用户名: 密码: 验证码:
饱和非均质土中桩土耦合扭转振动理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于饱和两相介质的本构关系及波动方程,将桩视为一维弹性杆件,采用解析的方法对弹性桩与非均质饱和土的动力扭转相互作用问题进行了较系统和深入的研究。主要工作和创新成果包括:
     1.针对受谐和扭转荷载作用的饱和土体中端承桩扭转振动问题,采用分离变量法,得到了土体扭转振动位移形式解。进一步根据桩土接触面上的位移、应力连续条件,求解了桩身动力平衡方程,在频域内得到了桩顶动力响应的解析解。在此基础上,利用傅立叶逆变换和卷积定理,求得了适用性较广的半正弦脉冲激振扭矩作用下桩顶速度时域响应的半解析解。此外,还研究了谐和扭转荷载作用下弹性支承桩与饱和土的动力相互作用问题。
     2.基于饱和土体的运动方程以及横观各向同性介质的本构方程,给出了柱坐标下横观各向同性饱和土体的动力控制方程。采用分离变量法,结合桩土系统的边界条件和衔接条件,求得了端承桩在横观各向同性饱和土中扭转振动频域响应的解析解。进一步地利用傅立叶逆变换和卷积定理,求得了半正弦脉冲激振扭矩作用下桩顶速度时域响应的半解析解。
     3.研究了成层饱和土体中受谐和扭转荷载作用的任意段变阻抗桩的动力响应问题,提出了土层层间相互作用简化模型,利用单层土中给出的求解方法,通过阻抗函数的递推得到了成层饱和土中任意段变阻抗桩桩顶频域响应的解析解和半正弦脉冲激振扭矩作用下桩顶速度时域响应的半解析解,并通过与单层严格解的对比论证了该简化模型的精确性和适用性。
     4.研究了径向非均匀饱和土体中弹性支承桩受谐和扭转荷载作用的动力响应问题,利用径向非均匀土模型,将桩周径向非均匀土体分为内部环形扰动区域和外部半无限大未受扰动区域,并提出了适用性更强的扰动区域土体复剪切模量变化模式。进一步地将内部扰动区域划分为很多薄层同心环区域,结合土层边界和衔接条件采用土层剪切刚度递推的方法,求得了土体对桩身的扭转阻抗,进而推导得到弹性支承桩桩顶频域响应的解析解以及桩顶速度时域响应的半解析解。
     5.利用以上解,通过编程和大量计算,对桩的扭转振动特性进行了较全面和细致的分析,获得了对桩基工程有实际参考价值的结论。
     本文给出的弹性桩与非均质饱和土耦合扭转振动响应问题的分析理论和解答,进一步丰富和完善了桩基扭转振动理论,为桩基抗震、防震设计以及剪切波在桩基动态检测中的应用提供了更加合理和严格的理论支持。
Based on wave equation of fluid-saturated porous medium and one-dimensional equation of motion of an elastic pile, the torsional dynamic interactions between elastic pile and heterogeneous soils are systematically investigated by the analytical methods. The principal contents and original work are as follows:
     1. For an end bearing pile embedded in saturated soil and subjected to harmonic torsional loading, the equations of equilibrium of saturated soil undergoing axisymmetric torsional deformations in cylindrical coordinates are solved by using the separation of variables technique. Then, the vibration displacement solution with an undetermined constant of the soil is obtained. Based on perfect contact between the pile and soil, the solution is coupled into an one-dimensional governing equation of a pile, and the dynamic response of the pile top is obtained in a closed form in the frequency domain. By virtue of inverse Fourier transform and convolution theorem, a semi-analytical solution for the velocity response of a pile subjected to a semi-sine wave exciting torque is obtained in the time domain. In addition, the dynamic response of an elastic bearing pile embedded in saturated soil and subjected to harmonic torsional loading is investigated.
     2. On the basis of the dynamic equations of saturated soil and the stress-strain relationships of transversely isotropic medium, the dynamic governing equations of the transversely isotropic saturated soil are derived in cylindrical coordinates. In combination with boundary and continuous conditions of the pile-soil system, the analytical solutions for the dynamic response of an end bearing pile are gained in the frequency domain by utilizing the separation of variables technique. Furthermore, by virtue of inverse Fourier transform and convolution theorem, a semi-analytical solution for the velocity response of an end bearing pile subjected to a semi-sine wave exciting torque is obtained in the time domain.
     3. To study the dynamic response of a pile with variable impedance embedded in a multi-layered saturated soil and subjected to harmonic torsional loading, a simplified and practical mathematical model for simulating dynamic interaction of the adjacent soil layers is developed. By using the same solving methods employed in single layer saturated soil and through the recursion of the impedance function, the analytical and semi-analytical solutions for the dynamic response of the pile top are derived in the frequency and time domain, respectively. Moreover, the accuracy and feasibility of the simplified model is verified by comparing with the single layer rigorous solution.
     4. The dynamic response of an elastic bearing pile embedded in radially inhomogeneous saturated soil and subjected to harmonic torsional loading is investigated by using the radially inhomogeneous soil model theory. The radially inhomogeneous soil is divided into two regions, the inner annular disturbed region and outer semi-infinite undisturbed region. Furthermore, a more feasible function that describes the variation of the complex-valued shear modulus is developed. Then, the inner disturbed region is subdivided into many thin concentric annular zones. Combined with the boundary and continuous conditions of the soil layers, the torsional impedance of the radially inhomogeneous soil is derived through the recursion of the shearing rigidity of soil layer. Then, the analytical and semi-analytical solutions for the dynamic response of the pile top are obtained in the frequency and time domain, respectively.
     5. Based on these solutions, the corresponding computer programs are developed and parameter study is made to investigate the torsional vibration characteristics of pile, and valuable conclusions are obtained for pile foundation.
     The torsional pile-soil dynamic interaction models and corresponding solutions developed in this dissertation are more rigorous and feasible than the previous theories. Therefore, the present dissertation provides more reasonable and rigorous theoretical support for seismic design of pile foundation and pile dynamic testing.
引文
[1] Abascal, R. and Dominguez, J. Vibrations of footings on zoned viscoelastic soils. Journal of Engineering Mechanics, ASCE, 1986,112(5): 433-447.
    
    [2] Apirathvorakij, V. and Karasudhi, P. Quasi-static bending of cylindrical elastic bar partially embedded in saturated elastic half space. International Journal of Solids and Structures, 1980, 16(7): 625-11.
    [3] Apsel, R.J. and Luco, J.E. On the green's functions for a layered half-space. Bulletin of the Seismological Society of America, 1983,73(4): 931-951.
    [4] Apsel, R.J. and Luco, J.E. Impedance functions for foundations embedded in a layered medium: a integral equation approach. Earthquake Engineering and Structural Dynamics, 1987, 15(2): 213-231.
    [5] Awojobi, A.O. and Grootenhuis, P. Vibration of rigid bodies on semi-infinite elastic media. Proceedings of the Royal Society of London, 1965,287(A): 27-63.
    [6] Baranov, V.A. On the calculation of excited vibrations of an embedded foundation(in Russian). Voprosy Dynamiki Prochnocti, Polytechnic Institute of Riga, 1967: 195-209.
    [7] Berryman, J.G. Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies. Journal of the Acoustical Society of America, 1983,74(6): 1805-1812.
    [8] Biot, M.A. General theory of three-dimensional consolidation. Journal of Applied Physics, 1941, 12: 155-164.
    [9] Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Low frequency range. Journal of the Acoustical Society of America, 1956, 28(2): 168-178.
    [10] Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II: High frequency range. Journal of the Acoustical Society of America, 1956,28(2): 179-191.
    
    [11] Biot, M.A. Theory of deformation of a porous viscoelastic anisotropic solid. Journal of Applied Physics, 1956,27(5): 459-467.
    
    [12] Biot, M.A. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 1962,33(4): 1482-1498.
    [13] Bose, S.K. and Haldar, S.S. Soil impedance in vertical vibrations of a floating pile. Soil Dynamics and Earthquake Engineering, 1985,4(4): 224-228.
    [14] Cai, Y.Q., Chen, G., Xu, C.J. and Wu, D.Z. Torsional response of pile embedded in a poroelastic medium. Soil Dynamics and Earthquake Engineering, 2006,26(12): 1143-1148.
    [15] Carclone, J.M. Wave propagation in an isotropic saturated porous media: Plane-wave theory and numerical simulation. Journal of the Acoustical Society of America, 1996, 99(5): 2655-2666.
    [16] Chen, G., Cai, Y.Q., Liu, F.Y. and Sun, H.L. Dynamic response of a pile in a transversely isotropic saturated soil to transient torsional loading. Computers and Geotechnics, 2008, 35(2): 165-172.
    [17] Chen, L.Z. and Wang, GC. Torsional vibrations of elastic foundation on saturated media. Soil Dynamics and Earthquake Engineering, 2002, 22: 223-227.
    [18] Chen, S.S. and Shi, J.Y. Simplified model for torsional foundation vibrations. Soil Dynamics and Earthquake Engineering, 2007,27(3): 250-258.
    [19] Collins, W.D. The forced torsional oscillations of an elastic half-space and an elastic stratum. Proc. London Math, Soc., 1962,12(3): 226-244.
    [20] Dotson, K.W. and Veletsos, A.S. Vertical and torsional impedances for radially inhomogeneous viscoelastic soil layer. Soil Dynamics and Earthquake Engineering, 1990, 9(3): 110-119.
    [21] EI Naggar, M.H. Vertical and torsional impedances for radially inhomogeneous soil media. Geotechnical Research Centre, The University of Western Ontario, London, Ont., Research Report Geot., 1996: 12.
    [22] EI Naggar, M.H. Vertical and torsional soil reactions for radially inhomogeneous soil layer. Structural Engineering and Mechanics, 2000, 10(4): 299-312.
    [23] Fowler, G.F. and Sinclair, G.B. The longitudinal harmonic excitation of a circular bar embedded in an elastic half space. International Journal of Solids and Structures, 1978,20: 1-11.
    [24] Freeman, N.J. and Keer, L.M. Torsion of a cylindrical rod welded to an elastic half space. Journal of Applied Mechanics, 1967,9: 687-691.
    [25] Gazetas, G. and Dobry, R. Simple radiation damping model for piles and footings. Journal of Engineering Mechanics, ASCE, 1984,110(6): 937-956.
    [26] Gazetas, G. and Dobry, R. Horizontal response of piles in layered soils. Journal of Geotechnical Engineering, ASCE, 1984, 110(1): 20-40.
    
    [27] Gibson, R.E. The analytical method in soil mechanics. Geotechnique, 1974,24(2): 114-140.
    [28] Guo, W.D. and Randolph, M.F. Torsional piles in non-homogeneous media. Computers and Geotechnics, 1996, 19(4): 265-287.
    [29] Haldar, S.S. and Bose, S.K. Dynamic soil stiffness in torsional vibrations of a floating pile. Soil Dynamics and Earthquake Engineering, 1988, 7(3): 143-148.
    [30] Han, Y.C. Coupled vibration of embedded foundation. Journal of Geotechnical Engineering, ASCE, 1989,115(9): 1227-1238.
    [31] Han, Y.C. and Sabin, G.C.W. Impedance for radially inhomogeneous viscoelastic soil media. Journal of Engineering Mechanics, ASCE, 1995, 121(9): 939-947.
    [32] Hanson, M.T. and Puja, I.W. The Reissner-Sagoci problem for the transversely isotropic half-space. Journal of Applied Mechanics, 1997, 64:692-294.
    [33] Japon, B.R., Gallego, R. and Dominguez, J. Dynamic stiffness of foundations on saturated poroelastic soils. Journal Engineering Mechanics, ASCE, 123(11): 1121-1129.
    [34] Kaldjian, M.J. Torsional stiffness of embedded footings. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(SM7): 969-980.
    [35] Karasudhi, P., Rajapakse, R.K.N.D. and Hwang, B.Y. Torsion of a long cylindrical elastic bar partially embedded in layered elastic half space. International Journal of Solids and Structures, 1984,20: 1-11.
    [36] Keer, L.M. and Freeman N.J. Load transfer problem for an embedded shaft in torsion. Journal of Applied Mechanics, 1970,12: 959-964.
    [37] Keer, L.M., Jabali, H.H. and Chantaramungkorn, K. Torsional oscillations of a layer bonded to an elastic half space. International Journal of Solids and Structures, 1974, 10:1-13.
    [38] Kobori, T, Minai, R. and Bara, K. Torsional vibration characteristics of the interaction between a cylindrical elastic rod and its surrounding viscoelastic stratum. Proceedings of the 23rd Japan National Congress for Applied Mechanics, Theoretical and Applied Mechanics, University of Tokyo Press, Tokyo, Japan, 1973, 23: 115-123.
    [39] Kobori, T., Minai, R. and Bara, K. Torsional vibration characteristics of the interaction between a cylindrical elastic rod and its surrounding viscoelastic stratum. Proceedings of the 24th Japan National Congress for Applied Mechanics, Theoretical and Applied Mechanics, University of Tokyo Press, Tokyo, Japan, 1974, 24: 197-205.
    [40] Konagai, K. and Nogami, T. Subgrade model for transient response analysis of multiple embedded bodies. Earthquake Engineering and Structural Dynamics, 1994,23: 1097-1114.
    [41] Kuhlemeyer, R.L. Static and dynamic laterally loaded floating piles. Journal of the Geotechnical Engineering Division, ASCE, 1979, 105(GT2): 289-304.
    [42] Lakshmanan, N. and Minai, R. Dynamic soil reactions in radially non-homogeneous soil media. Bulletin of the Disaster Prevention Research Institute, Kyoto University, 1981, 31(2): 79-114.
    [43] Lamb, H. On the propagation of tremors over the surface of an elastic solid. Philosophical Transactions of the Royal Society of London, 1904,203(A): 1-42.
    [44] Liang, R.Y. and Husein, A.I. Simplified dynamic method for pile-driving control. Journal of Geotechnical Engineering, ASCE, 1993, 119(4): 694-713.
    [45] Liu, W.M. and Novak, M. Dynamic response of single piles embedded in transversely isotropic layered media. Earthquake Engineering and Structural Dynamics, 1994, 23:1239-1257.
    [46] Luco, J.E. Dynamic responses of circular footings. Journal of the Engineering Mechanics Division, ASCE, 1971,97(EM5): 1381-1395.
    [47] Luco, J.E. Torsion of a rigid cylinder embedded in an elastic half space. Journal of Applied Mechanics, 1976,9:419-423.
    [48] Lysmer, J. and Richart, F.E. Dynamic response of footings to vertical loading. Journal of the Soil Mechanics and Foundations Division, ASCE, 1966,92(SM1): 65-91.
    [49] Militano, G. and Rajapakse, R.K.N.D. Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading. Geotechnique, 1999,49(1): 91-109.
    [50] Muki, R. and Sternberg, E. Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod. International Journal of Solids and Structures, 1970, 6: 69-90.
    [51] Niumpradit, B. and Karasudhi, P. Load transfer from an elastic pile to a saturated porous elastic soil. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5: 115-138.
    [52] Nogami, T. and Konagai, K. Time domain axial response of dynamically loaded single piles. Journal of Engineering Mechanics, ASCE, 1986, 112(11): 1241-1252.
    [53] Nogami, T. and Konagai, K. Time domain flexural response of dynamically loaded single piles. Journal Engineering Mechanics, ASCE, 1988, 114(9): 1512-1525.
    [54] Nogami, T. and Novak, M. Soil-pile interaction in vertical vibration. Earthquake Engineering and Structural Dynamics, 1976,4: 277-293.
    [55] Nogami, T. and Novak, M. Resistance of soil to a horizontally vibrating pile. International Journal of Earthquake Engineering and Structural Dynamics, 1977,3(3): 247-261.
    [56] Nogami, T. and Novak, M. Coefficients of soil reaction to pile vibration. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(GT5): 565-570.
    [57] Novak, M. Effect of soil on structural response to wind and earthquake. International Journal of Earthquake Engineering and Structural Dynamics, 1974, 3(1): 79-96.
    [58] Novak, M. Dynamic stiffness and damping of piles. Canadian Geotechnical Journal, 1974, 11(4): 574-598.
    [59] Novak, M. Vertical vibration of floating piles. Journal of the Engineering Mechanics Division, ASCE, 1977,103(EM1): 153-168.
    [60] Novak, M. and Aboul-Ella, F. Impedance functions of piles in layered media. Journal of the Engineering Mechanics Division, ASCE, 1978, 104(EM6): 643-661.
    [61] Novak, M. and Beredugo, Y.O. Vertical vibration of embedded footings. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98(SM12): 1291-1310.
    [62] Novak, M. and Han, Y.C. Impedances of soil layer with disturbed boundary zone. Journal of Geotechnical Engineering, ASCE, 1990,116(6): 1008-1014.
    [63] Novak, M. and Howell, F. Torsional vibration of pile foundations. Journal of the Geotechnical Engineering Division, ASCE, 1977,104(GT4): 271-285.
    [64] Novak, M. and Howell, F. Dynamic response of pile foundations in torsion. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(GT5): 535-552.
    [65] Novak, M., Nogami, T. and Aboul-Ella, F. Dynamic soil reactions for plane strain case. Research Report BLWT-1-77, Faculty of Engineering Science, University of Western Ontario, London, Ontario, Canadan, 1977: 1-26.
    [66] Novak, M., Nogami, T. and Fakhry Aboul-Ella. Dynamic soil reactions for plane strain case. Journal of the Engineering Mechanics Division, ASCE, 1978, 104(EM4): 953-959.
    [67] Novak, M. and Sachs, K. Torsional and coupled vibrations of embedded footings. International Journal of Earthquake Engineering and Structural Dynamics, 1973,2(1): 11-33.
    [68] Novak, M. and Sheta, M. Approximate approach to contact problems of piles. Proceedings of the Geotechnical Engineering Division, American Society of Civil Engineering National Convention, Florida, 1980: 53-79.
    [69] Philippacopoulos, A.J. Waves in a partially saturated layered half-space analytic formulation. Bulletin of the Seismological Society of America, 1987,77(5): 1838-1853.
    [70] Philippacopoulos, A.J. Lamb's problem for fluid-saturated porous media. Bulletin of the Seismological Society of America, 1988,78(2): 908-923.
    [71] Philippacopoulos, A.J. Spectral Green's dyadic for point sources in poroelastic media. Journal of Engineering Mechanics, ASCE, 1998, 124(1): 24-31.
    [72] Poulos, H.G Torsional response of piles. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(GT10): 1019-1035.
    
    [73] Poulos, H.G and Davis, E.H. Pile foundation analysis and design. New York: Wiley, 1981.
    [74] Rajapakse, R.K.N.D. A torsion load transfer problem for a class of non-homogeneous elastic solids. International Journal of Solids and Structures, 1988, 24(2): 139-151.
    [75] Rajapakse, R.K.N.D. A note on the elastodynamic load transfer problem. International Journal of Solids and Structures, 1988,24(7): 963-972.
    [76] Rajapakse, R.K.N.D. Dynamics of piles: A critical evaluation of continuum solution models. Proc. CSCE Annual Conference, Calgary, Canada, 1988, III: 216-236.
    [77] Rajapakse, R.K.N.D. Stress analysis of borehole in poroelastic medium. Journal of Engineering Mechanics, ASCE, 1993,119(6): 1205-1227.
    [78] Rajapakse, R.K.N.D. and Senjuntichai, T. Dynamic response of a multi-layered poroelastic medium. Earthquake Engineering and Structural Dynamics, 1995, 24: 703-722.
    [79] Rajapakse, R.K.N.D. and Selvadurai, A.P.S. Torsional stiffness of non-uniform and hollow rigid piers embedded in isostropic elastic media. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9: 525-539.
    [80] Rajapakse, R.K.N.D. and Shan, A.H. On the lateral harmonic motion of an elastic bar embedded in an elastic half space. International Journal of Solids and Structures, 1987,23(2): 287-303.
    [81] Rajapakse, R.K.N.D. and Shah, A.H. Impedance curves for an elastic pile. Soil Dynamics and Earthquake Engineering, 1989, 8(3): 145-152.
    [82] Rajapakse, R.K.N.D., Shan, A.H. and Datta, S.K. Torsional vibrations of elastic foundations embedded in an elastic half-space. Earthquake Engineering and Structural Dynamics, 1987, 15: 279-297.
    [83]Randolph,M.F.Piles subjected to torsion.Journal of the Geotechnical Engineering Division,ASCE,1981,107(GT8):1095-1111.
    [84]Randolph,M.F.and Worth,C.P.Analysis of deformation of vertically loaded piles.Journal of the Geotechnical Engineering Division,ASCE,1978,104:1465-1487.
    [85]Reissner,E.Stationare,axialsymmetrische,durch eine schuttelnde masse erregte Schwingungen eines homogenen elastischen halfbraumes,Ingenieur-Archiv,1936:381-396.
    [86]Reissner,E.and Sagoci,H.F.Forced torsional oscillations of an elastic half-space(Ⅰ).Journal of Applied Physics,1944,15:652-654.
    [87]Reissner,E.Forced torsional oscillations of an elastic half-space(Ⅱ).Journal of Applied Physics,1944,15:655-662.
    [88]Robertson,I.A.On a proposed determination of the shear modulus of an isotropic half-space by the forced torsional oscillations of a circular disc.Appl.Sci.Res.,1966,17:305-312.
    [89]Schmitt,P.D.Acoustic multipole logging in transversely isotopic poroelastic formations.Journal of the Acoustical Society of America,1989,86(6):2397-2421.
    [90]Selvadurai,A.P.S.and Rajapakse,R.K.N.D.Variational schemes for torsion of non-uniform bars embedded in elastic media.Journal of Engineering Mechanics,ASCE,1987,113(10):1534-1550.
    [91]Sen,R.,Davies,T.G.and Banerjee,P.K.Dynamic analysis of piles and pile groups embedded in homogeneous soils.Earthquake Engineering and Structural Dynamics,1985,13(1):53-65.
    [92]Senjuntichai,T.and Rajapakse,R.K.N.D.Transient response of a circular cavity in a poroelastic medium.International Journal for Numerical and Analytical Methods in Geomechanics,1993,17:357-383.
    [93]Senjuntichai,T.and Rajapakse,R.K.N.D.Dynamic Green's functions of homogeneous poroelastic half-space.Journal of Engineering Mechanics,ASCE,1994,120(11):2381-2404.
    [94]Sharma,M.D.and Gogna,M.L.Wave propagation in an isotopic liquid-saturated porous solids.Journal of the Acoustical Society of America,1991,90:(2),Pt.1:1068-1073.
    [95]Sheta,M.and Novak,M.Vertical vibration of pile groups.Journal of the Geotechnical Engineering Division,ASCE,1982,108(GT4):570-590.
    [96]Simon,B.R.,Zienkiewicz,O.C.and Paul,D.K.An analytical solution for the transient response of saturated porous elastic solids.International Journal for Numerical and Analytical Methods in Geomechanics,1984,8:381-398.
    [97]Sneddon,I.N.Note on a boundary value problem of Reissner-Sagoci.Journal of Applied Physics,1947,18:130-132.
    [98]Stehfest,H.Numerical inversion of Laplace transforms.Communication Association Comput.Machines,1970,B:47-49.
    [99]Stoll,U.W.Torque shear test on cylindrical friction piles.Civil Engineering,ASCE,1972,42(4):63-64.
    [100]Tham,L.G.,Cheung,Y.K.and Lei,Z.X.Torsional dynamic analysis of single piles by time-domain BEM.Journal of Sound and Vibration,1994,174(4):505-519.
    [101]Thomas,D.P.A note on the torsional oscillations of an elastic half space.International Journal of Engineering Science,1968,6:565-570.
    [102]Tsai,Y.M.Torsional vibration of a circular disk on an infinite transversely isotropic medium.International Journal of Solids and Structures,1989,25(9):1069-1076.
    [103]Vaziri,H.and Han,Y.C.Impedance functions of piles in inhomogeneous media.Journal of Geotechnical Engineering,ASCE,1993,119(9):1414-1430.
    [104]Veletsos,A.S.and Dotsos,K.W.Impedances of soil layer with disturbed boundary zone.Journal of Geotechnical Engineering,ASCE,1986,112(3):363-368.
    [105]Veletsos,A.S.and Dotsos,K.W.Vertical and torsional vibration of foundations in inhomogeneous media.Journal of Geotechnical Engineering,ASCE,1988,114(9):1002-1021.
    [106]Veletsos,A.S.and Nair,V.V.D.Torsional vibration of viscoelastic foundations.Journal of the Geotechnical Engineering Division,ASCE,1974,100(GT3):225-246.
    [107]Veletsos A.S.and Nair V.V.D.Response of torsionally excited foundations.Journal of the Geotechnical Engineering Division,ASCE,1974,100(GT4):476-482.
    [108]Wang C.D.and Liao J.J.Elastic solutions for a transversely isotropic half-space subjected to buried asymmetric-loads.International Journal for Numerical and Analytical Methods in Geomechanics,1999,23:115-139.
    [109]Wang,G.C.,Ge,W.,Pan,X.D.and Wang,Z.Torsional vibrations of single piles embedded in saturated medium.Computers and Geotechnics,2008,35(1):11-21.
    [110]Wang,J.H.,Zhou,X.L.and Lu,J.F.Dynamic response of pile groups embedded in a poroelastic medium.Soil Dynamics and Earthquake Engineering,2003,23(3):235-242.
    [111]Wang,Y.and Rajapakse,R.K.N.D.Transient fundamental solutions for a transversely isotropic elastic half-space.Proceedings of the Royal Society of London,1993,A(442):505-531.
    [112]Yang,J.and Sato,T.Analytical study of saturation effects on seismic vertical amplification of a soil layer.Geotechnique,2001,51(2):161-165.
    [113]Zeng,X.and Rajapakse,R.K.N.D.Dynamic axial load transfer from elastic bar to poroelastic medium.Journal of Engineering Mechanics,ASCE,1999,125(9):1048-1055.
    [114]Zienkiewicz,O.C.,Chang,C.T.and Bettess,P.Drained,undrained,consolidating and dynamic behaviour assumptions in soils.Geotechnique,1980,30(4):385-395.
    [115]Zhou X.L.,Wang,J.H.and Lu,J.F.Transient dynamic response of poroelastie medium subjected to impulsive loading.Computers and Geotechnics,2003,30:109-120.
    [116]陈刚.弹性桩与饱和土的扭转动力相互作用研究[博士学位论文].杭州:浙江大学,2007.
    [117]陈刚,蔡袁强,徐长节.横观各向同性饱和土中埋置弹性桩的扭转振动.浙江大学学报(工学版),2008,42(1):13-18.
    [118]陈龙珠,王国才.饱和地基上刚性圆板的扭转振动.工程力学,2003,20(1):131-135.
    [119]陈龙珠,吴世明,曾国熙.弹性波在饱和土层中的传播.力学学报,1987,19(3):276-282.
    [120]陈少林,寥振鹏.两相介质动力学问题的研究进展.地震工程与工程振动,2002,22(2):1-8.
    [121]陈胜立,贺海洪.横观各向同性层状饱和地基的轴对称二维Biot固结分析.上海交通大学学报,2005,39(5):760-763.
    [122]陈胜立,张建民.横观各向同性饱和地基轴对称Biot固结问题的解析解.岩土工程学报,2002,24(1):26-30.
    [123]丁皓江.横观各向同性弹性力学.杭州:浙江大学出版社,1997.
    [124]丁皓江,梁剑,陈波.各向同性和横观各向同性材料的统一点力解.计算力学学报,1997,14(2):150-156.
    [125]胡安峰,谢康和,应宏伟,钱磊.粘弹性地基中考虑桩体剪切变形的单桩水平振动解析理论.岩石力学与工程学报,2004,23(9):1515-1520.
    [126]胡昌斌.考虑土竖向波动效应的桩土纵向耦合振动理论[博士学位论文].杭州:浙江大学,2003.
    [127]胡亚元.横观各向同性饱和土中波的传播[博士学位论文].杭州:浙江大学,1998.
    [128]龚晓南.高等土力学.杭州:浙江大学出版社,1996.
    [129]龚晓南.土塑性力学.杭州:浙江大学出版社,1997.
    [130]李强.考虑三维波动的饱和土中桩纵向耦合振动理论[博士学位论文].杭州:浙江大学,2004.
    [131]李耀庄,王贻荪,邹银生.粘弹性地基中桩的动力反应分析.湖南大学学报,2000,27(1):92-96.
    [132]刘东甲.不均匀土中多缺陷桩的轴向动力响应.岩土工程学报,2000,22(4):391-395.
    [133]刘东甲.纵向振动桩侧壁切应力频率域解及其应用.岩土工程学报,2001,23(5):544-546.
    [134]刘东甲,刘煜洲,王杰英.扭转波应用于低应变动力测桩的理论研究.岩土工程学报,2003,25(3):283-287.
    [135]陆建飞.饱和土中的桩土共同作用问题研究[博士学位论文].上海:上海交通大学,2000.
    [136]门福录.波在饱含流体的孔隙介质中的传播问题.地球物理学报,1981,24(1):65-76.
    [137]钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社,2000.
    [138]沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [139]王建华,陆建飞,沈为平.半空间饱和土在内部简谐垂直力作用下的Green函数.水利学报,2001.3:54-57.
    [140]王奎华,谢康和,曾国熙.有限长桩受迫振动问题解析解及应用.岩土工程学报,1997,19(6):27-35.
    [141]王奎华,谢康和,曾国熙.变截面阻抗桩受迫振动问题解析解及应用.土木工程学报,31(6):56-67.
    [142]王奎华.变截面阻抗桩纵向振动问题积分变换解.力学学报,33(4):479-490.
    [143]王立忠,陈云敏,吴世明,丁皓江.饱和弹性半空间在低频谐和集中力下的积分形式解.水利学报,1996,2:84-88.
    [144]汪越胜,章梓茂.横观各向同性液体饱和多孔介质中平面波的传播.力学学报,1997,29(3):257-268.
    [145]王腾,王奎华,谢康和.任意段变截面桩纵向振动的半解析解及应用.岩土工程学报,2000,22(6):654-658.
    [146]王小岗,黄义.横观各向同性饱和地基的三维动力响应.应用数学和力学,2005,26(11):1278-1286.
    [147]王载舆.数学物理方程及特殊函数.北京:清华大学出版社,1991.
    [148]吴大志.横观各向同性饱和地基与圆形基础的扭转动力相互作用研究[博士学位论文].杭州:浙江大学,2005.
    [149]吴大志,蔡袁强,徐长节,占宏.横观各向同性饱和地基上刚性圆板的扭转振动.应用数学和力学,2006,27(11):1349-1356.
    [150]吴大志,蔡袁强,徐长节,占宏.瞬态扭矩作用下横观各向同性饱和地基的响应.浙江大学学报(工学版),2007,41(1):97-103.
    [151]谢康和,周健.岩土工程有限元分析理论与应用.北京:清华大学出版社,2002.
    [152]徐攸在,刘兴满.桩的动测新技术.北京:中国建筑工业出版社,1989.
    [153]杨桂通,张善元.弹性动力学.北京:中国铁道出版社,1988.
    [154]杨军,宋二详,陈肇元.桩在饱和土水平振动的辐射阻尼简化算法.岩土力学,2002,23(2):179-183.
    [155]杨峻,吴世明,蔡袁强.饱和土中弹性波的传播特性.振动工程学报,1996,9(2):128-137.
    [156]张献民,蔡婧,王建华.基桩缺陷量化低应变动测研究.岩土工程学报,2003,25(1):47-50.
    [157]张玉红,黄义.饱和土与结构动力相互作用分析.西安公路交通大学学报,2000,20(4):11-13.
    [158]张引科,黄义.横观各向同性饱和弹性多孔介质非轴对称动力响应.应用数学和力学,2001,22(1):56-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700