用户名: 密码: 验证码:
金属带式无级变速器电液控制系统关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属带式无级变速器(CVT)是汽车的理想传动装置,它具有结构紧凑、性能优良、易于自动控制等优点,发展无级变速器成为我国自动变速器工业的共识。电液控制系统是无级变速器最重要的部分,包括TCU、液压控制装置以及执行机构3部分。其关键技术为:1、液压控制系统的设计与试验方法;2、比例电磁阀试验与开发技术;3、速比控制技术;4、产品一致性及可靠性的技术。本文围绕上述关键技术进行了深入的研究,主要成果和创新点为:
     1)根据液压控制系统的压力等级,将整个系统分为:变速与夹紧力控制、离合变矩控制、润滑冷却3个子系统。把一个复杂的系统逐一简化,在功能等效的基础上完成了液压系统的集成,并制作液压控制模块的样品。通过台架试验的结果表明:液压控制模块的稳态压力、动态压力和瞬态流量等主要性能指标,都能达到汽车不同行驶工况所需的目标值;整车道路试验表明:所设计的液压控制模块完全满足汽车任意行驶工况下对夹紧力与速比控制、起步离合器、液力变矩器控制的性能要求。根据润滑冷却流量分配关系,在设计时充分考虑了润滑阀流量—压力特性对流量分配产生的影响,利用优化算法对润滑冷却系统进行了优化设计。试验结果表明:在任意工况下,优化后润滑冷却系统可以满足整机和重要部件(如金属带)的润滑冷却要求。
     2)系统研究了CVT专用电液比例阀的设计方法,从液压阀的工作原理入手,建立了阀的理论模型,该模型的仿真结果与液压阀的试验结果的完好一致性验证了该理论模型的正确性。基于所建立的理论模型,利用遗传算法对专用阀的敏感结构参数进行了优化。优化后的电液比例阀的试验结果表明:各项动态性能指标明显优于原型阀,更能满足无级变速器的使用要求。
     3)根据CVT夹紧力控制阀性能测试的数据,采用粗糙集和最小二乘支持向量机相结合的方法,完成了产品质量分类器的设计;该方法利用粗糙集理论约简原始条件属性集,去除大量冗余信息,对最小二乘支持向量机分类器进行了有效的简化,降低了分类器的复杂程度,减少了训练时间和测试时间。试验结果表明,该分类器的精度高,对保证产品性能一致性具有良好的应用价值。
     4)针对CVT速比控制中的波动问题,将广义预测控制理论应用于CVT速比控制,根据实际应用情况,还引入人工智能技术,对常规广义预测控制器进行了改造,开发了专用的CVT速比智能预测控制器。该控制器利用支持向量机建立非线性模型作为预测模型,通过混沌寻优算法完成在线最佳控制量的计算。台架试验结果表明,所设计的智能速比预测控制器具有良好的实时性,能有效抑制速比跟踪中的波动问题,具有更好的稳态控制品质;在阶跃响应过程中,可有效降低超调量和过渡时间,具有更好的动态品质。
     5)不增加硬件成本和大计算量,对CVT控制系统夹紧力的在线故障诊断进行了探讨,提出了基于模型的故障诊断方法。基本策略:把系统全局的和局部的预测模型的输出与实际输出比较,根据残差就得出相应的诊断结果。通过人为制造的故障进行测试:结果表明所建立的故障自诊断系统具有较高的精度和反应速度,对CVT的备用安全是非常有效的。
The metal pushing V-belt type continuously variable transmission (CVT) has the advantages of simple and compact structure, excellent performance and easy operation, which is an ideal transmission form for economical automobiles. Developing continuously variable transmission becomes a common standpoint in automatic transmission industry domestically. The electro-hydraulic control system is an important part for the whole continuously variable transmission, which is composed of TCU, hydraulic control system and mechanism. The key technologies of the electro-hydraulic control system include the following sections: 1, the design and test method for the hydraulic control system; 2, the test and development technology for proportional electromagnetic valve; 3, the design technology for speed ratio controller; 4, the technology of improving quality stability and coherence. This paper mainly focuses on the above-mentioned key technologies research, and acquires a few of achievement and innovation as follows.
     1) The whole hydraulic control system is divided into three sub-systems in terms of their unattached pressure levels, which are speed shifting mechanism control subsystem, clutch and torque converter control subsystem, and lubrication and cooling flux distribution subsystem. A complicated system is de-escalated, which is integrated based on the principle of function matching, and patterns of the hydraulic control module are manufactured. It is shown from the table-board test results that the primary performance indices such as steady pressure, dynamic pressure and transient flux of the hydraulic control module are adequate for the requirements of vehicle normally running. It is shown from the vehicle road test results that the hydraulic control module is adequate for the control requirements of clamping force, clutch and speed ratio. The influence of flux distribution result from the lubrication valve flux-pressure down characteristic is considered when designing the lubrication and cooling flux distribution subsystem. The lubrication and cooling flux distribution subsystem is optimized by means of reasonable optimal algorithm and it is shown from the test results that the optimized lubrication and cooling flux distribution subsystem could satisfy lubrication and cooling requirement of the whole CVT and local components under random working conditions.
     2) The design method for CVT appropriative proportional valves is systemically studied. The structure and basic working principle of the valve are analyzed firstly, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, prototype workpieces of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and several sensitive structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valves are compared with those of the prototype workpieces, and the results prove that the dynamic performance indexes of the optimized valves are much better than those of the prototype workpieces, which are more suitable for the automatic transmission.
     3) A new hybrid scheme of rough sets and support vector machine for quality classification is proposed based on the performance testing characteristics of the CVT clamping force control valve. The proposed quality classification method reduces the redundant feature parameters based on the rough sets theory. And then, based on the reduction result, the least squares support vector machine (LS-SVM) classifier is used to set up the quality classifier. The experiments show that the accordance rate of the proposed method is very accurate, which has great project application value in engineering.
     4) Aiming at the problem of the CVT speed ratio tracking fluctuation, the concept of generalized predictive control is introduced to the CVT speed ratio control. The artificial intelligent technology is introduced to design an intelligent predictive controller according to the requirements of engineering practices. The proposed controller utilizes the support vector machine (SVM) predictive model to forecast the future control effect; the introduction of this SVM predictive model improves the precision of forecast for its nonlinear behaviors. The optimal control is determined by using a simple chaos optimal algorithm (COA); the introduction of the chaos optimal algorithm improves the optimal control searching efficiency effectively and solves the problem of real-time in control process. It is shown from the bench test that the proposed control algorithm accomplishes the better steady and dynamic performances than those of general PID: the fluctuation reduces in static tracking; the overshoot and the transition time decrease obviously in step-response.
     5) At last, fault diagnosis of the clamping force control system is explored with no additional hardware cost and no additional computation. The diagnosis strategy based on model is proposed, which realized fault diagnosis in terms of the errors of real-time measured signal and the outputs of the global and local diagnosis model. The experiment results indicated that the proposed self-diagnosis system of the clamping control system had higher precision and response speed, which is very important for CVT security protection initiatively.
引文
[1]杨亚联.金属带无级变速传动的关键问题研究[D].重庆:重庆大学, 2002: 2-57.
    [2] Turner A J, Ramsay K. Review and development of electro-mechanical actuators for improved transmission control and efficiency[J]. Journal of Passenger Car, 2004, 113(6): 908-919.
    [3]黄康,曾忆山.汽车自动变速技术的发展现状[J].合肥工业大学学报, 2005, 28(12): 1503-1507.
    [4]李开君.国际市场趋势显示自动变速器市场潜力巨大[N].中国汽车报, 2007-08-06.
    [5]王冀.自动变速器何时不再依赖进口(“聚焦汽车零部件产业系列报道之四”)[N].人民日报, 2007-12-03.
    [6]朱孔源.跨国企业看重中国自动变速器市场广阔前景[N].中国汽车报, 2006-9-26.
    [7]范文清.外企完成自动变速器在华布局[EB/OL]. www.cnautonews.com, 2008-03-03.
    [8]王秋凤.中国汽车自主遭遇新障碍—自动变速器成为瓶颈[N].经济观察报, 2007-12-15.
    [9]信晓霁.自变箱遭跨国企业技术封锁自动挡车难产[N].北京青年报, 2008-01-30.
    [10] Gerbert B G. Pressure distribution and belt deformation in V-belt drive[J]. ASME Journal of Engineering for Industry, 1975, 97(3): 976–982.
    [11] Gerbert B G. Some notes on V-belt drives[J]. ASME Journal of Mechanical Design, 1981, 103(1): 8–18.
    [12] Gerbert B G. // Skew V-belt pulleys[C]. Yokohama: Proceedings of International Conference on Continuously Variable Power Transmission, 1996:1-8.
    [13] Nilabh S, Imtiaz H. Transient dynamics of the metal V-belt CVT: Effects of pulley flexibility and friction characteristic[J]. Journal of Computational and Nonlinear Dynamics, 2007, 2(1): 86-97.
    [14] Carbone G, Mangialardi L, Mantriota G. Theoretical model of metal V-belt drives during ratio changing speed[J]. ASME Journal of Mechanical Design, 2000, 123(1): 111–117.
    [15] Carbone G, Mangialardi L, Mantriota G. EHL visco-plastic friction model in CVT shifting behavior[J]. International Journal of Vehicle Design, 2003, 32(3/4): 333–357.
    [16] Carbone G, Mangialardi L, Mantriota G. The influence of pulley deformations on the shifting mechanism of metal belt CVT[J]. ASME Journal of Mechanical Design, 2005, 127(1): 103–113.
    [17] Sorge F. // Influence of pulley bending on metal V-belt mechanics[C]. Yokohama: Proceedings of The International Conference on Continuously Variable Power Transmission, 1996: 9–15.
    [18] Guebeli M, Micklem J D, Burrows C R. Maximum transmission efficiency of a steel belt continuously variable transmission[J]. Transaction of the ASME, 1993, 115(4): 1044-1048.
    [19] Micklem J D, Longmore D K, Burrows C R. Modelling of the steel pushing V-belt continuously variable transmissions[J]. Proceedings of the Institution of Mechanical Engineers, 1994, 208(9):13-27.
    [20] Fujii T, Kurokawa T, and Kanehara S. A study on a metal pushing V-belt type CVT (Part 2: compression force between metal blocks and ring tension)[J]. SAE Transactions, 1993, (6): 1000–1009.
    [21] Kuwabara S, Fujii T, Kanehara S. Power transmitting mechanism of CVT using a metal V-belt and load distribution in the steel ring[J]. SAE Transactions, 1998, (8) : 49-59.
    [22] Fushimi Y, Kanehara S, and Fujii T. A numerical approach to analyze the power transmitting mechanisms of a metal pushing V-belt type CVT[J]. SAE Transactions, 1996, (7): 161–172.
    [23] Kitagawa T, Fujii T, Kanehara S. A study of a metal pushing V-belt type CVT (Part 4: Forces act on metal blocks when the speed ratio is changing)[J]. SAE Transactions, 1995, (6): 1344–1353.
    [24] Fujii T. A study on a metal pushing V-belt type CVT (part 1: relation between transmitted torque and pulley thrust)[J]. SAE Transactions, 1993, (6): 1000–1009.
    [25] Van der L M, Luh J. // Model based variator control applied to a belt type CVT[C]. Eindhoven: International Congress on Continuously Variable Power Transmission, 1999: 105-110.
    [26] Massahiko K, Koji H, Hiroaki Y, et al. A study of an electronically controlled CVT with electromagnetic clutch for starting the vehicle. SAE Transactions,1996, (10): 1463-1473.
    [27] Masahiro Y, Tatsuo W. A servo system of pulley ratio of the steel belt CVT for medium-size front-wheel drive vehicles[J]. JATCO Transtechnology Review, 2001, (1): 39-43.
    [28] Ishikawa T, Murakami Y, Yauchibara R, et al. The effect of belt drive CVT fluid on the friction coefficient between metal components[J]. SAE Transactions,1997, (9): 11-18.
    [29] Tohru I, Udagawa A, Kataoka R. Simulation approach to the effect of the ratio changing speed of a metal V-belt CVT on the vehicle response[J]. Vehicle System Dynamics, 1995, 24(4&5): 377-388.
    [30] Abo K. Development of a metal belt-drive CVT incorporating a torque converter for use with 2-liter class engines[J]. SAE Transactions, 1998, (8): 1241-1248.
    [31] Abo K. Development of a new metal belt CVT for high torque engines[J]. SAE Transactions, 2000, (1): 0829..
    [32] Abo K. Development of new-generation belt CVTs with high torque capacity for front-drive cars[J], SAE Transactions, 2003, (3): 0593.
    [33] Veenhuizen P A, Bonsen B, Klaassen T W G L, et al. // Push belt CVT efficiency improvement potential of servo-electromechanical actuation and slip control[C]. Davis: 2004 International Continuously Variable and Hybrid Transmission Congress, 2004: 04CVT-49.
    [34] Andrew A F. // Engine optimization concepts for CVT-hybrid systems to obtain the best performance and fuel efficiency[C]. Davis: 2004 International Continuously Variable and Hybrid Transmission Congress, 2004: 04CVT-56.
    [35] Chunho K, Seongchul L, Eok N. Fuel economy optimization for parallel hybrid vehicles with CVT[J]. SAE Transactions, 1999, (1): 337-343.
    [36] Ohashi, Sato A, Kajikawa Y, et al. Development of high-efficiency CVT for luxury compact vehicle[J]. SAE Transactions, 2005, (1):1187-1192.
    [37] Nishigaya M, et al. Development of Toyota's“New Super CVT”[J]. SAE Transactions, 2001, (1): 0872.
    [38] Van der S, Zhang H, Francis, et al. Potential analysis on reducing fuel consumption for pressure steel-belt CVT[J], Automobile Technology, 2006, (11):1-4.
    [39] Oba H, Yamanaka A, Katsuta H, et al. Development of a hybrid powertrain system using CVT in a minivan[J]. JSAE Journal, 2002, 56(9): 76-83.
    [40]Hendriks E. Qualitative and quantitative influence of a fully electronically controlled CVT on fuel economy and vehicle performance[J]. SAE Transactions, 1993, (6): 1010-1022.
    [41] Sattler H. // Efficiency of metal chain and V-belt CVT(C). Eindhoven: International Congress on Continuously Variable Power Transmission, 1999: 99–104.
    [42] Tersigni S H, Iyer R N, McCombs T A. et al. Comparing a CVT to a four-speed automatic transmission on stress to the ATF[J]. SAE Transactions, 2002, (1): 1694.
    [43] Vroemen B G, Veldpaus E E. // Hydraulic circuit design for CVT control[C]. Eindhoven: International Congress on Continuously Variable Power Transmission, 1999: 111-116.
    [44] Vaughan N D, Gubell M, Burrows C R. The effect of hydraulic circuit design and control on efficiency of continuously variable transmission[J]. SAE Transactions, 1996, (1): 1652-1659.
    [45] Kazutaka Adachi, Tatsuo Wakahara, and Shigcki Shimanaka et al, Robust Control System for Continuously Variable Belt Transmission[J]. JSAE Review, 1999, 20(1): 49-54.
    [46] Van der S and Francis. A new pump for CVT applications[J]. SAE Transactions, 2003, (1): 3207.
    [47] Masahiro Y, Tatsuo W, Hirofumi O, et al. // Hydraulic system, shift and lockup clutch controls developed for a large torque capacity CVT[C]. Davis: 2004 International Continuously Variable and Hybrid Transmission Congress, 2004: 04CVT-07.
    [48] Turner A J, Ramsay K. Review and development of electromechanical actuators for improved transmission control and efficiency[J]. Journal of Passenger car: Mechanical Systems, 2004, 113(6): 908-919.
    [49]宋锦春,姚利松,程乃士等.汽车金属带式无级变速器液压控制原理及数学模型[J].东北大学学报, 1999, 20(3): 279-282.
    [50]程乃士,张德臻,刘温.金属带式车用无级变速器[J].中国机械工程, 2000, 11(12): 1421-1423.
    [51]马士泽,于春光,雷雨成.键合图在无级变速器液压系统中的应用研究[J].筑路机械与施工机械化, 2001, 18(6): 7-9.
    [52]方泳龙,张伯英,董秀国等.金属带式无级变速器液压控制系统[J].吉林工业大学学报自然科学版, 2000, 30(3): 14-19.
    [53]张宝生,张伯英,周云山等.金属带式无级变速器液压控制系统的仿真[J].农业机械学报, 2002, 33(2): 20-23.
    [54]王红岩,秦大同,张伯英等.无级变速汽车性能要求的液压控制实现[J].传动技术, 2000, (4): 21-25.
    [55]杨阳,秦大同,杨亚联等.车辆CVT液压系统功率匹配控制与仿真[J].中国机械工程, 2006, 17(4): 426-431.
    [56]吴光登,杨阳,秦大同等. CVT液压系统功率的匹配分析与仿真[J].汽车工程, 2004, 26(6): 705-709.
    [57]孙冬野,汪新国,胡建军等.金属带式无级变速传动液压系统的设计方法[J].重庆大学学报, 2005, 28(12): 1-5.
    [58]张伯英,周云山,张友坤等.金属带式无级变速器电-液控制系统的研究[J].汽车工程, 2001, 23(5): 315-318.
    [59]付铁军,周云山,张宝生.金属带式无级变速器电液控制系统的试验研究[J].汽车工程, 2003, 34(4): 71-75.
    [60]薛殿伦,张友坤,周云山等. EQ6480客车CVT电控系统试验[J].汽车工程, 2004, 26(4): 446-449.
    [61]付铁军.金属带式无级变速器智能控制技术研究[D].长春:吉林大学汽车工程学院, 2004: 85-92.
    [62]薛殿伦.基于最优理论的离合器控制策略及CVT电液系统的试验研究[D].长春:吉林大学汽车工程学院, 2003: 3-9.
    [63]宋锦春.金属带式无级变速器电液比例系统建模与控制技术[D].沈阳:东北大学机械工程与自动化学院, 2004: 21-85.
    [64]卢延辉,张友坤,郑联珠等.金属带式无级变速器数字调压阀的设计与试验研究[J].汽车技术, 2006, (3): 34-36.
    [65]明辉.汽车无级变速器数字式高速开关调压阀研究[D].长春:吉林大学汽车工程学院, 2007: 12-18.
    [66]殷孝龙.自动变速器数字比例调压阀设计与研究[D].长春:吉林大学汽车工程学院, 2007: 20-25.
    [67]周云山,钟勇.汽车电子控制技术[M].北京:机械工业出版社, 2004: 249-284.
    [68] Kobayashi D, Mabuchi Y, Katoh Y. A study on the torque capacity of a metal pushing V-belt for CVTs[J]. SAE Transactions, 1998, (8): 31-39.
    [69] Minoru K, Masayuki K, Masakazu T. Development of a high torque capacity belt-drive CVT with a torque converter. JSAE Review, 1999, 20(2): 281-287.
    [70]余志生.汽车理论(第三版).北京:机械工业出版社, 2000: 30-36.
    [71]张宝生,付铁军,周云山等.金属带式无级变速传动系统与发动机的匹配及其控制策略.吉林大学学报, 2004, 34(1): 65-70.
    [72] Brace C J, Deacon M, Vaughan N D, et al. An operating point optimizer for the design and calibration of an integrated diesel continuously variable transmission powertrain[J]. Proceedings of the IMechE Part D - Journal of Automobile Engineering, 1999, 213(3): 215-226.
    [73] Raymond F W, Katherine M R. CVT lubrication: The effect of lubricants on the frictional characteristics of the belt-pulley interface[J]. Tribo Test, 2006, 6(2): 151-170.
    [74] Akehurst S, Vaughan N D, Parker D A, et al. Modelling of loss mechanisms in a pushing metal V-belt continuously variable transmission (Part 1: torque losses due to band friction) [J]. Proceedings of the Institution of Mechanical Engineers Part D - Journal of Automobile Engineering, 2004, 218(11): 1269-1281.
    [75] Akehurst S, Vaughan N D, Parker D A, et al. Modelling of loss mechanisms in a pushing metal V-belt continuously variable transmission (Part 2: pulley deflection losses and total torque loss validation torque losses due to band friction) [J]. Proceedings of the Institution of Mechanical Engineers Part D - Journal of Automobile Engineering, 2004, 218(11): 1283-1293.
    [76] Akehurst S, Vaughan N D, Parker D A, et al. Modelling of loss mechanisms in a pushing metal V-belt continuously variable transmission (Part 3: belt slip losses) [J]. Proceedings of the Institution of Mechanical Engineers Part D - Journal of Automobile Engineering, 2004, 218(11): 1295-1306.
    [77] Dasgupta K, Watton J. Dynamic analysis of proportional solenoid controlled piloted relief valve by bondgraph[J]. Simulation Modeling Practice and Theory, 2005, 13(1): 21-38.
    [78] Dasgupta K, Karmakar R. Dynamic analysis of a pilot operated pressure relief valve[J]. Simulation Modelling Practice Theory, 2002, 10(3): 35–49.
    [79] Maiti R, Saha R, Watton J. The static and dynamic characteristics of a pressure relief valve with a proportional solenoid controlled pilot stage[J]. Proceedings of the IMechE Part I - Journal of System Control Engineering, 2002, 216(2): 143–156.
    [80] Byunghoon B, Nakhoon K, Hongseok K, et al. // Design and analysis of an electro- magnetically driven valve for a Glaucoma implant[C]. Seoul: Proceedings of the 2001 IEEE International Conference on Robotics & Automation, 2001: 21-26.
    [81] Pawlak Z. Rough set theory and its applications to data analysis[J]. Cybernetics and Systems, 1998, 29(7): 661-688.
    [82]肖建华.智能模式识别方法[M].广州:华南理工大学出版社,2006: 51-71.
    [83] Vapnik V N. The Nature of Statistical Learning Theory (Second Edition) [M]. New York: Spring-Verlag, 1999: 34-62.
    [84]张浩然,韩正之,李昌刚.基于支持向量机的未知非线性系统辨识与控制[J].上海交通大学学报, 2003, 37(6): 927-930.
    [85] Suykens J A K. Least squares support vector machines for classification and nonlinear modeling[J]. Neural Network World, 2000, 10(1-2): 29-48.
    [86]汪晓东,张长江,张浩然等.传感器动态建模的最小二乘支持向量机方法[J].仪器仪表学报, 2006, 27(7): 731-733.
    [87]杨辉,张翼飞.基于粗糙集和支持向量机的武器系统效能评定[J].战术导弹技术, 2006, (3): 20-24.
    [88]周瑞,杨建国.基于粗糙集与支持向量机的发动机故障诊断研究[J].内燃机学报, 2006, 24(4): 379-383.
    [89]徐袭,姚琼荟,石敏.基于粗糙集与支持向量机的故障智能分类方法[J].计算技术与自动化, 2006, 25(1): 32-34.
    [90]舒服华.基于粗糙集与支持向量机的推土机故障诊断[J].筑路机械与施工机械化, 2007, 24(1): 56-59.
    [91]许益民.电液比例控制系统的分析与设计[M].北京:机械工业出版社, 2005: 24-119.
    [92]关景泰.机电液控制技术[M].上海:同济大学出版社, 2003: 199-216.
    [93]徐袭,许国荣,张虎.基于FCM与粗糙集的连续数据知识挖掘方法[J].海军工程大学学报, 2006, 18(1): 103-107.
    [94] Lin C J. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
    [95]陈果.基于遗传算法的支持向量机时间序列预测模型优化[J].仪器仪表学报, 2006, 27(9): 1080-1084.
    [96] Tohru I, Hirohisa T. Speed ratio control characteristics of a metal V-belt continuously variable transmission (1st Report - Effect of belt clamp force on the dynamics of the CVT without load) [J]. Transactions of the Japan Society of Mechanical Engineers, 2000, 66(644):1310-1316.
    [97]舒红,秦大同,胡建军.金属带式无级变速传动系统速比匹配控制策略[J].重庆大学学报自然科学版, 2001, 24(6): 12-17.
    [98] Kasai Y, Morimoto Y. // Electronically controlled continuously variable transmission (ECVT-Ⅱ)[C]. Dearborn: International Congress on Transportation Electronics Proceedings, 1983: 33-42.
    [99] Wonoh K, George V. // Fuzzy logic ratio control for a CVT hydraulic modulev[C]. Patras: Proceedings of 15th IEEE International Symposium on Intelligent Control, 2000: 151-156.
    [100] Setlur P, Wagner J R, Dawson D M, et al, Nonlinear control of a continuously variable transmission (CVT)[J]. IEEE Transactions on Control Systems Technology, 2003, 11(1): 101- 108.
    [101]薛殿伦,张友坤,郑联珠等.金属带式无级变速器的速比控制[J].农业机械学报, 2003, 34(3): 8-11.
    [102]诸静等.智能预测控制及应用[M].杭州:浙江大学出版社, 2000: 50-64.
    [103] Clarke D W, Mohtadi C, Tuffs P S. Generalized Predictive Control[J]. Automatic, 1987, 23(2): 137-160.
    [104]黄成静,刘红军,王东风. DMC-PID串级主汽温控制系统[J].华北电力大学学报, 2003, 30(2): 53-56.
    [105]曹健,王俊凯,吴盛林,李尚义.动态矩阵(DMC)-PID串级预测控制策略在新型叶片连续回转马达伺服系统中的应用[J].宇航学报, 2006, 27(4): 625-629.
    [106]林峰,刘影,陈漫.电液比例阀在车辆换档离合器缓冲控制中的应用[J].兵工学报, 2006, 27(5): 784-787.
    [107] Shaikh N I, Prabhu V. Model predictive controller for cryogenic tunnel freezers[J]. Journal of Food Engineering, 2007, 80(2): 711-718.
    [108] Na M G, Upadbyaya B R. Application of model predictive control strategy based on fuzzy identification to an SP-100 space reactor[J]. Annals of Nuclear Energy, 2006, 33(17): 1467-1478.
    [109] Eliasi H, Davilu H, Menhaj M B. Adaptive fuzzy model based predictive control of nuclear steam generators[J]. Nuclear Engineering and Design, 2007, 237 (6): 668-676.
    [110] Anwar S. Generalized predictive control of yaw dynamic of a hybrid brake-by-wire equipped vehicle[J]. Mechatronics, 2005, 15(9): 1089-1108.
    [111]张强,李少远.基于遗传算法的约束广义预测控制[J].上海交通大学学报, 2004, 38(9): 1562-1566.
    [112] Martinez M, Senent J S, Blasco X. Generalized predictive control using genetic algorithms(GAGPC) [J]. Engineering Applications of Artificial Intelligence, 1998, 11(3): 355-367.
    [113] Na M G, Hwang I J. Design of a PWR power controller using model predictive control optimized by a genetic algorithm[J]. Nucl Eng Tech, 2006, 38(1): 81–92.
    [114] Jingang L, Yunshan Z; Yuanchun C, et al. The application of generalized predictive control in CVT speed ratio control[C]. // IEEE International Automation and Logistics Conference. Jinan: IEEE Explore, 2007: 649– 654.
    [115]宋莹,陈增强,袁著祉.基于混沌优化的有约束广义预测控制器[J].工业仪表与自动化装置, 2006, (2): 3-5.
    [116]刑冀鹏,邹雪城,刘政林等.基于混沌优化算法的软硬件划分[J].华中科技大学学报自然科学版, 2006, 34(11): 61-63.
    [117] Hyuusoo K, Hanlim S, Jongjun K. // Metal belt CVT and engine optimal operation by PWM electro-hydraulic control[C]. Yokohama: International Conference on Continuously Variable Transmissions, 1996: 157-160.
    [118] Murrenhoff H. Innovative designs and control circuits for proportional valves[J]. SAE Transactions, 2002, (1): 1458.
    [119] Bilodeau G, Papadopoulos E. // Development of a hydraulic manipulator servoactuator model: simulation and experimental validation[C]. New Mexico: IEEE Inter. Conf. on Robotics and Automation, 1997: 1547-1552.
    [120]尹妍萍,李天时,王成都.比例减压阀数学模型辨识[J].机床与液压, 2001, (3): 40-41.
    [121]杨叔子,吴雅.时间序列分析的工程应用[M].武汉:华中理工大学出版社, 1991: 67-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700