用户名: 密码: 验证码:
发动机整车匹配中的振动噪声识别与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车NVH(Noise,Vibration and Harshness,称为振动、噪声和声振粗糙度)性能不仅是汽车舒适性指标,更是整车质量品质的综合体现。然而,国内正面临对NVH技术的强烈需求与储备不足之间的矛盾,因此,亟待进行系统深入地研究。在此背景下,本文针对发动机整车匹配中的振动噪声识别与控制技术进行了系统研究,主要研究内容及相关结论和成果如下:
     (1)系统讨论了基于边界元法的近场声全息理论及各种重构误差的影响因素,建立了基于边界元法的近场声全息技术的具体实施流程,通过扬声器实验证实了这一技术的有效性和优越性。为了抑制近场声全息重构误差的影响,探讨了截断奇异值正则化方法、Tikhonov正则化方法、L曲线准则和广义交叉检验法四种正则化方法的基本原理和特性,在此基础上形成了四种组合正则化方法,通过数值仿真计算对其精度、分辨率和抗测量误差的能力进行了检验,为在近场声全息研究中正确选择正则化方法提供了依据。
     (2)以某型柴油机为研究对象,应用基于边界元法的近场声全息技术成功地重构了柴油机表面法向振动速度分布,识别出了表面主要噪声源,并应用面板贡献量分析对其进行了辐射声功率排序,为进一步预估各种噪声控制措施效果、声场可视化以及结构强度反演研究奠定了坚实基础。
     (3)针对六自由度悬置系统动力学模型进行了系统理论研究,自主开发了悬置系统设计程序MOUNT和内燃机动力学计算程序VINO,能够对任意点支承悬置系统进行设计、评价,并对悬置系统进行激励响应和位移姿态控制计算,为悬置系统快速有效设计提供了有力工具。对比研究了不同悬置系统模态参数对隔振性能的影响,指出刚体模态频率是控制悬置系统隔振性能的关键,并以此为基础提出优化设计策略,应用多目标遗传算法求解了具有非线性、多峰、不连续特性的动力总成悬置系统多目标优化设计问题,获得了全局最优Pareto解集,从而能为动力总成悬置系统工程应用提供多种最优解决方案。
     (4)针对某轻型客车搭载柴油动力总成所出现的低频振动噪声问题,对比测试分析了汽油和柴油动力轻型客车的NVH性能,指出动力总成悬置系统是解决低频振动噪声问题的关键,运用所提出的动力总成悬置系统多目标优化设计策略及方法成功地开发出了改进型橡胶悬置系统,并通过实车搭载试验证实其具有良好的工程应用性能。
     (5)针对柴油轿车及轿车柴油机的噪声控制问题,通过近场声压扫描实验和声阵列声源识别实验识别出了发动机及车辆噪声主要辐射部位。在此基础上,提出了针对发动机及车辆的工程上可行的系列降噪措施,并通过实验手段检验了各种措施的效果,为柴油轿车的NVH工程控制提供了参考和借鉴。
The vehicle NVH (Noise, Vibration and Harshness) performance is not only the index of the comfortability, but also the syntheses of the whole vehicle quality. However, there is a conflict between the need and the supply of NVH techniques in today China. Under the background, the dissertation has investigated systematically the NVH problems about vehicle and engine. The main contents, results and conclusions are as follows:
     (1) The theory of the BEM (Boundary Element Method)-based NAH (Near-field Acoustic Holography) method has been described in the paper. The effect aspects of reconstruction errors were analyzed in detail. The flow chart of the BEM-based NAH technique was proposed, and a speaker-louder was taken as an example to demonstrate the validity and superiority of the method. In order to reduce the reconstruction errors caused by the inverse process, the truncated singular value decomposition and the Tikhonov regularization method, which are two regularization methods, and the L-curve criterion and the generalized cross-validation method, which are two methods for choosing the regularization parameter, were analyzed and applied to create four combined regularization methods. The numerical simulation examples validate the four regularization methods.
     (2) The BEM-based NAH method has been investigated in the noise source identification of a passenger car diesel engine. The surface normal vibrating velocities of the engine were reconstructed successfully. And the main noise sources were identified and ranked by the panel contribution analysis of sound power level. The recalculated surface normal velocities provide an approach for the assessment of noise reduction measures and the acoustic field visual research and the inverse process of engine structure strength.
     (3) A six-DOF (Degree Of Freedom) rigid body dynamic model of engine mounting system has been built up. Then the mounting system design program MOUNT and the engine dynamic procedure VINO have been developed independently to evaluate the design cases of any points-supported engine mounting system and conduct the design of motion control and the dynamic response of the mounting system due to any kinds of engine disturbances. These procedures provide a useful tool for the design of engine mounting systems. The comparison of the effects of different modal parameters on vibration isolation performance of a mounting system has been made. The results demonstrate that the rigid modal frequency is the key parameter in the vibration isolation design of an engine mount system. Based on the above conclusions, the design strategy was proposed and the Multi-Objective Genetic Algorithm was implemented to solve the highly nonlinear, uncontinuous and multi-convex design optimization problem of an engine mounting system. The global Pareto solution sets were obtained. And that will provide different optimal design cases for the engineering application of an engine mount system.
     (4) In order to solve the lower-frequency NVH problems about a light-duty diesel passenger carriage, the vehicle interior noise and vibration were measured and analyzed under different operating conditions. The results show that the diesel engine mounting system is the key issue of the NVH control. Then the proposed optimal method was applied to the design process of the diesel engine mount system. Finally, the NVH performance of the light-duty passenger carriage with the optimized mounting system was promoted greatly.
     (5) To meet the NVH requirements of diesel passenger cars and passenger-car diesel engines, the near-field sound pressure scanning method and the acoustic array were used to identify the main noise sources. Based on the results, a series of noise control measures were implemented to solve the vehicle NVH problems. The experimental results demonstrate that the proposed measures are effective for the noise control of diesel passenger cars.
引文
[1]吕静,陈达亮,舒歌群,汽车噪声法规标准及主要控制技术,天津汽车, 2007, (4): 22~26.
    [2]季晓刚,章应雄,唐新蓬,汽车动力总成悬置研究的发展,汽车技术, 2004, (1): 4~6.
    [3]梁天也,史文库,唐明祥,发动机悬置研究综述,噪声与振动控制, 2007, (1): 6~10.
    [4] H.C.Lord, Vibration dampening mounting, US, Patent 1,778,503, 1930.
    [5] N.B.Strachovsky, Mounting, US, Patent 2,380,899, 1945.
    [6] L.E.Harding, Mount support, US, Patent 2,387,066, 1945.
    [7] S.R. Johnson, J.W. Subhedar, Computer optimization of engine mounting systems, SAE, 1979,SAE paper # 790974.
    [8] H. Hata, H. Tanaka, Experimental method to derive optimum engine mount system for idle shake, SAE, 1987,SAE paper # 870961.
    [9] D.A. Swanson, H.T. Wu, H. Ashrafiuon, Optimization of aircraft engine suspension system, J. Aircraft, 1993, 30(6): 979~984.
    [10] N. Suresh, S. Shankar, V. Bokil, Development of idealistic hydromount characteristics to minimize engine induced vibrations using unconstrained minimization, SAE, 1994,SAE paper # 941741.
    [11] H.Ashrafiuon, Design optimization of aircraft engine-mount, J. Vib. Acoust., 1993, 115(44): 463~467.
    [12] Bretl, J., Optimization of engine mounting systems to minimize vehicle vibration, SAE paper, 1993,931322.
    [13] J.H. Kim, S.G. Jho, H.J. Yim, Influence of chassis flexibility on dynamic behavior of engine mount systems, SAE, 1994,SAE paper # 942269.
    [14] D.S. Sachdeva, R. Hadi, Effect of engine mounting strategy on vehicle NVH, SAE, 2003,SAE paper # 2003-01-1467.
    [15]徐石安,肖德炳,郑乐宁等,发动机悬置的设计及其优化,汽车工程, 1983, (3): 12~23.
    [16]严济宽,机械振动隔离技术,上海:上海科学技术文献出版社, 1985.
    [17]上官文斌,蒋学锋,发动机悬置系统的优化设计,汽车工程, 1993, 14(2): 103~110.
    [18]阎红玉,徐石安,发动机-悬置系统的能量法解耦及优化设计,汽车工程, 1993, 15(6): 321~328.
    [19]裘新,吕振华,林逸等,轿车动力总成-液压悬置-副车架系统参数的优化设计,汽车技术, 1998, (7): 1~6.
    [20]樊兴华,陈金玉,黄席樾,发动机悬置系统多目标优化设计,重庆大学学报, 2001, 24(2): 41~44.
    [21]周復,靳晓雄,基于车内噪声控制的发动机与副车架悬置优化设计,同济大学学报, 2002, 30(9): 1103~1107.
    [22]韩松涛,李国华,饶里等, 6108G柴油机表面薄壁件噪声源的识别,工程机械, 2001, 32(12): 10~11.
    [23]林建生,舒歌群,通过振动表面声强测量识别发动机噪声源,小型内燃机, 1992, 21(4): 30~34.
    [24] A.F.Seybert, Estimation of contributed noise level of diesel engine components from vibration measurements, SAE, 1975,SAE paper # 756160.
    [25]刘树功,内燃机表面噪声测定新方法,汽车技术, 1985, 2.
    [26]舒歌群,林建生,测振计算法在内燃机表面噪声测量中的应用,小型内燃机, 1993, 22(4): 12~15.
    [27]刘月辉,郝志勇,韩松涛等,车用发动机表面辐射噪声源识别的研究,汽车技术, 2002, 24(3): 15~18.
    [28]岳东鹏,郝志勇,刘月辉等,柴油机表面辐射噪声源识别的研究,汽车工程, 2004, 26(5): 613~618.
    [29]梁兴雨,舒歌群,韩睿等,内燃机部件声辐射效率研究(一)——原理及方案设计,天津大学学报, 2007, 40(2): 163~167.
    [30]梁兴雨,舒歌群,王养军等,内燃机部件声辐射效率研究(二)——影响因素及应用,天津大学学报, 2007, 40(5): 599~604.
    [31] F. Martinus, D.W. Herrin, and A.F. Seybert, Practical considerations in reconstructing the surface vibration using inverse numerical acoustics, SAE, 2003,SAE paper #2003-01-1456.
    [32] J.Y. Chung, J. Pope, D.A. Feldmaier, Application of acoustic intensity measurement to engine noise evaluation, SAE, 1979,SAE paper # 790502.
    [33] J.Y.Chung, Recent developments in the measurement of acoustic intensity using the cross-spectral method, SAE, 1981,SAE paper # 810396.
    [34] M.J.Crocker, The use of existing and advanced intensity techniques to identify noise sources on a diesel engine, SAE, 1981,SAE paper # 810694.
    [35] T. Abe, D. Anderton, Digital acoustic intensity techniques in gasoline engine noise, SAE 1982,SAE paper # 820363.
    [36] M.P. Waser, M.J. Crocker, Introduction to the two-microphone cross-spectral method of determining sound intensity Noise Control Eng. J., 1984, 22(3): 76~85.
    [37] G.W.Eiko, Measurement of the complex acoustic intensity and the acoustic field, Inter-noise, 1984, 84: 1060~1064.
    [38] F.E. Corcione, M.G. Mattia, R. Paciucci, Acoustic intensity measurements of noise emission from a light duty T.C.D.I diesel engine, SAE, 1989,SAE paper # 891130.
    [39]葛蕴珊,黎苏,梁杰等,复式声强在内燃机噪声源识别和声场分析中的应用研究,汽车工程, 1993, 15(3): 137~144.
    [40]邵威,刘万峰,张慎良,声强法在发动机噪声测试中的应用与研究,西安交通大学学报, 1997, 17(2): 91~94.
    [41]舒歌群,郝志勇,谭从民,内燃机噪声测量中的声强测试技术,内燃机学报, 1998, 16(1): 69~74.
    [42]梁杰,黎晓鹰,程鹏等, S493Q型柴油机表面噪声源识别的试验研究,农业机械学报, 2000, 31(5): 120~122.
    [43]罗玉涛,俞明,柳文斌等,用选择性声强技术分析车内噪声产生的原因,机床与液压, 2003, (2): 122~123.
    [44]郝志勇,韩军,车用发动机主要噪声源的声强测试方法研究,内燃机工程, 2004, 25(2): 15~17.
    [45]梁杰,王登峰,高印寒等,复声强分析系统在车内辐射噪声源识别中的应用,农业机械学报, 2005, 36(11): 5~7.
    [46]李树生,白书战,李国祥等,声强法在柴油机表面辐射噪声源识别中的应用,计量学报, 2006, 27(4): 368~370.
    [47]徐凌,谢裕智,李捷辉等,声强法在柴油机噪声源识别上的应用,拖拉机与农用运输车, 2006, 33(6): 79~80.
    [48]谢裕智,徐凌,李捷辉等,应用声强测试技术对发动机噪声源识别的研究,农机化研究, 2007, (1): 193~196.
    [49] F.J.Fahy, Measurement of acoustic intensity using the cross-spectral density of two microphone signals, J. Acoust. Soc.Am., 1977, 62(4): 1057~1059.
    [50] Marroquin, M., A comparison of seven different noise identification techniques, SAE, 2003,SAE paper # 2003-01-1690.
    [51] J.Y.Chung, Cross-spectral method of measuring acoustic intensity without error caused by instrument phase mismatch, J. Acoust. Soc. Am, 1978, 64(6): 1613~1616.
    [52]杨万周,楼斌,声强测量的误差分析,噪声与振动控制, 1987, (4).
    [53]周广林,陈剑,毕传兴等,基于几何平均声压的声强计算的误差分析,计量学报, 2003, 24(2): 129~132.
    [54]韩秀苓,偏相干法在识别轿车噪声源中的应用,北京理工大学学报, 1993, 13(3): 437~442.
    [55]沈山豪,韩秀苓,相干技术和噪声源识别的实验研究,电声技术, 1994, (12): 2~9.
    [56]杨德森,利用偏相干方法识别主要激励源,哈尔滨船舶工程学院, 1994, 15(3): 35~44.
    [57]陈光冶,蒋伟康,一种分析车内声传递特性的实验方法,汽车工程, 2000, 22(5): 313~315.
    [58]练宏俊,卢耀祖,陈卫等,基于偏相干分析法的装载机司机室噪声源识别,同济大学学报, 2001, 29(11): 1313~1316.
    [59]赵海澜,汪鸿振,偏相干分析识别噪声源的计算,噪声与振动控制, 2005, (5): 31~33.
    [60]梁兴雨,舒歌群,基于相干功率谱分析的复杂柴油机噪声源识别,内燃机学报, 2006, 24(4): 344~350.
    [61] E.G. Williams, J.D. Maynard, E. Skudrzyk, Sound source reconstruction using a microphone array, J. Acoust. Soc. Am., 1980, 68(1): 340~344.
    [62] E.G. Williams, J.D. Maynard, Holographic imaging without the wavelength resolution limit, Rev. Lett., 1980, 45(7): 554~557.
    [63] J.J. Christensen, J. Hald, J. Morkholt, et al., A review of array techniques for noise source location, SAE, 2003,SAE paper # 2003-01-1691.
    [64] G.Chertock, Sound radiation from vibrating surface, J. Acoust. Soc. Am., 1964, 36(7): 1305~1313.
    [65] R.E. Kleinman, G.F. Roach, Boundary integral equations for the three-dimensional Helmholtz equation, SIAM Review, 1974, 16(2):214~216.
    [66] R.J. Astley, W. Eversman, Finite element method for acoustic radiation, J. Acoust. Soc. Am., 1983, 88(2): 47~64.
    [67] A.F. Seybert, B. Soenarko, F.J. Rizzo, et al, An advanced computational method for radiation and scattering of acoustic waves in three diemensions, J. Acoust. Soc. Am., 1985, 77(2): 362~368.
    [68] K.A. Cunefare, G.H. Koopmann, K. Brod, A boundary element method for acoustic radiation valid for all wave number, J. Acoust. Soc. Am., 1989, 85(1): 39~48.
    [69] A.F. Seybert, C.Y.R. Cheng, T.W. Wu, The solution of coupled interior/exterior acoustic problem using the boundary element methods, J. Acoust. Soc. Am., 1990, 88(3): 1612~1618.
    [70] T.J.Schultz, Acoustic wattmeter, J. Acoust. Soc. Am., 1956, 28: 693~699.
    [71] Fahy, F.J., Measurement of acoustic intensity using the cross-spectral density of two microphone signals, J. Acoust. Soc. Am., 1977, 62: 1057~1059.
    [72]毕传兴,基于分布源边界点法的近场声全息理论与实验研究[博士学位论文],合肥:合肥工业大学, 2004.
    [73] J.D. Maynard, E.G. Williams, Y. Lee, Nearfield acoustic holographyⅠ: Theory of generalized holography and development of NAH, J. Acoust. Soc. Am., 1985, 78(4): 1395~1413.
    [74] W.A. Veronesi, J.D. Maynard, Nearfield acoustic holography (NAH)Ⅱ: Holographic reconstruction algorithms and computer implementation, J. Acoust. Soc. Am., 1987, 81(5): 1307~1322.
    [75] A.F. Seybert, T.K. Rengarajan, The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral equations, J. Acoust. Soc. Am., 1987, 81(5): 1299~1306.
    [76] W.A. Veronesi, J.D. Maynard, Digital holographic reconstruction of source with arbitrarily shaped surfaces, J. Acoust. Soc. Am., 1989, 85(2): 588~598.
    [77] G.T. Kim, B.H. Lee, 3-D sound source reconstruction and field reprediction using the Helmholtz integral equation, Journal of Sound and Vibration, 1990, 136(2): 245~261.
    [78] G.V.Borgiotti, The power radiated by a vibrating body in an acousticfield and its determination from boundary measurements, J. Acoust. Soc. Am., 1990, 88(4): 1884~1893.
    [79] R.D. Ciskowski, C.A. Brebbia, Boundary element methods in acoustics, Southampton Boston and London New York: Computational Mechanics Publications and Elsevier Applied Science, 1991.
    [80] T.W. Wu, A.F. Seybert, A weighted residual formulation for the CHIEF method in acoustics, J. Acoust. Soc. Am., 1991, 90(3): 1608~1614.
    [81] M.R.Bai, Application of BEM (Boundary Element Method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries, J. Acoust. Soc. Am., 1992, 92(2): 533~549.
    [82] M.R.Bai, Application of BEM(boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries J. Acoust. Soc. Am., 1992, 92(2): 533~549.
    [83] P.Juhl, A numerical study of the coefficient matrix of the boundary element method near characteristic frequencies, Journal of Sound and Vibration, 1994, 175(2): 39~50.
    [84] B.K. Kim, J.G. Ih, On the reconstruction of vibro-acoustic field over the surface enclosing an interior space using the boundary element method, J. Acoust. Soc. Am., 1996, 100(5): 3003~3016.
    [85] Yuanan He, Zuoyong He, Field reconstruction by acoustic holography technique based on BEM, in Boundary Elements XVIII, Editors: al. C.A. Brobia and et, Computational Mechanics, 1996: 33~42.
    [86] Z. Wang, S.F. Wu, Helmholtz Equation-Least Squares method for reconstructing the acoustic pressure field, J. Acoust. Soc. Am., 1997, 102(4): 2020~2032.
    [87]暴雪梅,散射近场声全息方法研究[博士学位论文],黑龙江:哈尔滨工程大学, 1999.
    [88] A.Schumacher, Sound source reconstruction using inverse sound field calculations[Ph. D. Dissertation], Denmark: Technical University of Denmark, 2000.
    [89] S.C. Kang, J.G. Ih, The use of partially measured source data in near-field acoustical holography based on the BEM, J. Acoust. Soc. Am., 2000, 107(5): 2472~2479.
    [90]徐张明,沈荣瀛,华宏星等,奇异值分解(SVD)和Tikhonov正则化方法在振速重建中的应用,上海交通大学学报, 2002, 36(6): 834~838.
    [91] Y.C.Chao, An implicit least-square method for the inverse problem of acoustic radiation, J. Acoust. Soc. Am., 1987, 81(5): 1288~1292.
    [92] S.F. Wu, J. Wu, Reconstructing interior acoustic pressure fields via Helmholtz Equation-Least Squares method, J. Acoust. Soc. Am., 1998, 104(4): 2054~2060.
    [93] N.E. Rayess, S.F. Wu, Experimental validations of the HELS method for reconstructing acoustic radiation from a complex vibrating structures, J. Acoust. Soc. Am., 2000, 107(6): 2955~2964.
    [94] S.F. Wu, X. Zhao, Combined Helmholtz Equation-Least Squares method for reconstructing the acoustic radiating from arbitrarily shaped objects, J. Acoust. Soc. Am., 2002, 112(1): 179~188.
    [95] S.F.Wu, Hybrid near-field acoustic holography, J. Acoust. Soc. Am., 2004, 115(1): 207~217.
    [96] H.A.Schenck, Improved integral formulation for acoustic radiation problem, J. Acoust. Soc. Am., 1968, 44(1): 41~58.
    [97] G.V.Borgiotti, Conformal generalized nearfield acoustic for axisymmtries, J. Acoust. Soc. Am., 1990, 88(1): 199~209.
    [98] A.Sarkissian, Nearfield acoustic holography for an axisymmetric geometry: A new formulation, J. Acoust. Soc. Am., 1990, 88(2): 961~966.
    [99] D.M.Photiads, The relationship of singular value decomposition to wave-vector filtering in sound radiation problem, J. Acoust. Soc. Am., 1990, 88(2): 1152~1159.
    [100] A.Sarkissian, Reconstruction of the surface acoustic field on radiating structures, J. Acoust. Soc. Am., 1992, 92(2): 825~830.
    [101] Y.K. Kim, Y.H. Kim, Holographic reconstruction of active sources and surface admittance in an enclosure, J. Acoust. Soc. Am., 1999, 105(4): 2377~2383.
    [102] E.G. Williams, B.H. Houston, Interior near-field acoustical holography in flight, J. Acoust. Soc. Am., 2000, 108(4): 1451~1463.
    [103] B.K. Kim, J.G. Ih, Design of an optimal wave-vector filter for enhancing the resolution of reconstruction source field by near-field acoustical holography, J. Acoust. Soc. Am., 2000, 107(6): 3289~3297.
    [104] M. Tournour, P. Brux, P. Mas, et al., Inverse numerical acoustics of a truck engine, SAE, 2003,SAE paper # 2003-01-1692.
    [105] Y. Bousseau, L. Gagliardini, Powertrain acoustic characterization at high frequencies: acoustic source modeling based on sound intensity measurements, SAE, 2003,SAE paper # 2003-01-1457.
    [106] S.T. Raveendra, S. Sureshkumar, M.T. Cheng, et al., Noise source identification in an automotive powerplant, SAE, 2003,SAE paper # 2003-01-1695.
    [107] D.W. Herrin, F. Martinus, A.F. Seybert, Using numerical acoustics to diagnose noise problems, SAE, 2005,SAE paper # 2005-01-2324.
    [108] F. Martinus, D.W. Herrin, Z. Tao and A.F. Seybert, Identification of aeroacoustic noise sources using inverse boundary element method, SAE, 2005,SAE paper # 2005-01-2497.
    [109]暴雪梅,宽带的以边界元为基础的非共形全息声场变换方法研究[硕士学位论文],黑龙江:哈尔滨工程大学, 1995.
    [110] P.C.Hansen, The discrete Picard condition for discrete ill-posed problems, BIT, 1990, 30: 658~672.
    [111] G.H.格罗布, C.F.万罗安,矩阵计算,大连:大连理工大学出版社, 1988.
    [112]蒋伟康,万泉,近场声全息理论与应用的研究现状与展望,机械强度, 2005, 27(3): 288~295.
    [113] B.K. Kim, J.G. Ih, Design of an optimal wave-vector filter for enhancing the resolution of reconstructed source field by near-field acoustical holography (NAH), J. Acoust. Soc. Am., 2000, 107(6): 3289~3297.
    [114] P.C. Hansen, D.P. O'Leary, The use of L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 1993, 14: 1487~1503.
    [115] V.A.Morozov, Method of solving incorrectly posed problems, New York: Springer Verlag, 1984.
    [116] G.H. Golub, M. Heat, G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 1979, 21(2): 215~223.
    [117] C.X. Bi, X.Z. Chen, R. Zhou, et al, Reconstruction stability of nearfield acoustic holography, Chinese Journal of MechanicalEngineering, 2005, 18(4): 504~509.
    [118] B.L.Bolton-Knight, Engine mounts: analytical methods to reduce noise and vibration, Proceeding of Institute of Mechanical Engineers, 1971, C98.
    [119]吴杰,上官文斌,采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用,工程力学, 2008, 25(1): 161~166.
    [120] Yunhe Yu, Nagi G. Naganathan, Rao V. Dukkipati, A literature review of automotive vehicle engine mounting systems, Mechanism and Machine Theory, 2001, 36(1): 123~142.
    [121]万欣,林大渊,内燃机设计,天津:天津大学出版社, 1992.
    [122]上官文斌,徐驰,黄振磊,李歧,李涛,汽车动力总成悬置系统位移控制设计计算方法,汽车工程, 2006, 28(8): 738~742.
    [123] J.E. Bernard, J. Starkey, Engine mount optimization, SAE, 1983,SAE paper # 830257.
    [124] P.E. Geck, R.D. Patton, Front wheel drive engine mount optimization, SAE, 1984,SAE paper # 840736.
    [125] T. Arai, T. Kubozuka, S.D. Gray, Development of an engine mount optimization method using modal parameters, SAE, 1993,SAE paper #932898.
    [126]庞剑,谌刚,何华,汽车噪声与振动——理论与应用,北京:北京理工大学出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700