析[J].中国公路学报.1999.10
    [76]徐东伟.沥青路面加铺层力学分析及疲劳寿命预估[D].西安:长安大学,2005
    [77]易成.疲劳裂纹扩展理论及其在混凝土疲劳性能研究中的应用[J].哈尔滨建筑大学学报,2000(10):37-41
    [78]张小辉.钢纤维混凝土弯曲疲劳及其损伤特性和细观强度研究[D].昆明:昆明理工大学,2001
    [79]吴智敏,宋玉普,赵国藩等.疲劳荷载作用下砼裂缝扩展过程[J].大连理工大学学报,1997(8):29-35
    [80]王宏畅,黄晓明,傅智.半刚性基层表面裂缝影响因素[J].交通运输工程学报,2005(6):37-45
    [81]彭妙娟,张登良,夏永旭.半刚性基层沥青路面的断裂力学计算方法及其应用[J].中国公路学报, 1998(4):16-25
    [82]岳福青,杨春风.半刚性基层沥青路面温缩裂缝的有限元分析[J].桂林工学院学报,2004(1)
    [83]王宏畅,黄晓明.高等级沥青路面基层底裂缝三维数值分析[J].公路交通科技, 2005(12)
    [84]蔡敏,蔡四维.混凝土与纤维混凝土的疲劳裂纹扩展分析[J].东南大学学报,1998(9)
    [85]杨学贵.水镁石纤维混凝土的疲劳性能试验研究[D].西安:长安大学,2005
    [86]H L Theyse, M de Beer, F C Rust, Overview of the South African Mechanistic Pavement Design Analysis Method, Paper No.961294,75th TRB Meeting, January 7-11,1996,Washington,D.C.
    [87]Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Final Report, Part 2 chapter2, Material Characterization, March 2004.
    [88] AASHTO Provisional Standard. Standard test method for determining the fatigue life of compacted hot mix asphalt(H M A) subject repeated flexural bending[S]. AASHTO Designation: Tp8-94 Edition September 1994.
    [89] Shell International Petroleum Co. Ltd. Shell Pavement Design Manual-Asphalt Pavements and Overlays for Road Traffic London,1978.
    [90] Jameson G, Sharp K and Potter D . New guidelines for the design of flexible pavements for Australia conditions. Proceeding 9th International Conference on Asphalt Pavements, Copenhagen, 2002.
    [91] de Beer M. Developments in the failure criteria of the South African mechanistic design Procedure for asphalt pavements. Proceedings,7th International Conference onAsphalt Pavements,Nottingham,1 992,Vol.3.
    [92] F reeme C R,de Beer M and Viljoen A W. The behavior and mechanistic design of asphalt pavements. Proceedings,6th International Conference on Structural Design of Asphalt Pavements,Ann Arbor,1987,Vol. l.
    [93] Judycki J. Comparison of fatigue criteria for flexible and semi-rigid pavements. Proceedings,8th International Conference on Asphalt Pavements,Seattle,1 997,Vol.2.
    [94] Valkering C P and Stapel F D R. The Shell Pavement design method on a personal computer. Proceedings 7th International Conference on Asphalt Pavements, Nottingham, 1992, vol.1.
    [95] Kenis W J,Sherwood J A and McM ahon R F. Verification and APPlication of the VESYS structural subsystem .Proceedding s,5th International Conference on 5 Structural Deslgn of Asphalt Pavements,Ann Arbor,1982,Vol. l.
    [96] Autret P,De Boissoudy A B and Marchand J P. ALlzE 111 practice. Proceedings , 5th International Conference on Structural Design of Asphalt Pavements,Ann Arbor,1982,Vol. l.
    [97] Freeme C R, Maree J H and Viljoen A W. Mechanistic design of asphalt pavements and verification using the heavy vehicle simulator. Proceedings. 5th International Conference on Structural Design of Asphalt Pavements,Ann Arbor,1982,Vol. l.
    [98] Judycki J. Comparison of fatigue criteria for flexible and semi-rigid pavements. Proceedings. 8th International Conference on Asphalt Pavements, Seattle,1997, Vol. 2.
    [99] Theyse H L, M de Beer, Rust F C. Overview of the South African Mechanistic Pavement Design Analysis Method. The 75th Annual Transportation Research Board Meeting.January7-11,1996,Washington,D C.
    [100] Finn Th?gersen, Christian Busch, Anders Henrichsen. Mechanistic Design of Semi-Rigid Pavements. An Incremental Approach Danish Road Institute Report 138 2004.
    [101] Osman Ali. Evaluation of the Mechanistic-Empirical Pavement Design Guide (NCHRP 1- 37 A) September 2005.
    [102] Jagannath Mallela, Harold Von Quintus, P.E. Kelly L. Smith. Consideration of Lime-Stabilized Layers in Mechanistic-Empirical Pavement Design. The National Lime Association Arlington, Virginia 22203, June 2004.
    [103] JOSéTADEU BALBO & JORGE PIMENTEL CINTRA Fatigue Verification Criteria for Semi-Rigid Pavement Escola Politécnica da Universidade de S?o Paulo 05508-900 S?o Paulo Brasil.
    [104] Marcos P. Rodolfo & JoséT. Balbo. Stresses Analysis of Cemented Bases on Concrete Pavement. Escola Politécnica - Universidade de S?o Paulo.
    [105] S. Ishihara, T.Goshima, Y.Yoshimoto, T.Sabu. The influence of the stress ratio of fatigue crack growth in a cermet[J]. Journal of Materials Science 35(2000)5661-5665.
    [106] Verma B.B., Pandey R.K. The effects of loading variables on overload induced fatigue crack growth retardation parameters[J]. Journal of Materials Science 34(1999)4867-4871.
    [107] Troshchenko V.T. Some peculiarities of fatigue crack growth at various stages of its development[J]. Strength of materials Vol.35,No.6,2003.
    [108] Ivasyshyn A.D., Vasyliv B.D.. Effects of the size and form of specimens on the diagram of growth rates of fatigue cracks[J]. Materials Science Vol.37,No.6,2001.
    [109] Carlson R.L., An examination of scatter in small fatigue crack growth. International Journal of Fracture 115: L55-L60,2002.
    [110]庞林飞.钢筋混凝土板疲劳损伤识别及疲劳寿命预测[D],南京:东南大学,2004
    [111]卢喜经.混凝土疲劳断裂及尺寸效应研究[D],大连:大连理工大学,2000
    [112]潘友强,杨军.国内外足尺加速路面试验研究概况[J].中外公路, 2005(12)
    [113]胥明.板式橡胶支座抗压弹性模量检测方法的研究[J].公路, 2006(2)
    [114]张起森.道路工程有限元分析法[M].北京:人民交通出版社,1983
    [115]易日.使用ANSYS6.1进行结构力学分析[M].北京:北京大学出版社,2002
    [116]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002.
    [117]易成,谢和平,孙华飞.钢纤维混凝土疲劳断裂性能与工程应用[M].北京:科学出版社,2003 [1118]田芳.预应力钢纤维混凝土板的弯曲疲劳及正截面承载力计算[D].昆明:昆明理工大学,2005
    [119]中华人民共和国行业标准.柔性路面设计参数测定方法标准[s].(CJJ/T59-94).1995北京.
    [120] Overview of the South Mechanistic Pavement Design Analysis Method H L Theyse,M de Beer,F C rust Paper number 961294 presented at the 75th annual transportation research board meeting ,January 7-11,1996,washingtion,D.C.
    [121] Mohsen A.Issa, P.E., Member, A.B. Shafiq. Fatigue characteristics of aligned fiber reinforced mortar. Journal of Engineering Mechanics, 1999,125(2) :156一164
    [122] Holmen JO. Fatigue of concrete by constant and variable amplitude loading. In:Fatigue Strength of Concrete Structures, 1982, SP-75 ACI, 71110
    [123]Kachanov L M.Introduction to Continuum Damage Mechanics[M].Brookline, MA, USA: Martinus Nijhoff Publishers,1986
    [124]Dr.Christian Busch. Development and Validation of a Mechanistic Recursive-Incremental Deterioration Model for Cement Stabilized Base Courses.TRB 2006 Annual Meeting CD-ROM
    [125]A. C. collop, D. cebon. a theoretical analysis of fatigue cracking in flexible pavements[J]. Proceedings of the institution of mechanical engineering, part C, vol. 209, no. C5, 1995
    [126] J?rgen Christensen. Mechanistic Design of Semi-Rigid Pavements[R].Denmark: Danish Road Institute, 2004
    [127]H. Sommer, G. Hartl, E. Tschegg:überarbeitung der RVS 8.05.13 Zementstabilisierte Tragschichten, Bundesministerium für Verkehr, Innovation und Technologie, Heft 520, Wien 2002
    [128]N. F. Coetzee, C. L. Monismith. Analytical Study of Minimization of Reflection Cracking In Asphalt Concrete Overlays by Use of a Rubber-asphalt Interlayer. TRR 700, 1981
    [129]J. P. Marchand, H. Goacolou. Cracking in Wearing Course. Proceedings of the 5th ISAP, 1982.
    [130]P. W. Jayqwickrama, R. E. Smith, R. L. Lytton, M. R. Tirado. Development of Asphalt Concrete Overlay Design Program for Reflective Cracking. Proceedings of RILEM Conf. On Reflective Cracking in Pavements, 1989.
    [131]K. Majidzadeh, G. Sacharieh. The Study of Pavement Overlay Design. Final Report, Ohio State University, 1977.
    [132]P. Joseph. Low Temperature Reflection Cracking though Asphalt Overlays [D].University of Waterloo, Canada, 1987.
    [133]J. A. Chen, J. A. D. Vito, G. A. Morris. Finite Element Analysis of Arizona' s Three Layer Overlay System of Rigid Pavement to Prevent Reflective Cracking. Proceeding RAPT, Vol 54, 1982.
    [134]A. A. A. Molenear. Effects of Mix Modifications, Membrane Interlayer and Reinforcement on Prevention of Reflective Cracking of Asphalt Overlays. Proceedings of RILRM, 1989
    [135]A. Shalaby, etc. Low Temperature Stresses and Fracture Analysis of Asphalt Overlays. TRR 1539, 1996
    [136]Lyt.ton. R. L.&Tseng. K. H. Laboratory Evaluation of Overlays Reinforced with Fabrics. Texas Transportation Institute,1983
    [137]S. B. Seeds, B. F. McCulloughm, F. Carmichael. Asphalt Concrete Overlay Design Procedure Research Report 1007, Portland Cement Pavement Transportation, Washington D. C. 1985.
    [138] H L Theyse, M de Beer, F C Rust. Overview of the South African Mechanistic Pavement Design Analysis Method. NO.961294, 75th TRB Meeting, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700