用户名: 密码: 验证码:
复杂条件下软粘土地基多维固结分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于前人的工作,从一维固结理论出发,对二维轴对称包括竖井地基,在复杂条件作用下的固结问题做了全面的分析。
     首先,根据e~lgσ和e~lgk_v曲线关系,对循环荷载作用下一维小应变非线性固结问题进行了分析。用数值方法编制程序对单层地基在常见荷载(骤加恒载、三角形波载、正弦波载、矩形波载和梯形波载)作用下的非线性一维固结性状进行了讨论,并与传统Terzaghi固结理论和常见荷载作用下地基一维线性固结理论所得结果进行了比较。
     然后,基于Gibson大应变固结理论,研究了循环荷载下一维大应变固结问题。通过具体算例比较研究了变荷载作用下,地基土体在一维大变形与一维小变形非线性固结时性状的异同。
     继而,从一维固结问题扩展到轴对称二维地基,利用Laplace-Hankel联合变换法,得到变荷载作用下Biot固结方程频域内解析解。从各向同性地基问题出发,分别对半空间和下卧基岩两种边界条件进行了讨论分析。又由于天然地基在形成过程中具有取向关系,水平和竖直方向存在差异,呈现各向异性的现象。在水平方向可近似地看成各向同性,但在垂直方向其形态与水平方向差异较大,因此本文接着分析了考虑横观各向同性情况下地基固结的问题。
     接着,采用Laplace变换的方法,求解了变荷载下能合理考虑土中三维渗流的未打穿砂井地基固结半解析解。此方法计算速度快,求解精确,更适合工程实际应用。
     最后,建立竖井地基非线性固结计算模型,把土体材料非线性考虑到计算模型中,推导了缓加变荷载下的解析解。
     本文工作表明:地基一维固结情况下,在渗透系数k_v与体积压缩系数,m_v呈非线性变化时,地基固结不同于传统Terzaghi固结理论所得结果。在循环荷载作用下,地基中各点的有效应力并不随时间的变化而同步变化,而是有其自身的规律——发展相对滞后;而且,有效应力变化幅度与外加荷载大小,d_c/c_k等参数密切相关。在考虑土体自重应力影响时,大变形固结在计算中特别需要考虑这一部分所引起的沉降,如果仍旧按照小变形固结来计算,其结果将远远小于实际所得。对于循环荷载下二维轴对称作用下地基固结情况,由于Biot固结方程充分考虑到地基土体水平向应力、应变和排水等影响因素,因此,孔压会出现负值,明显不同于一维固结下情况。未打穿砂井地基的固结速率随砂井长度的增大而增大,但当砂井长度超过一定值后,固结速率增长减慢;国内常用的将砂井底面作为其下土层排水面的简化计算法给出的平均固结度则偏大。对于竖井地基,当外加荷载比较大的情况下,考虑材料的非线性尤为必要。
On the basis of the work so far available, this paper makes a further study from the non-linear one-dimensional small and finite-strain consolidation theory and then analysis the two-dimensional axisymmetric consolidation theory with or without the vertical drain considering complicated surcharging loadings conditions as well.
     First, based on the well-known empirical e~lgσ' and e~lgk_v relations, one-dimensional consolidation problems of soft soils under cyclic loadings are analyzed. On the basis of the solutions obtained and the computation through programming, the influence of some parameters and loading conditions on the non-linear one-dimensional consolidation behaviors under suddenly-imposed, sin, trapezoidal, triangular and rectangular cyclic loading, are investigated. And then the results are compared with Terzaghi's consolidation theory and linear consolidation theory under cyclic loadings.
     Second, on the basis of Gibson consolidation theory and by the method of Laplace transform, the analytic solutions in frequency domain are obtained. According to numerical examples, some characteristics of non-linear consolidation behaviors of finite consolidated soil under cyclic loadings are compared with those of normal consolidated soil.
     Third, based on Biot's governing consolidation equations for semi-infinite and also finite isotropic soil layer, general solutions are derived by applying the Laplace-Hankel transform technique. A numerical inverting procedure was used to study the consolidation behavior in the time domain for different external loading cases. Due to the real soil's original deposition in horizontal beds, the real soil is often anisotropic in that its horizontal properties are different from its vertic al properties. Thus, a more realistic solution to the consolidation problem which should account for the soil anisotropy was obtained.
     Fourth, the general solution in the Laplace transform field for the consolidation of soil with partially penetrated vertical drains under complicated time-dependent loadings is derived. And the method is used here has been proved to be an efficient and accurate method, which can be widely used in practice engineering.
     At last, a new computational model which can consider the non-linear material character of the soils is established. The analytical solutions for the non-linear consolidation of soft soil with vertical drains are obtained under both constant loading case and time-depending loading case.
     From this study, the following conclusions may be obtained: on the assumption of permeability index k_v changes linearly with volume compression index w_v, consolidation of soil is different from Terzaghi's consolidation theory. And under cyclic loading, the effective stress in soil is not synchronously changed with loading but is developed in a delayed way; the scope of effective stress is related with the parameters of loading and with c_c/c_k; when considering the self-weight of soil, this portion of settlement must be calculated in the finite-strain consolidation, if the result is obtained according to the infinite consolidation, it will be far less than the actual result. For the two-dimensional consolidation, a negative pore water pressure is observed when the soil under cyclic loadings, which is different form one-dimensional consolidation theory. With the numerical modelling, it is shown that the rate of consolidation of the soft soil with partially penetrated vertical drain is increased with the increase of the drain length. However, it is slow down as the length exceeds some extent. And the consolidation degree is overestimated by the one commonly used in China. When the external loading is big enough, it is necessary to take the non-linear character of the soil into consideration.
引文
[1] Atkinson, M.S. & Eldred, P.J.L. Consolidation of soil using vertical drains. Geotechnique, 1981, 31(1): 33-43.
    
    [2] Alonso, E.e., Krizek, R.J., Randomness of settlement rate under stochastic load. Journal of Geotechnical Engineering Division, ASCE, 1974; 100(EM6):1211-1226.
    [3] Baligh, M, and Levadoux, J. Consolidation theory for cyclic loading. J. Geotech. Engrg., ASCE, 1978; 104(4), 415-431.
    [4] Barron R.A. Consolidation of fine grained soils by drains wells. Transactions of ASCE, 1948, 113:718-742.
    [5] Barden L, Berry P L .Consolidation of normally consolidation clay . Journal of the Soil Mech-anics and Foundation Division, ASCE ,1965, 91(SMS): 15-35.
    [6] Berry P L, Wilkinson W B. The radial consolidation of clay soils[J] Geithechnique, 1969,19(2):253-284.
    [7] Biot, General Theory of Three-Dimensional Consolidation, [J]. Applied Physics, 1940.
    [8] Basak, P. & Madhav, R. Analytical solutions of sand drain problems. J.Geotech.Eng.Div.,ASCE, 1977, Vol.104, No.GT1: 129-135.
    [9] Berry, P.L.&Wilkinson,W.B. The radial consolidation of clay soils. Geotechnique, 1969,19(2): 253-284.
    [10] Bhide, S.B. Sand drains additional design criteria. J.Geotech.Eng.Div., ASCE, 1979, Vol.105, No.GT4: 559-568.
    
    [11] Booker, JR 1974. The consolidation of a finite layer subjected to surface loading Int. J. Solids Structures, 10: 1053-1065.
    [12] Carrillo N. Simple two and three dimensional cases in the theory of consolidation of soils.J. Math.Physics, 1942, Vol.21:1-5.
    [13] Carrier III WD. Discussion of "Prediction of consolidation of very soft soil," by Cargill KW. Journal of Geotechnical Engineering (ASCE) 1985; 111(11): 1356-1358
    [14] Cargill, K. W. Prediction of consolidation of very soft soil [J]. Journal of the Geotechnical Engineering Division, American Society of Civil Engineering, 1984,110(6), 775-795.
    [15] Cargill, K, W. Closure of discussion of 'Prediction of consolidation of very soft soil,' by K. W. Cargill [J]. Journal of the Geotechnical Engineering Division, American Society of Civil Engineering, 1985, 111(11), 1363-1364.
    [16] Chopra. M. B. & Dargush G. F. Finite element analysis of time-dependent large deformation problems. Int. J. for Numerical and Analytical Methods in Geotechnics, 1992,16,101-130.
    [17] Christian. J. T. et. (1972), Consolidation of a layer under a strip load, Proc. ASCE, Journal of the Soil Mechanics and Foundations Division, Vol. 98, No. 7, July 1972, pp. 693-707
    [18] Cheung Y. K, Lee P K K, Xie K H. Some remarks on two and three dimensional consolidation analysis of sand-drained ground. Computers and Geotechnics, 1991,12: 73-87.
    [19] Chen, S. L., Chen, L. Z., and Zhang, L. M., Axisymmetric consolidation of a semi-infinite transversely isotropic saturated soil. Int. J. Numer. Analyt. Meth. Geomech., 2005,29(8): 1249-1270
    [20] Chen, S. L., Zhang, L. M. and Chen, L. Z., Consolidaiton of a Finite Transversely Isotropic Soil Layer on a Rough Impervious Base. Journal of Engineering Machanics, 2005,131(12): 1279-1290.
    [21] Cryer, C. W. (1963), A comparison of the three-dimensional consolidation theories of Biot and Terzaghi. Q. J. Mech. Appl. Math. 16: 401-412.
    [22] Davis E H, Raymond G P. A Non-linear of consolidation Geotechnique, 1965, 15(2):161-173.
    [23] Durbin. F. Numerical Inversion of Laplace Transform: An Efficient Improvement to Dubner and Abita's Method. The computer Journal 1974, 17, No.9, 371-376.
    [24] Ducan, J.M., Limitations of consolidation analysis of consolidation settlement. Journal of Geotechnical Engineering, ASCE, 1993; 119(9): 1333-1359.
    [25] Favaretti, M., and Mazzucato, A. Settlements of a silo subjected to cyclic loading. Int. Proc., Settlement 94, ASCE, Reston, Va., 1994; Vol. 1,775-785.
    [26] Favaretti, M., and Soranzo, M. A simplified consolidation theory in cyclic loading conditions. Int. Symp. On Compression and consolidation of Clayey Soils, A. A. Balkema, Rotterdam, The Netherlands, 1995; 405-409.
    [27] Feldkamp, J. R. Permeability measurement of clay pastes by a non-linear analysis of transient seepage consolidation tests [J]. Geotechnique, 1989a, 39(1), 141-145.
    [28] Feldkamp, J. R. Numerical analysis of one-dimensional nonlinear large-straain consolidation by the finite element method [J]. Transport in Porous Media, 1989b, 4(3), 139-157.
    [29] Fox, P. J Solution charts for finite strain consolidation of normally consolidation clays [J]. Journal of the Geotechnical Engineering Division, American Society of Civil Engineering, 1999,125 (10), 203-207.
    [30] Geng Xueyu, Xu Changjie and Cai Yuanqiang, Non-linear consolidation analysis of soil with variable compressibility and permeability under cyclic loadings. I Int. J. Numer. Analyt. Meth. Geomech., 2006, 30(8): 803-821.
    [31] Gay H. Simulatanous consolidation of contiguous layers of unlike compressible [J]. Trams. ASCE, 1945: 111: 1327-1356.
    [32] Gibson, R. E., England, G L., and Hussey M.J.L. The theory of one-dimensional consolidation of saturated clays. I. finite non-linear consolidation of thin homogeneous layers [J]. Geotechnique, 1967, 17(3), 261-273.
    [33] Gibson, R. E. Schiffman, R. L. and Cargill, K. W. The theory of one-dimensional consolidation of thick homogeneous layers [J]. Canadian Geotechnical Journal, 1981, 18(2), 280-293.
    [34] Hansbo S., Jamiolkowski, M. & Kok, L. Consolidation by vertical drains. Geotechnique, 1981, 31(1): 45-46.
    [35] Hart E G, Kondner R L, Boyer W C. Analysis for partially penetrating sand drains. Journal of Soil Mechanics and Foundation Division, Proceedings of ASCE, 1958: 1812-1—1812-15.
    [36] Hong H P, Shang J Q. Probabilistic analysis of consolidation with prefabricated vertical drains for soil improvement. Can. Geotech. J., 1998, 35: 666-667.
    [37] Indraratna B, Rujikiatkamjorn C, Sathananthan I. Radial consolidation of clay using compressibility indices and varying horizontal permeability [J]. Canadian Geotechnical Journal, 2005,42: 1330-1341.
    [38] Johnson, S.J. Foundation precompression with vertical sand drains. JSMFD, ASCE, 1970, Vol. 96, No.SM1: 145-175.
    [39] Jianguo W and Shisheng F. (2003) State space solution of non-axisymmetric Biot consolidation problem for multilayered porous media. International Journal of Engineering Science 41(15): 1799-1813.
    [40] Kjellman, W. (1952). "Consolidation of clayey soils by atmospheric pressure." Proc, Conf. on Soil Stabilization, Massachusetts Institute of Technology, Boston, 258-263.
    [41] Kang-He Xie, Xin-Yu Xie, Wen Jiang. A study on one-dimensional nonlinear consolidation of double-layered soil. Computers and Geotechnics, 2002, 29: 151-168.
    [42] K. H. Xie, K. H. Wang & G X. Zeng, A study on 1-D consolidation of soils exhibiting rheological characteristics with impeded boundary [C]. Second internation conference on soft soil engineering, Naingjing, 1996.
    [43] K. H. Xie & C. J. Leo. An Investigation into the Nonlinear Consolidation of Layered Soft Soils. Research Report CE11, School of Civil Engineering and Environment, UWS, Nepean, Australia. 1999.
    [44] K. R. Lekha, N. R. Krishnaswamy, P. kBasak. Consolidation of Clays for Variable Permeability and Compressibility. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003,129(11): 1001-1009.
    [45] Kjellman, W. (1952). Consolidation of clayey soils by atmospheric pressure. Proc, Conf. on Soil Stabilization, Massachusetts Institute of Technology, Boston, 258-263.
    [46] Lee P K K, Xie K H, Cheung Y K. A study on one-dimensional consolidation of layered systems. International Journal for Numerical and Analytical Methods in Geomechanics. 1992,16: 815-831.
    [47] Lee P K K, Xie K H. Consolidation characteristics of layered soil installed with vertical drains. Proc. Second International Conference on Soft Soil Engineering, Nanjing, 1996: 391-398.
    [48] Leonhard D. Approach to thickening and dewatering using a one-dimensional finite strain consolidation model. Water Science & Technology 1993; 28(1): 117-131
    [49] Mandel, J. (1953), Consolidation des sols (etude mathematique), Geotechnique 3: 287-299.
    [50] Moser, M.A. The effectiveness of sand drains in soft soils.International Symposium on soft Clay, Bankok, Thailand, 1977:261-270.
    [51] Mikasa M. The consolidation of soft clay: A new consolidation theory and its application [J]. Civil Engineering in Japan, Japan Society of Civil Engineers, 1965,1(1): 21-26.
    [52] Mikasa M. Finite strain consolidation-a study of convention (discussion) [J]. Solis and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 1990, 30(2), 159-162.
    [53] McVay, M., Townsend, F., and Bloomquist, D. Quiescent consolidation of phosphatic waste clays [J]. Journal of the Geotechnical Engineering Division, American Society of Civil Engineering, 1986,112(11), 1033-1049.
    [54] McNamee, J. and Gibson, R. E., Displacement functions and linear transforms applied to diffusion through porous elastic media. Q. J. Mech. Appl. Math., 1960a, 13(1), 98-111.
    [55] McNamee, J., and Gibson, R. E., Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratum. Q. J. Mech. Appl. Math., 1960b, 13(2), 210-227.
    [56] Mesri G, and Rokhsar A. Theory of consolidation for Clays, J. Geotech. Eng. Div., Soc. Civ. Eng., 1974,100(8): 889-904.
    [57] P. H. Morris. Analytical Solutions of Linear Finite-Strain One-Dimensional Consolidation. Journal of the Soil Mechanics and Foundation Division [J]. Journal of Geotechnical and Geoenvironmental Engineering American Society of Civil Engineering, 2002,128(4): 319-326.
    [58] Olson, R.E., Consolidation under time-dependent loading. Journal of Geotechnical Engineering Division, ASCE, 1977; 103(GT1):55-60.
    [59] Onoue A. Consolidation of multilayered anisotropic soils by vertical drains with well resistance. Soils and Foundations, 1988(a), 28(3): 75-90.
    [60] Onoue A.Consolidation by vertical drains taking well resistance and swear into consolidation. Soils and Foudations, 1998(b), 28(4): 165-174.
    [61] Rao K K, Raju M V R. One-dimensional consolidation with three-dimensional flow for time-dependent loading [J]. Journal of Geotechnical Engineering, 1990,116(10): 1576-1580.
    [62] Rendulic, L. - Ein Beitrag sur Bestinnung der glieitsicherheit- Der bauingenieur, 1935, 19-20.
    [63] Richart, Jr.F.E. A review of the theories for sand drains. Proc. ASCE, 1957, Vol.83, No. SM3:1-38.
    [64] Runesson K, Hansbo S, Wiberg N.E. The efficiency of partially penetrating vertical drains. Geotechnique, 1985, 35(4): 511-516.
    [65] Schiffman, R. L. y Fungaroli, A. A. (1965): "Consolidation due to Tangential Loads". Proceedings of the 6th ICSMFE, vol 2: 188-192. Montreal.
    [66] Singh, G. & Hattab, T. N. A laboratory study of efficency of sand drains in relation to methods of installation and spacing. Geotechnique, 1979, 29(4): 395-422.
    [67] S. Arnod, M. Battaglio, N. Bellomo, Nonlinear Models in Soils Consolidation Theory Parameter Sensitivity Analysis [J]. Mathl. Comput. Modelling, 1996, 24(3): 11-20.
    [68]Tan T S,Scott R F.Finite Strain consolidation-A study of convection[J].Solis and Foundations,Japanese Society of Soil Mechanics and Foundation Engineering,1998,28(3),64-74.
    [69]Tang X W,ONITSUKA K.Rigorous solutions of vertical drains considering radial and vertical flow under equal condition.31~(st) Annual Conference of Japanese Geotechnical Society.1996:633-634.
    [70]Tang X W,ONITSUKA K.Analytical solution of Consolidation of double-layered ground with vertical drains.Proceedings of the 52~(nd) Annual Conference of JSCE,3-(A),1997a:350-351.
    [71]Tang X W,ONITSUKA K,Xie K H.Consolidation solutions for double-layered ground with vertical ideal drains.Proc.of 9~(th) Int.Conf.of The Association for Computer Methods and Advances in Geomechanics.Wuhan,1997b:447-450.
    [72]Tang X W.A study for consolidation of ground with vertical drain system.PH.D.Dissertation,Saga University,Japan,1998a.
    [73]Tang X W,ONITSUKA K.Consolidation of ground with partially penetrated vertical drains.Geotechnical Engineering Journal,1998b,29(2):209-231.
    [74]Terzaghi K.Theoretical Soil Mechanics.Wiley,New York,1943.
    [75]Wilson,N.E.,Elgohary,M.M.,Consolidation of soil under cyclic loading.Canadian Geotechnical Journal,1974;11(3):420-423
    [76]Weber W.G(1969).Performance of embankments constructed over peat.Journal of Soil Mechanics and Foundations,ASCE,95(1),53-76.
    [77]Wang Xu-Sheng,Jiu Jimmy Jiao.Analysis of soil consolidation by vertical drains with double porosity model.International journal for numerical and analytical methods in geomechanics,Willey,2004,28:1385-1400.
    [78] Xie K H, Zhu X R, Pan Q Y, Zeng G X. Recent studies on the smear action of vertical drains. Proc. of Int. Conference on Geotechnical Eng.and Earthquake Resistant Technology in Soft Areas, 1993: 92-99.
    [79] Xie K H, Lee P K K. One dimensional consolidation of a three layer system. Proc.of Int.Conf. on computational Methods in Structural and Geotech. Eng., 1994b: 1574-1579.
    [80] Xie K H, Lee P K K, Cheung Y K. Consolidation of two-layer system with vertical ideal drains. Proc. 8~(th) Int. Conf. on Computer & Advances in Geomechanics,(1), West Virginia, U.S.A, 1994c: 789-794.
    [81] Xie K H, Xie X Y, Gao X. Theory of one dimensional of two layered soil with partially drained boundaries. Computers and Geotechnics, 1999, 24(4): 265-278.
    [82] Xie X Y, Zhu X R, Zhao Y, Pan Q Y. Observational settlement prediction of vertical-drained Ground by method of least square. Proc. of 9~(th) Int. Conf. of The Association for Computer Methods and Advances in Geomechanics. Wuhan, 1997: 369-374.
    [83] Yuanqiang Cai, Xueyu Geng and Changjie Xu, Solution of one-dimensional finite-strain consolidation of soil with variable compressibility under cyclic loadings. Comput. Geotech., 2007, 34(1): 31-40.
    [84] Yoshikuni H., Nakanodo H. Consolidation of soils by vertical drain wells with finite permeability. Soils and Foundations, 1974, 14(2): 35-46.
    [85] Zeng G X, Wang T R, Gu Y Z. Some aspects of sand-drained ground. Proc. 10~(th) ICSMFE,(3), Stockholm, 1981: 835-838.
    [86] Zeng G X, Xie K H & Shi Z Y. Consolidation analysis of sand-drained ground by F.E.M. Proc. 8~(th) ARCSMFE, 1987,1.
    [87]Zeng G X,Xie K H.New development of the vertical drain theories.Proc.12~(th)ICSMFE,(2),Rio de Janeiro,1989:1435-1438.
    [88]Zeng G X,Pan Q Y,Xie K H.Advances in dedign theories for vertical drains.Proceedings of The First Iranian International Seminar on SMFE,Iran,1990:278-289.
    [89]Znidarcic,D.,Schiffman,R.L.,Pane,V.,Croce,P.,Ko,H.-Y.,and Olsen,H.W.The theory of one-dimensional consolidation of saturated clays:Part V.Constant rate of deformation testing and analysis[J].Geotechnique,1986,36(2),227-237.
    [90]Zhu G F,Yin J H.Consolidation of soil under depth-dependent ramp load[J].Canadian Geotechnical Journal,1998,35(3):344-350.
    [91]Zhu G F,Yin J H.Consolidation of double soil layers under depth-dependent ramp load[J].Geotechnique,1999,49(3):415-421.
    [92]Zhu G F,Yin J H.Design charts for vertical drains considering construction time[J].Canadian Geotechnical Journal,2001,38(5):1142-1148.
    [93]蔡袁强,徐长节,丁狄刚,“循环荷载下成层饱水地基的一维固结”振动工程学报,1998,11(2):184-193.
    [94]蔡袁强,徐长节,袁海明,“任意荷载下成层粘弹性地基的一维固结”应用数学和力学,2001,22(3):307-313.
    [95]蔡袁强,变荷载下成层地基的固结计算[博士学位论文],浙江大学,1998
    [96]陈根嫒.多层地基的一维固结计算方法与砂井地基计算的改进建议.水利水运科学研究,1984,2:18-29.
    [97]陈光敬,赵锡宏,横观各向同性非均质地基的Biot固结轴对称问题求解[J]。土木工程学报,1999,32(1):14-20
    [98]方晔,Gibson地基的一维固结分析[硕士学位论文],浙江大学,2003.
    [99]高木俊介.为排水砂井工程而制备的图表及其使用例(南科所译文).土工基础,1955,Vol.3(12).
    [100]关山海,循环荷载下地基一维固结研究性状[硕士学位论文],浙江大学2002
    [101]顾尧章,金波.轴对称载荷下多层地基的Biot固结及其变形[J],工程力学,1992,9(3):81-94
    [102]郝玉龙,陈云敏,王军.深厚软土未打穿砂井超载预压地基孔隙水压力消散规律分析.中国公路学报,2004,15(2):36-39.
    [103]胡亚元,王立忠,陈云敏,吴世明。多层地基二维Biot固结理论解答。岩土工程学报,1998,20(5):17-21.
    [104]纪多辙,石祥锋,横观各向同性圆柱土样轴对称Biot固结解析解。岩土力学,2002,23(6):765-769.
    [105]梁旭,蔡袁强,吴世明,潘晓东,“半透水边界饱和土层在循环荷载作用下的一维固结分析”水利学报,2002,7:31-36.
    [106]李冰河,谢康和,应宏伟,曾国熙,“变荷载下软粘土非线性一维固结半解析解”岩土工程学报,1999,21(3):288-293.
    [107]李冰河,谢康和,应宏伟,曾国熙,“初始有效应力沿深度变化的非线性一维固结解半解析解”土木工程学报,1999,32(6):47-52.
    [108]刘加才,施建勇,赵维炳,等.变荷载作用下未打穿竖井地基固结分析[J].岩石力学与工程学报,2005,24(6):1041-1046.
    [109]潘秋元,朱向荣,谢康和.关于砂井地基超载预压的若干问题.浙江大学百年校庆暨七十周年系庆土木工程论文集,杭州,1997:260-270.
    [110]钱家欢,殷宗泽.土工原理计算.北京,水利电力出版社,1994.
    [111]沈珠江.理论土力学[M].北京:水利水电出版社,2000.
    [112]王立忠,李玲玲.未打穿砂井地基下卧层固结度分析.中国公路学报,2000,13(3):4-8.
    [113]王瑞春.竖井地基和散体材料桩复合地基固结解析研究.浙江大学博士论文,2001.
    [114]王瑞春,童恺显,赖泉水.未打穿半透水下卧层的竖井地基固结解析研究.城市道桥与防洪,2003,1:31-35.
    [115]王贻荪.考虑砂井阻力的折减井径法.岩土工程学报,1982,4(3):43-51.
    [116]王奎华,谢康和,曾国熙.双面半透水边界的一维粘弹性固结理论.岩土工程学报,1998,20(2):34-36.
    [117]谢康和.砂井地基:固结理论、数值分析与优化设计.浙江大学博士论文,1987.
    [118]谢康和,曾国熙.等应变条件下的砂井地基固结解析理论.岩土工程学报,1989a,11(2):3-17.
    [119]谢康和.砂井地基的优化设计.土木工程学报,1989b,22(2):3-11.
    [120]谢康和.双层地基一维固结理论与应用.岩土工程学报,1994a,16(5):24-35.
    [121]谢康和.等应变条件下的双层理想井地基固结理论.浙江大学学报,1995,29(5):529-539.
    [122]杨丹,吴世明,陈龙珠,“循环荷载作用下饱和粘土的一维粘弹塑性解答”水利学报,1992,5:52-58.
    [123]曾国熙,王铁儒,顾尧章.砂井地基的若干问题.岩土工程学报,1981,3(3):74-81.
    [124]曾国熙.竖井排水固结理论研究的若干进展.结构与地基国际学术研讨会论文集,杭州,浙江大学出版社,1994.
    [125]张维然,曾正强,等.上海市地面沉降特征及对社会经济发展的危害[J].同济大学学报,2002,30(9):1129-1133.
    [126]朱向荣,潘秋元,卞守中,谢康和.超载预压加固宁波机场场道软基.浙江大学百年校庆暨七十周年系庆土木工程论文集,杭州,1997,271-279.
    [127]张玉国,谢康和,庄迎春,等.未打穿砂井地基固结理论计算分析[J].岩石力学与工程学报,2005,24(22):4164-4171.
    [128]张玉国,谢康和,王哲,等.未打穿砂井地基下卧层固结研究分析[J].岩土力学,2005,26(11):1737-1742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700