用户名: 密码: 验证码:
饱和土一维热固结解析理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土的热固结理论是当今岩土工程领域颇为关注的研究课题之一,在热能贮存、地热资源开发、核废料处置等方面具有良好的应用背景。本文针对现有热固结问题的研究尚未形成完整的理论体系的不足,较深入系统地开展了饱和土一维热固结解析理论的研究。主要内容和创新工作包括:
     (1)在对有关土性温度效应及土体热固结问题等研究现状作了较详尽的回顾和总结的基础上,从传统固结理论、热弹性理论、渗流理论和传热理论等出发,推导了相应应力场、渗流场和温度场的控制方程,在此基础上进行简化,建立了饱和土体的三维、二维、一维热固结方程,并讨论了相应的定解条件,为热固结问题的求解奠定了基础。
     (2)对最基本的地表骤然受常温且初始孔压均布的一维热固结问题,分别求得了考虑和不考虑热力耦合的超静孔压和温度增量的解,并通过详细比较,表明可以忽略热固结方程中热力耦合项对固结的影响。在此基础上,应用偏微分方程理论中的有限Fourier变换、分离变量法、冲量定理法等数学求解方法,分别获得了变荷载、初始孔压非均布、地表温度周期性变化等条件下以及综合考虑这些因素的复杂条件下的一维热固结问题的理论解,现有不考虑温度影响的一维传统固结解均为本文解特例。
     (3)基于本文理论解,绘制了大量曲线,分析讨论了各种因素对地基超静孔压消散、沉降以及平均固结度发展的影响。分析表明,影响热固结性状的主要因素有:无量纲参数R(反映温度变化大小)、热扩散系数与固结系数之比F(反映热传导与固结速度快慢)、加荷时间因子T_(VO)(反映加荷快慢)、半周期时间因子T_(Vc)(反映温度变化周期)等。一般地,当地基温度升高,超静孔压消散加快,沉降减小;与Terzaghi解相比,温度对超静孔压的影响较小,而对沉降的影响较大;按应力定义和按应变定义的平均固结度是不同的,两者在数值上有较大差异。
     本文首次获得了不考虑内热源的多种边界和初始等复杂条件下的一维热固结问题理论解,为饱和土热固结问题的深入研究奠定了良好的基础,也进一步丰富和完善了饱和土的固结解析理论。
Thermal consolidation theory of saturated soil is one of the most important research topics in the field of geotechnical engineering. It bears the important significance in most engineering projects such as heat energy storage, geothermal energy exploration, nuclear waste disposal. To complement the research of thermal consolidation theory of saturated soil, this dissertation gives a systematically study on the analytical theory of one-dimensional thermal consolidation of saturated soil. The main original work are made as follows:
     (1) On the basis of reviewing the references about soil properties with temperature and thermal consolidation of soil, thermo-hydro-mechanical governing equations are developed by using traditional consolidation theory for saturated soil, thermoelasticity, seepage theory and heat conduction theory, three-dimensional thermal consolidation equations for saturated soil are constructed, and it can be reduced to the one for one-dimensional thermal consolidation problem.
     (2) For the simplist thermal consolidation problem with instantaneous constant surface temperature and uniform initial pore-pressure, analytical solutions of excess pore-water pressure and temperature are derived and compared in detail, respectively. The results show that the thermo-mechanical coupling item in the thermal consolidation equation can be ignored. Based on the above mentioned and considering different conditions, analytical solutions for one-dimensional thermal consolidation problems are derived, respectively. The all traditional one-dimensional consolidation theory without considering temperature so far available are the special case of these solutions.
     (3) By using the analytical solutions given herein, a variety of consolidation curves are prepared and the influence of various factors on the dissipation of pore water pressure and the development of settlement and degree of consolidation are dicussed. It has been shown that the main factors affecting thermal consolidation behaviour are: dimensionless parameter R (it indicates temperature increase.), the ratio of heat diffusion coefficient and consolidation coefficient F (it indicates velocity of heat conduction and consolidation.), loading time-factor T_(V0) (it indicates loading time), half-period time-factor T_(vc) (it indicates period of temperature change), etc. Generally, in thermal consolidation, compared with traditional consolidation without temperature effect, excess pore-water pressure dissipates more quickly; settlement decreases; comparing with Terzaghi's one-dimensional consolidation theory, the influence of temperature on excess pore water pressure is smaller than on settlement; two consolidation degrees defined by stress and strain are of great difference in value.
     It is in this dissertation that the theoretical solutions for one-dimensional thermal consolidation problem is firstly derived under complicated conditions such as non-uniform initial pore-pressure, time-dependent loading, cycly changing surface temperature. This not only makes a good foundation for future study on the thermal consolidation of saturated soil, but also makes the analytical consolidation theory of saturated soil more perfect.
引文
[1]Aboustit B.L.et al.Finite element evaluations of thermoelastic consolidation.In issues on rock mechanics,Proceedings of the 23~(rd) symposium on rock mechanics,ASME,1982,587-595.
    [2]Adkins J.E.Non-linear diffusion.I.Diffusion and flow of mixtures of fluids.Phil.Trans.R.Soc.,1963,255:607-633.
    [3]Bai M.,Roegiers J.C.Fluid flow and heat flow in deformation fracture porous media.International Journal of Engineering Science,1994,32(4):1615-1633.
    [4]Baldi G.,Hueckel T.,Pellegrini.Thermal volume changes of mineral-water system in low porosity clay soils.Canadian Geotechnical Journal,1988,25(4):807-825.
    [5]Bear J.,Corapcioglu M.Y.A mathematical model for consolidation in a thermoelastic aquifer due to hot water injection of pumping.Water Resour.Res.,1981,17:723-736.
    [6]Bear J.,Zaslavsky D.,Irmay S.Physical Principles of water percolation and seepage.UNESCO,Paris,1968.
    [7]Blot M.A.General theory of three-dimensional consolidation.J.Appl.Physics,1941,12:155-164.
    [8]Blot M.A.General solutions of the equations of elasticity and consolidation for a porous material.J.Appl.Mech.,1956a,23:91-96.
    [9]Blot M.A.Thermoelasticity and irreversible thermodynamics.J.Appl.Mech.,1956b,27(3):240-253.
    [10]Blot M.A.Variational lagrangian-thermodynamics of non-isothermal finite strain mechanics of porous solids and thermomolecular diffusion.Int.J.Solids Structures,1977,13:579-597.
    [11]Blond E.,Schmitt N.,Hild F.Response of saturated porous media to cyclic thermal loading.International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(11):883-904.
    [12]Booker J.R,Savvidou C.Consolidation around a spherical heat source.International Journal of Solids Structure,1984,20(11/12):1079-1090.
    [13]Boudali M.Viscous behavior of natural clays.Proc.13~(th) ICSMFE,1994,(1):411-416.
    [14]Bowen R.M.Compressible porous media models by use of of the theory of mixtures.Int.J. Eng. Sci., 1982,20:697-735.
    [15] Britto A.M., Savvidou C, Maddocks D.V., Gunn M.J., Booker J.R. Geotechnique, 1989, 39(1): 13-25.
    [16] Britto A.M., Sawidou C, Gunn M J, Booker J R. Finite element analysis of the coupled heat flow and consolidation around hot buried objects. Soils and Foundations, 1992, 32(1): 155-178.
    [17] Burghignoli A., Desideri A., Miliziano S. Discussion on volume change of clays induced by heating as observed in consolidation test. Soils and Foundations, 1995,35(3): 122-124.
    [18] Campanella R.G., Mitchell J K. Influence of temperature variation on soil behavior. J. Soil Mech. And Found. Engrg. Div., ASCE, 1968,94(3): 709-734.
    [19] Carnahan C.L. Thermodynamic coupling of heat and matter flows in nearfield regions of nuclear waste repositories. Proc. Mat. Res. Soc. Symp., 1984, 26:1023-1030.
    [20] Carter J.P., Booker J.R. Finite element analysis of coupled thermoelasticity. Computers and Structures, 1989, 31(1): 73-80.
    [21] Cheng A.H.-D., Detournay E. A direct boundary element method for plane strain poroelasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 1988,12(5): 551-572.
    [22] Cheng A.H.-D. et al. Review of some poroelastic effects in rock mechanics. Int. J. Rock Mech. Mech. Min. Sci. 1993, 30: 1119-1126.
    [23] Cui Y.J., Sultan N., Delage P. A thermomechanical model for saturated clays. Canadian Geotechnical Journal, 2000, 37(2): 607-620.
    [24] Delage P., Sultan N., Cui Y J. On the thermal consolidation of Boom clay. Canadian GeotechnicalJournal, 2000, 37(4): 343-354.
    [25] Demars K.R, Charles R D. Soil volume change induced by temperature cycling. Canadian Geotechnical Journal, 1982, 19(2): 188-194.
    [26] Derski W., Kowalski S.J. Equations of linear thermoconsolidation. Arch. Mech., 1979, 31(3): 303-316.
    [27] Detournay E., Cheng A.H.-D. Fundamentals of poroelasticity, in Comprehensive Rock Engineering: Principles, Practice, Projects,Vol. 2, Chapter 5, (Editor: Hudston J.A.). Pregamon Press, Oxford., 1993.
    [28]Donazzi F.Soil thermal and hydrogical characteristics in designing underground cables.Proc.IEE,1977,123:506-516.
    [29]Eckert E.R.G.,Drake R.M.Analysis of heat and mass transfer.Washington:Hemisphere Pub.Corp.,1987.
    [30]Eriksson L.G.Temperature effects on consolidation properties of sulphide clays.Proc.12th ICSMFE,1989,3:2087-2090.
    [31]Ewen J.The thermal probe——a new method and its use on a unsaturated sand.Geotechnique,1987,37:91-105.
    [32]Finn F.N.The effect of temperature on the consolidation characteristics of remolded clay.In Symposium on Consolidation Testing of Soils,ASTM STP 126,American Society for Testing and Materials,Philadelphia,1951,65-71.
    [33]Gangadhara R.,Singh D.N.A generalized relationship to estimate thermal resistivity of soils.Canadian Geotechnical Journal,1999,36(2):767-773.
    [34]Gatmiri B.,Delage P.A formulation of fully coupled thermal-hydraulic-mechanical behavior of saturated porous media,numerical approach.International Journal for Numerical and Analytical Methods in Geomechanics,1997,21(2):199-225.
    [35]Gibson R.E.,Schiffman R.L.,Cargill K.W.The theory of one-dimensional consolidation of saturated clays:Ⅱ.Finite nonlinear consolidation of thick homogeneous layers.Canadian Geotechnical Journal,1981,18(2):280-293.
    [36]Gray D.H.Thermo-osmosis and thermoelectric coupling in saturated soils.In Effects of Temperature and Heat on Engineering Behaviour of Soils.Highway Res.Board Proc.,1969,103:66-77
    [37]Gray H.Progress report on the consolidation of fine-grained soils.In proceedings of the 1st international conference on soil mechanics and foundation engineering,Cambridge,Mass.,1936,2:138-141.
    [38]Gray H.Simultaneous consolidation of contiguous layers unlike compressible soils.Trans.ASCE,1945,110:1327-1356.
    [39]Groenevelt P.H.,Bolt G.H.Non-equilibrium thermodynamics of the soil-water system.J.hydrol.,1969,7:358-388.
    [40]Habib P.,Soeiro F.Migrations d'Eau darts les sols provoquees par une difference de temperature.Pro.Fourth Internat.Cong.Soil Mech.,1957,40-43.
    [41]Habibagahi K.Temperature effect on consolidation behaviour of overconsolidated soils.In Proceedings,Eighth International Conference on Soil Mechanics and Foundation Engineering,1973,1.1:159-162
    [42]Habibagahi K.Temperature effect and the concept of effective void ratio.Indian Geotechnical Journal,1977,7(1):14-34.
    [43]Hansen J.B.and Inan S.Tests and formulas concerning secondary consolidation.In Proceedings,Seventh International Conference on Soil Mechanics and Foundation Engineering,1969,1:45-53.
    [44]Hooper F.C.,Lepper F.R.Transient heat flow apparatus for the determination of thermal conductivities.Trans.Am.Soc.Heat.Vent.Engrs.1950,56(2):309-324.
    [45]Horseman S.T.,McEwen T.J.Thermal constraints on disposal of heat-emitting waste in argillaceous rocks.Engineering Geology,1996,41(1):5-16.
    [46]Houston S.L.,Lin H.D.Thermal consolidation model of pelagic clays.Marine Geotechnology,1987,7:79-98.
    [47]Hueckel T.,Peano A.Some geotechnical aspects of radioactive waste isolation in continental clays.Computers and Geotechnics,1987,3(2,3):157-182.
    [48]Hueckel T.,Borsetto M.Thermoplasticity of saturated clays and shales:constitutive equations.J.Geotech.Engrg.,ASCE,1990a,116(12):1765-1777.
    [49]Hueckel T.,Baldi G.Thermoplasticity of saturated clays:experimental constitutive study.J.Geotech.Engrg.ASCE,1990b,116(12):1778-1795.
    [50]Hueckel T.,Pellegrini R.Effective stress and water pressure in saturated clays during heating-cooling cycles.Canadian Geotechnical Journal,1992,29:1095-1120.
    [51]Jiang Q.,Rajapakse R.K.On coupled heat-moisture transfer in deformable porous media.Q.Jl.Mech.Appl.Math.,1994,47:53-68.
    [52]Jing L.,Feng X.,Numerical modeling for coupled thermo-hydro-mechanical and chemical processes(THMC) of geological media-international and Chinese experiences.Chinese Journal of Rock Mechanics and Engineering,2003,22(10):1704-1715.
    [53]Kurashige M.A thermoelastic theory of fluid-filled porous materials.Int.J.Solids Struct.,1989,25:1039-1052.
    [54]Laguros J.G.Effect of temperature on some engineering properties of clay soils.In Effects of Temperature and Heat on Engineering Behavior of Soils,Highway Research Board,Special Report,1969,103:186-193.
    [55]Lambe T.W.The structure of compacted clay.Journal of the soil mechanics and foundation engineering division,ASCE,1960,125:682-706.
    [56]Leroueil S.Compressibility of clays:fundamental and practical aspects.J.Geotech.Engrg.,ASCE,1996,122(7):534-543.
    [57]Letey J.,Kemper W.D.Movement of water and salt through a clay-water system:experimental verification of Onsager's reciprocal relation.Soil Sci.Soc.Am.Proc.,1969,33:25-29.
    [58]Lewis R.W.,Majorana C.E.,Schrefler B.A.A coupled finite element model for consolidation of a non-isothermal elasto-plastic media.Transport Porous Media,1986,1:155-178.
    [59]Lewis R.W.,Schrefler B.A.The finite element method in the deformation and consolidation of porous media.Wiley,New York.1987.
    [60]Liu W.,Zhao X.X.2D numerical simulation for simultaneous heat,water and gas migration in soil bed under different environmental conditions,Heat and Mass transfer,1998,34:307-316.
    [61]McTigue D.Thermoelastic response response of fluid-saturated porous rock.J.Geophys.Res.,1986,91:9533-9542.
    [62]McTigue D.Flow to a heated borehole in porous,thermoelastic rock:Analysis.Water Resour.Res.,1990,26:1763-1774.
    [63]Mitchell J.K.Temperature effects on the engineering properties and behavior of soils.In Effects of Temperature and Heat on Engineering Behavior of Soils,Highway Research Board,Special Report,1969,103:9-28.
    [64]Mitchell J.K.,Kao T.C.Measurement of soil thermal resistivity.Journal of the Geotechnical Engineering Division,ASCE,1978,104(10):1307-1320.
    [65]Modaressi H.,Laloui L A thermo-viscoplastic constitutive model for clays.International Journal for Numerical and Analytical Methods in Geomechanics,1997,21(5):313-315.
    [66]Morin R.,Silva A.J.The effects of high pressure and high temperature on some physical properties of ocean sediments.Journal of Geophysical Research,1984,89(B1):511-526.
    [67]Paaswell R.E.Temperature effects on clay consolidation.J.Soil Mech.and Found.Engrg.Div.,ASCE,1967,93(3):9-22.
    [68]Palciauskas V.V.,Domenico P.A.Characterization of drained and undrained response of thermally loaded repository rocks.Water Resour.Res.,1982,18:281-290.
    [69]Pao W.K.S.,Lewis R.W.,Masters I.A fully coupled hydrothermo-poro-mechanical model for black oil reservoir simulation.International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(12):1229-1256.
    [70]Plum R.L.and Esrig M.I.Some temperature effects on soil compressibility and pore water pressure.In Effects of Temperature and Heat on Engineering Behavior of Soils,Highway Research Board,Special Report,1969,103:231-242.
    [71]Pyrah I.C.One dimensional consolidation of layered soils.Geotechnique,1996,46(3):555-560.
    [72]Rehbinder G.Analytical solutions of stationary coupled thermo-hydro-mechanical problems.Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1995,32:453-463.
    [73]Rendulic L.Porenziffer and Porenwasserdruck in Tonen.Bauingenieur,1936,7:51-53.
    [74]Rice J.R.,Cleary M.P.Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents.Rev.Geophys.Space Phys.1976,14:227-241.
    [75]Salomone L.A.et al.Thermal performance of fine-graines soils.J.Geotech.Engrg.ASCE,1984a,110(3):359-374.
    [76]Salomone L.A.,Kovacs W.D.Thermal resistivity of soils.J.Geotech.Engrg.ASCE,1984b,110(3):375-389.
    [77]Schiffman,R.L.Consolidation of soil under time-dependent loading and varying permeability.Proc.Highw.Res.Bd,1958,37:584-617.
    [78]Schiffman R.L.,Gibson,R.E.Consolidation of nonhomogeneous clay layers.Journal of the Soil Mechanics and Foundations Division,ASCE,1964,90(SM5):1-30.
    [79]Schiffman R.L.A thermoelastic theory of consolidation.Environmental and Geophysical Heat Transfer,ASME,1971,5(4):78-84.
    [80]Seneviratne H.N.,Carter J.P.,Airey D.W.A review of models for predicting the thermomechanical behavior of soft clays.International Journal for Numerical and Analytical Methods in Geomechanics,1993,17(2):715-733.
    [81]Seneviratne H.N.,Carter J.P.,Booker J.R.Analysis of fully coupled thermomechanical behaviour around a rigid cylindrical heat source buried in clay.International Journal for Numerical and Analytical Methods in Geomechanics,1994,18:177-203.
    [82]Senjuntichai T.Green's functions for multi-layered poroelastic media and an indirect boundary element method.Ph.D.Thesis,University of Manitoba,Winnipeg.,1994.
    [83]Skempton A.W.The pore pressure coefficients A and B.Geotechnique,1954,4:143-147.
    [84]Smith D.W.,Booker J.R.Green's function for a fully coupled thermoporoelastic materials.International Journal for Numerical and Analytical Methods in Geomechanics,1993,17(2):139-163.
    [85]Smith D.W.,Booker J.R.Boundary element analysis of linear thermoelastic consolidation.International Journal for Numerical and Analytical Methods in Geomechanics,1996,20(4):457-488.
    [86]Srivastava R.C.,Avasthi P.K.Non-equilibrium thermodynamics of thermo-osmosis of water through kaolinite.J.Hydrol.,1975,24:111-120.
    [87]Steinmanis J.E.Thermal property measurements using a thermal probe,under ground cable thermal backfill,1981,72-85.
    [88]Tanaka N.,Graham J.Pore water pressures in undrained triaxial tests with heating.The 2~(nd)Int.Congress on Environmental Geotechnics,Osaka,Japan.1996.
    [89]Taylor S.A.,Cary J.W.Analysis of the simultaneous flow of water and heat with the thermodynamics of irreversible processes.Trans.Seventh lnternat.Congr.Soil Sci.,Madison,1960,1:80-90.
    [90]Taylor S.A.Simultaneous flow in soils and plants.Special publ.,Utah State Univ.,Logan,1963.
    [91]Tidfors M.,Sallfors G.Temperature effect on preconsolidation pressure.Geotechnical Testing Journal,1989,12(1):93-97.
    [92]Towhata I.,Kuntiwattanakul P.,Seko I.,Ohishi K.Volume change of clays induced by heating as observed in consolidation tests.Soils and Foundations,1993,33(4):170-183.
    [93]Towhata I.,Kuntiwattanakul P.,Seko I.,Ohishi K.Discussion on volume change of clays induced by heating as observed in consolidation tests.Soils and Foundations,1995,35(3):124-127.
    [94]Wang Y.,Papamichos E.Conductive heat flow and thermal induced fluid flow around a well bore in a poroelastic medium.Water Resour.Res.,1994,30:3375-3384.
    [95]Xie K.H.,Li B.H.,Li Q.L.A nonlinear theory of consolidation under time-dependent loading.Proc.2~(nd) Int.Confer.Soft Eng.,Nanjing:Hehai University Press.1996,1:193-198.
    [96]Yong R.T.et al.Swelling pressures of sodium montmorillonite at depressed temperature.In proceedings of the 11~(th) national conference on clays clay minerals,1962,268-281.
    [97]Youssef M.S.,et al.Temperature changes and their effects on some physical properties of soils.In proceedings of the 5~(th) international conference on soil mechanics and foundation engineering,Paris,1961,2:419-421.
    [98]Zhou Y.F.Thermo-hydro-mechanical models for saturated and unsaturated porous media.University of Manitoba,1998.
    [99]Zienkwicz O.C.,Chang C.T.,Bettess P.Drained,undrained consolidating and dynamic behaviour assumptions in soils.Geotechnique,1980,30(4):385-395.
    [100]白冰,赵成刚.温度对粘性土介质力学特性的影响.岩土力学,2003,24(4):533-537.
    [101]白冰.核废料储库周边介质热力耦合数值分析.岩土力学,2004a,25(12):1989-1993.
    [102]白冰.岩土介质非稳态热固结耦合问题的热源函数法.力学学报,2004b,36(4):427-434.
    [103]白冰.饱和土体圆柱形热源热固结问题的一个近似解.岩石力学与工程学报,2005a,24(6):1004-1009.
    [104]白冰.岩土颗粒介质非等温一维热固结特性研究.工程力学,2005b,22(5):186-191.
    [105]白冰.饱和多孔介质热-水-力控制方程耦合项的意义及耦合影响分析.岩土力学,2006a,27(4):519-524.
    [106]白冰.变温度荷载作用下半无限成层饱和介质的热固结分析.应用数学和力学,2006b,27(11):1341-1348.
    [107]柴军瑞,韩群柱.岩体渗流场与温度场耦合的连续介质模型.地下水,1997,19(2):59-62.
    [108]柴军瑞,韩群柱,仵彦卿.岩体一维渗流场与温度场耦合模型的解析演算.地下水,1999,21(4):180-182.
    [109]柴军瑞.岩体渗流-应力-温度三场耦合的连续介质模型.红水河,2003,22(2):18-20.
    [110]陈根媛.多层地基一维固结计算方法与砂井地基计算的改进建议.水利水运科学研究, 1984,2:1-13.
    [111]陈善雄,陈守义.砂土热导率的实验研究.岩土工程学报,1994,16(5):47-52.
    [112]陈守义.用热针法测定土的导热率.岩土力学,1989,10(1):61-65.
    [113]葛新石.传热和传质基本原理.北京:化学工业出版社,2007.
    [114]华孟,王坚.土壤物理学.北京:北京农业大学出版社,1993.
    [115]黄涛,杨立中,陈一立.工程岩体地下水渗流-应力-温度耦合作用数学模型的研究.西南交通大学学报,1999,34(1):11-15.
    [116]江雯.考虑软粘土渗透性和压缩性变化的一维固结理论研究.浙江大学硕士学位论文,2003.
    [117]江雯,谢康和,夏建中.压缩模量随深度变化的软粘土地基一维固结解析解.科技通报,2003,19(6):452-460.
    [118]蒋章焰.传热学测试方法.北京:国防工业出版社,1987.
    [119]康绍忠.土壤-植物-大气连续体水热动态模拟的研究,生态学报,1991,11(3):256-260.
    [120]孔祥言,李道伦,徐献芝,卢德唐.热-流-固耦合渗流的数学模型研究.水动力学研究与进展,2005,20(2):269-275.
    [121]李冰河,谢康和,应宏伟.变荷载下软粘土非线性一维固结半解析解.岩土工程学报,1999,21(3):288-293.
    [122]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型.水动力学研究与进展,2003,18(4):419-426.
    [123]李维特,黄保海,毕仲波.热应力理论分析及应用.北京:中国电力出版社,2004.
    [124]梁昆淼.数学物理方法(第三版),北京:高等教育出版社,1998.
    [125]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用.北京:科学出版社,2006.
    [126]刘亚晨,吴玉山,刘泉声.核废料贮存裂隙岩体耦合分析研究综述.地质灾害与环境保护,1999,10(3):72-78.
    [127]刘亚晨,刘泉声,吴玉山,蔡永庆.核废料贮库围岩介质不可逆过程热力学和热弹性.岩石力学与工程学报,2000,19(3):361-365.
    [128]刘亚晨,席道瑛.核废料贮存裂隙岩体中THM耦合过程的有限元分析.水文地质工程地质,2003,3:81-86.
    [129]孙斌祥,徐学祖,等.块石的热扩散系数和导热系数确定方法.冰川冻土,2002,24(6):790-795.
    [130]涂新斌,戴福初.土体一维传热方程解析解及热扩散系数测定.岩土工程学报,2008,30(5):652-657.
    [131]王铁行,李宁,谢定义.土体水热力耦合问题研究意义、现状及建议.岩土力学,2005,26(3):488-493.
    [132]翁德衡.土壤物理性测定法.重庆:科学技术文献出版社重庆分社,1979.
    [133]吴家龙.弹性力学.北京:高等教育出版社,2001.
    [134]谢康和,施淑群,潘秋元.双层地基固结实用计算理论与曲线(一).地基处理,1993,4(4):1-14.
    [135]谢康和,施淑群,潘秋元.双层地基固结实用计算理论与曲线(二).地基处理,1994,5(2):21-32.
    [136]谢康和.双层地基一维固结理论及应用.岩土工程学报,1994,16(5):24-35.
    [137]谢康和,潘秋元.变荷载下任意层地基一维固结理论.岩土工程学报,1995,17(5):80-85.
    [138]谢康和.层状土半透水边界一维固结分析.浙江大学学报(自然科学版),1996,30(5):567-575.
    [139]谢康和,周健.岩土工程有限元分析理论与应用.北京:科学出版社,2002.
    [140]徐丹雅.土壤热参数测定仪的数据自动采集与处理.岩土力学,1991,12(2):87-90.
    [141]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998.
    [142]余正.土壤的比热和热导率的测量.土壤,1986,18(1):48-51.
    [143]周江,福井正则(日).岩体中渗流-热-应力耦合作用的理论研究.山西矿业学院学报,1995,31(1):76-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700