用户名: 密码: 验证码:
锚拉抗滑桩设计计算理论和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗滑桩尤其是锚拉抗滑桩是处治大型滑坡行之有效的支挡结构。而锚拉抗滑桩作为一种新的抗滑支挡结构,其设计计算理论远滞后于工程应用,加强对桩锚抗滑支挡结构设计计算理论和试验研究,具有重要的理论和实际意义。为此,本文结合教育部博士点基金(20050532021)、交通部西部项目(200631880237)和湖南省建设科技项目(2006012),通过室内模型试验和理论分析较系统地研究了锚杆、普通抗滑桩和锚拉抗滑桩的受力和承载特性,主要研究工作和成果如下:
     (1)考虑锚杆锚固段周围土体在较大拉拔力作用下有一部分可能进入塑性状态的情形,采用三折线模型模拟土体的剪切应力应变关系,基于剪切位移法研究了锚杆锚固段荷载传递机理和承载特性,导出了相应的弹性极限荷载和塑性极限荷载计算公式,并得到了锚固段剪应力和轴力计算公式。将所得公式分别应用于拉力型和压力型锚杆的受力分析,获得了一些可供工程设计参考的有益的结论。
     (2)针对抗滑桩设置后边坡最危险滑动面有可能发生变化的情形,以边坡最小稳定安全系数作为目标函数,基于自适应遗传算法(AGA)提出了抗滑桩支护边坡任意滑动面全局优化搜索算法,并编制计算程序。算例计算结果对于普通边坡所得滑动面和稳定安全系数,与已有结果较为接近,表明本文提出的算法可行;进一步对普通边坡和抗滑桩加固边坡的计算表明,由于抗滑桩的设置边坡最危险滑动面会发生变化。
     (3)引入半解析半数值的加权残值法,采用适应性较广的B样条函数作为试函数,提出了一种计算抗滑桩内力的新方法,得到了计算抗滑桩内力位移的加权残值解,编制了计算程序。此方法对抗滑桩全桩内力统一计算求解,克服了已有方法将抗滑桩分推力段和锚固段分别进行计算的缺陷,且桩周土地基系数可采用双参数法表示。将提出的方法应用于验证算例和计算实例,结果表明对于双参数地基加权残值解效果良好;同时针对抗滑桩加固后边坡最危险滑动面变化的情形,根据抗滑桩加固前和加固后搜索到的滑面分别对抗滑桩内力进行计算,结果表明两者差别较大,若不考虑滑动面位置变化对抗滑桩进行设计是不合理的。
     (4)总结并改进已有锚拉抗滑桩锚索设计拉力和预应力计算方法,将加权残值法引入到锚拉抗滑桩的计算,针对锚索作用于桩身的三种不同情形,考虑锚索与桩身的位移协调,提出基于加权残值法锚拉抗滑桩内力位移计算新方法。详细探讨预应力锚索抗滑桩计算过程,编制了计算程序。实例分析表明计算结果与已有结果吻合较好且计算效率高,提出的算法可行;进一步计算表明随着锚索设计拉力的增大,桩身的最大剪力值减小,最大负弯矩增大,最大正弯矩减小。采用桩身最大正负弯矩大致相等的方法(方法五)进行设计,所得弯矩最利于桩身配筋,但其施工难度可能增大,对于具体实例需综合比较各种因素采用合适设计方法。
     (5)自行设计并完成了普通抗滑桩和锚拉抗滑桩室内模型试验,获得了一系列试验数据,研究了土坡中抗滑桩滑坡推力、桩前土体抗力及桩身内力等分布规律,并利用加权残值法对模型试验中抗滑桩和锚拉抗滑桩进行计算,结果表明加权残值法计算值与试验实测值吻合良好,从试验上验证了本文提出的基于加权残值法计算抗滑桩和锚拉抗滑桩算法的可靠性。
     (6)引入统一强度理论分析抗滑桩周围土体应力状态,提出了抗滑桩和锚拉抗滑桩合理锚固深度和桩间距计算新方法。实例分析表明计算结果与已有结果差别很小,算法可行。分析了中主应力对计算结果的影响,反应中主应力影响的参数b越小,安全储备越高,b取0时统一强度理论即为Mohr-Coulomb强度理论。对比分析普通抗滑桩和锚拉抗滑桩的锚固深度和桩间距值,可知由于锚索的施加,锚拉抗滑桩锚固深度减小,桩间距增大。
Anti-slide pile especially anti-slide pile with prestressed cable is an effective supporting structure for treating large landslides. The anti-slide pile with prestressed cable is used as a new anti-slide supporting structure, its design calculation theory has lagged far behind its engineering application. So it will take important theoretical and practical significance to strengthen theoretical and experimental study for reinforcement mechanism and design calculation supporting structure consist of anchors and piles. Therefor, by integrating Education Ministry Doctoral Fund (20050532021), Communication Ministry Western Project (200631880237) and Hunan Construction S&T Project(2006012), the anchor, common anti-slide pile and anti-slide pile with prestressed cable are systematically studied through laboratory model test and theoretical analysis in the paper, the main researches and results are as follows:
     (1) The condition that soil surrouding anchorage body will partly enter into plastic state when it is subjected to comparatively large drawing force, the soil shear stress and strain relationship is simulated by trilinear model, load transfer mechanism and bearing characteristic of anchorage body based on shear displacement method are studied, corresponding elastic and plastic limit loads calculation formulae are derived, shear stress and axial calculation formulae of anchorage body are obtained. The derived formula is applied to mechanical analysis of tension type and pressure type anchor respectively, some beneficial conclusions that can provide reference for engineering design are drawn.
     (2) Considering the condition that the most dangerous slip surface of slope is possible to change after setting anti-slide piles, the slope minimum stability safety factor is used as objective function, based on adaptive genetic algorithm(AGA), global optimization search method to arbitrary slip surface of slope retained by anti-slide pile is presented, and calculation program is programmed. The obtained slip surface and stability safety factor calculated by presented method are comparatively close to existing results, which shows the presented method is feasible. Furthmore, the calculation results for the common slope and slope reinforced by anti-slide pile show the most dangerous slip surface of slope will change due to the setup of anti-slide pile.
     (3) Semi-analytical and semi-numerical weighted residual method is imported, widely adaptive B spline function is acted as trial function, a new method to calculate internal force of anti-slide pile is put forward, the weighted residual solution for calculating internal force and displacement of anti-slide pile is obtained, calculation program is programmed. The presented method can calculate whole pile internal force unifiedly, and it overcomes the defect that existing method should separat the pile into thrust segment and anchorage segment and then calculat respectively, the foundation coefficient can be expressed as double parameter method. The presented method is applied to verification examples and calculation examples, the results show the effect of weighted residual solution in double parameter foundation are well. Simultaneously, for the case that the most dangerous slip surface of slope will change after setting anti-slide pile, according to the different slip surface of slope searched before and after setting anti-slide pile, the pile internal force is calculated, the two results are of great difference, so it is unreasonable for anti-slide pile if the change of the slip surface of slope is not considered.
     (4) The anchoring cable design tensile force and prestressing calculation methods of anti-slide pile with prestressed cable are summed and improved, the weighted residual method is introduced to calculate anti-slide pile with prestressed cable, direct to three different cases of anchoring cable acted on pile, displacement coordination between pile and anchoring cable is considered, the new method of internal force and displacement calculation based on weighted residual method is put forward. The calculation process of anti-slide pile with prestressed cable is discussed in detail, and program the calculation procedure. Example analysis shows the calculation results are consistent well with existing results, the presented method is feasible. According to further calculation, the more the anchoring tensile force , the less the shearing force of the pile, the more the maximum of negative bending moment, the less the maximum of positive bending moment. When the method that the maximum of negative bending moment and maximum of positive bending moment are about equal(the fifth method) is used to design, the obtained bending moment is most favorable for reinforcemet, but its construction difficulty is possible to increase, to specific example, it should compare all kinds of factors and use suitable design method.
     (5) Laboratory model tests on ordinary anti-slide pile and anti-slide piles with prestressed cable are self designed and accomplished. a series of testing data is obtained, The distributing rules of anti-slide pile landslide thrust, soil resistance in front of pile and internal force of pile in soil slope are studied, the weighted residual method is used to calculate anti-slide pile and anti-slide pile with prestressed cable in model test, the calculation values are fit close with testing measured values, which provide further reliability for the presented method to calculate the anti-slide pile and anti-slide pile with prestressed cable on the basis of weighted residual method.
     (6) A new method is put forward for calculating rational anchorage depth and pile spacing of anti-slide pile and anti-slide pile with prestressed cable by introducing unified strength theory to analyze soil stress state surrounding pile. The intermediate principle stress influences on calculation results is analyzed, the less the parameter b reacted intermediate principle stress influence, the higher the safety margin, the unified strength theory is just Mohr-Coulomb strength theory when b is equal to 0. anti-slide pile with prestressed cable has less anchorage depth and bigger pile spacing compared with common anti-slide pile because of the anchoring cable imposing.
引文
[1]铁道部第二勘测设计院.抗滑桩设计与计算.北京:中国铁道出版社, 1983: 1-289
    [2]孙遇祺,马骥,弗帕季托夫,等.铁路公路灾害防治.北京:中国铁道出版社. 1998: 1-10
    [3]中华人民共和国国家标准编写组.建筑边坡工程技术规范(GB50330-2002).北京:中国建筑工业出版社, 2002: 55-58
    [4]铁道第二勘察设计院.铁路路基支挡结构设计规范(TB10025-2001).北京:中国铁道出版社, 2002: 43-47
    [5]交通部第二勘察设计院.公路路基设计规范(JTJ013-95).北京:人民交通出版社, 1996, 44
    [6]中华人民共和国原城乡建设环境保护部.建筑地基基础设计规范(GBJ7-89).北京:中国建筑工业出版社, 1989: 34-36
    [7] DeBeer E E. The Effects of Horizontal Loads on Piles Due to Surcharge or Seismic Effects. In: Proc 9th ICSMFE. Tokyo, 1977: 547-558
    [8]李海光.新型支挡结构设计与工程实例.北京:人民交通出版社, 2003: 227-353
    [9] Franx C, Boonstra G C. Horizontal pressures on pile foundations. In: Proc 2th ICSMFE. Rotterdam, 1948: 131-135
    [10] Heyman L, Boersma F. Bending moments in piles due to lateral earth pressure. In: Proc. 5th ICSMFE. Paris, 1961: 425-429
    [11] Wenz K P. Large scale tests for determ ination of lateral loads on piles in soft cohesive soils. In: Proc. 8th ICSMFE. Moscow, 1973: 2
    [12] Heyman L. Measurement of the influence of lateral earth pressure on pile foundation. In: Proc. 6th ICSMFE. Montreal, 1965: 257-260
    [13] Nicu N D, Antes D R, Kessler R S. Field measurements on instrumented piles under an overpass abutment. Highway Research Record. 1971, (354): 90-99
    [14] Oteo C S. Horizontally loaded piles-deformation influence. In: Proc. 9th ICSMFE. Tokyo, 1977: 101-106
    [15] Poulos H G, Davis E H. Pile Foundation Analysis and Design. New York: John Wiley & Sons, 1980: 76-80
    [16] Stewart D P, Jewell R J, Randolph M F. Design of piled bridge abutments onsoft clay for loading from lateral soil movements. Geotechnique, 1994, 44(2): 277-296
    [17] Begemann H S, DeLeeuw E H. Horizontal earth pressures on piles as a result of nearby soil fills.In: Proc. 5th ECSMFE. Madrid, 1972:, 3-9
    [18] DeBeer E E, Wallays M. Forces induced in piles by unsymmetrical surcharges on the soil around the piles. In: Proc. 5th ECSMFE. Madrid. 1972: 325-332
    [19] Tschebotarioff G P. Foundations, Retaining and Earth Structures. New York: McGraw-Hill, 1973: 65-70
    [20] Marche R, Schneeberger C E. Bending moments prediction in piles subjected to horizontal soil movements. In: Proc. 9th ICSMFE. Tokyo, 1997: 98-99
    [21] Maugeri M, Motta E.加固滑坡时作用于桩上的应力.张颖钧译.路基工程. 1996, (6): 65-69
    [22] Baguelin F, Frank R, Said Y H.关于桩侧向反力机理的理论研究.汪锡民译.抗滑桩译文选第八辑,成都:铁道部第二勘察设计院科研所, 1979: 15-21
    [23] Bransby M F, Springman S M. 3-D finite element modeling of pile groups adjacent to surcharge loads. Computer and Geotechnics. 1996, 19(4): 301-324
    [24] Cai F, Ugai K. Numerical analysis of the stability of a slope reinforced with piles. Soils and Foundations, 2000, 40(1): 73-84
    [25] Poulos H G. Analysis of Piles in Soil Undergoing Lateral Movement. Journal of the Soil Mechanics and Division, 1973, 99(5): 391-406
    [26] Poulos H G, Hull T S. Effect of Seafloor in Stability on Offshore Pile Foundations. Canadian Geotechnical Journal, 1991, (28): 729-737
    [27] Poulos H G. Design of Reinforcing Piles to Increase Slope Stability. Canadian Geotechnical Journal, 1995, (32): 808-818
    [28] Chen L T, Poulos H G. Piles Subjected to Lateral Soil Movements. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(9): 802-809
    [29] Lee C Y, Hull T S, Poulos H G. Simplified Pile-slope Stability Analysis. Computers and Geotechnics, 1995, 17(1): 1-16
    [30]罗一农.抗滑桩设计中几个问题的商榷.路基工程, 1997,(6): 9-13
    [31]熊治文.深埋式抗滑桩的受力分布规律.中国铁道科学, 2000, 21(1): 48-56.
    [32]张友良,朱瑞赓.滑坡整治中抗滑桩内力计算新方法.路基工程.2000, (4):40-56
    [33]李仁平,陈仁朋,陈云敏.阻滑桩加固固坡的极限设计方法.浙江大学学报.2001, 35(6): 618-622
    [34]戴自航,彭振斌.地基系数法在岩体抗滑桩内力计算中的应用.湖南大学学报(自然科学版), 2002, 29(1): 98-104
    [35]戴自航,彭振斌.抗滑桩内力计算“K”法的改进与应用.地质与勘探, 2002, 38(3): 79-83
    [36]戴自航,彭振斌.基于抗滑桩内力计算“m”法的有限差分法.中南工业大学学报, 2001, 32(5): 461-464
    [37]戴自航,彭振斌.抗滑桩全桩内力计算“m-K”法的有限差分法,岩土力学, 2002, 23(3): 321-328
    [38]杨佑发.弹性抗滑桩内力计算的有限差分“m-K”法.重庆建筑大学学报, 2002, 24(1): 13-18
    [39]杨佑发,许绍乾.锚索抗滑桩内力计算的有限差分“K-K”法.岩土力学, 2003, 24(1): 61-64
    [40]吴恒立.计算推力桩的综合刚度原理和双参数法.北京:人民交通出版社, 1990, 22-91
    [41]励国良.关于抗滑桩计算的一个建议.滑坡文集(第六集),北京:中国铁道出版社. 1988: 39-48
    [42]励国良.多排抗滑桩与滑坡相互作用的计算.滑坡文集(第十三集),北京:中国铁道出版社.1998: 65-72
    [43]励国良.锚索抗滑桩与滑坡相互作用的计算.滑坡文集(第八集),北京:中国铁道出版社.1991: 64-77
    [44]高同玠.在有软弱滑动带时滑坡推力、桩身应力、桩前抗力的整体分析计算方法.滑坡文集(第四集),北京:中国铁道出版社, 1984: 138-141
    [45]李克才,池淑兰.抗滑试桩空间非线性有限元分析及设计参数的研究.滑坡文集(第十二集),北京:中国铁道出版社, 1997: 18-29
    [46]廖能斌,燕柳斌.防洪堤抗滑桩内力分析.红水河, 2001, 20(4): 47-49
    [47]张友良,陈从新,夏元友.杆件有限单元法在抗滑桩设计中的应用研究.中国地质灾害灾害与防治学报, 2000, 11(l): 30-32
    [48]张友良,冯夏庭,范建海,等.抗滑桩与滑坡体相互作用的研究.岩石力与工程学报, 2002, 21(6): 839-842
    [49] Ito T, Matsui T. Methods to Estimate Lateral Force Acting on Stabilizing Piles. Soils and Foundations, 1975, 15(4): 43-59
    [50] Ito T, Matsui T, Hong W P. Design Method for the Stability Analysis of the Slope with Landing Pier. Soils and Foundations, 1979, 19(4): 43-57
    [51] Ito T, Matsui T, Hong W P. Design Method for Stabilizing Piles against Landslide One-row of Piles. Soils and Foundations, 1981, 21(1): 21-37
    [52] Ito T, Matsui T, Hong W P. Extended Design Method for Mufti-row StabilizingPiles Against Landslide. Soils and Foundations, 1982, 22(1):1-13
    [53] Matsui T, Hong W P, Ito T. Earth Pressure on Piles in a Row Due to Lateral Soil Movements. Soils and Foundations, 1982, 22(2):71-81
    [54] Hassiotis S, Chameau J L, Gunaratne M. Design method for stabilization of slopes with piles. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(4): 314-323
    [55] Ctpoγahob A C.滑坡上加固结构和建筑物所受的土压力计算方法.钟采元译.路基工程, 1998, (3): 67-74
    [56]马骥.单根抗滑桩受力条件的实验研究.滑坡文集(第五集),北京:中国铁道出版社, 1986: 88-96
    [57]徐良德,尹道成,刘惠明.滑体为松散介质时桩前滑体抗力分布研究.滑坡文集(第六集),北京:中国铁道出版社, 1988: 84-91
    [58]徐良德,尹道成,刘惠明.滑体为粘性土时桩前滑体抗力分布研究.滑坡文集(第七集),北京:中国铁道出版社, 1990: 92-99
    [59]徐良德.抗滑桩桩前出现塑性变形时抗力分布的初步探讨.见:中国土木工程学会第四届土力学及基础工程学术会议论文选集.北京:中国建筑工业出版社, 1986: 441-447
    [60]刘昌清.抗滑桩离心模型试验分析.中国青年学者岩土工程力学及其应用讨论会论文集,北京:科学出版社, 1994: 669-673
    [61]沈珠江.桩的抗滑阻力和抗滑桩的极限设计.岩土工程学报, 1992, 14(1): 51-56
    [62]潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社, 1980: 1-238
    [63]贺建清,张家生,梅松华.弹性抗滑桩设计中几个问题的探讨.岩石力学与工程学报, 1999, 18(5): 497-502
    [64]林峰,黄润秋.滑坡推力计算的改进Janbu法.工程地质学报, 2000, 8(4): 493-496
    [65]林鲁生,蒋刚,刘祖德,等.锚索抗滑桩滑坡推力及其分布图式的计算与分析.地下空间, 2001, 21(5): 485-487
    [66]朱大勇,钱七虎,周早生.基于余推力法的边坡临界滑动场.岩石力学与工程学报, 1999, 18(6): 667-670
    [67]戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究.岩石力学与工程学报, 2002,21(4): 517-521
    [68]钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社, 1996: 1-292
    [69] Bishop A W. The Use of the Slip Circle in the Stability Analysis of Slopes.Geotechnique, 1955, 5(1): 7-17
    [70] Janbu N. Slope stability computation. Embankment-dam engineering, Casagrande Volume. New York: John Wiley&Sons, 1973: 47-86.
    [71] Morgenstern N R, Price V E. The Analysis of the Stability of General Slip Surfaces. Geotechnique, 1965, 15(1): 79-93
    [72] Spencer E. A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-slice Forces, Geotechnique, 1967, 17(1): 11-26
    [73] Sarma S K. Stability Analysis of Embankments and Slopes. Geotechnique, 1973, 23(3): 423-433
    [74] Chen Z Y, Morgenstern N R. Extensions to the Generalized Method of Slice for Stability Analysis. Canadian Geotechnical Journal, 1983, 20(1): 104-119
    [75]张天宝.土坡稳定分析和土工建筑物的边坡设计.成都:成都科技大学出版社, 1987: 92-150
    [76]王复来.土石坝边坡的滑动稳定计算.北京:中国水利水电技术, 1979, 9-10
    [77]陈祖煜.土坡稳定分析通用条分法及其改进.岩土工程学报, 1983, 5(4): 11-27
    [78]陈祖煜,邵长明.最优化方法在确定安全系数方面的应用.岩土工程学报, 1988, 10(4): 1-14
    [79] Duncan J M. State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. Journal of Geotechnical Engineering, ASCE, 1996, 122(7):577-596
    [80]孙君实.条分法的数值分析.岩土工程学报, 1984, 6(2):1-12
    [81]陈祖煜.土力学经典问题的极限分析上、下限解.岩土工程学报, 2002, 21(1): 1-11
    [82]郑颖人.用有限元强度折减法进行边坡稳定分析.中国工程科学, 2002, (10): 57-61, 78
    [83] Boutrup A W, Lovell C W. Search Technique in Slope Stability Analysis. Engineering Geology, 1980, (16): 51-61
    [84]张天宝.土坡稳定分析圆弧法的数值研究.成都工学院学报.1978, (1): 97-112.
    [85]阎中华.均质土坝与非均质土坝稳定安全系数极值分布规律及电算程序简介.水利水电技术, 1983, (7): 7-12
    [86]周文通.最优化方法在土坝稳定分析中的应用.土石坝工程, 1984, (2): 12-14
    [87]孙君实.条分法的提法及其数值计算的最优化方法.水力发电学报, 1983, (1): 21-25
    [88]陈庆中,高正中.土坡稳定滑移线数值分析法.北方交通大学学报, 1997, 21(4): 405-410
    [89]陈庆中,张弥,朱利平.土坡稳定分析最优控制法.北方交通大学学报, 2000, 24(1): 64-66
    [90]朱大勇.边坡临界滑动场及其数值模拟.岩土工程学报, 1997, 19(1): 63-69
    [91]朱大勇,钱七虎,周早生,等.岩体边坡临界滑动场计算方法及其在露天矿边坡设计中的应用.岩石力学与工程学报, 1999, 18(5): 561-572
    [92]陈昌富.锚固工程设计计算与施工.武汉:中国地质大学出版社, 1997: 53-95
    [93]程良奎,范景伦,韩军,等.岩土锚固.北京:中国建筑工业出版社, 2003: 1-382
    [94]程良奎.岩土锚固的现状与发展.土木工程学报, 2001, 34(3): 7-12, 34
    [95]沈珠江.桩的抗滑阻力和抗滑桩的极限设计.岩土工程学报, 1992, 14(1): 51-56
    [96]郑静,于贵,王孟良.锚固技术在滑坡治理中几个问题的探讨.岩石力学与工程学报, 2003, 22(增): 2738-2740
    [97]田景贵,范草原.预应力锚索抗滑桩的机理初步分析及设计.重庆交通学院学报, 1998, 17(4): 59-64
    [98]刘小丽,周德培,杨涛.预应力锚索抗滑桩设计中确定锚索预应力值的一种方法.工程地质学报, 2002, 10(3): 317-320
    [99]陈占.预应力锚索桩设计与计算.地球科学一中国地质大学学报, 2001, 26(4): 352-356
    [100]桂树强.预应力锚索抗滑桩结构计算方法.地球科学一中国地质大学学报, 2005, 30(2): 233-240
    [101]周德培,王建松.预应力锚索桩内力的一种计算方法.岩石力学与工程学报, 2002, 21(2): 247-250
    [102]杨佑发,刘光华.预应力锚索抗滑桩内力计算的有限差分“m-K”法.中国地质灾害与防治学报, 2002, 13(3): 78-81
    [103]戴自航,沈蒲生,彭振斌.预应力锚固抗滑桩内力计算有限差分法研究.岩石力学与工程学报, 2003, 22(3): 407-413
    [104]刘英朴,门玉明,蔺兴淼,等.锚杆抗滑桩内力计算的初参数法研究.水文地质工程地质, 2005,(6): 57-60
    [105]励国良.锚索抗滑桩的设计计算及其试验验证.滑坡文集(第十集),北京:中国铁道出版社, 1993: 121-131
    [106]李同明,刘军.应急监测菜元坝建兴坡滑坡及抗滑桩实录.中国地质灾害与防治学报, 1995, 6(3): 92-97
    [107]许东俊,任伟中,冯树仁,等.永平铜矿滑坡加固效果监测.岩石力学与工程学报, 1997, 16(3): 224-232
    [108]曾德荣,李霖.抗滑桩锚索联合体系研究.重庆交通学院学报, 2001, 20(2):78-82
    [109]张玉芳,李奇平,张治平.预应力锚索抗滑桩工程中锚索拉力实侧与分析.中国铁道科学, 2003, 24(3): 21-25
    [110]曾云华,郑明新.预应力锚索抗滑桩的受力模型试验.华东交通大学学报,2003, 20(2): 15-18
    [111]唐志成,徐良德,彭隆银.抗滑桩模型试验的非线性分析.重庆交通学院学报, 1992, 11(4): 76-86
    [112]高永涛,张友葩,吴顺川.土质边坡抗滑桩机理分析.北京科技大学学报, 2003, 25(2): 117-123
    [113] Won J, You K, Jeong S, et al. Coupled Effects in Stability Analysis of Pile-slope Systems .Computers and Geotechnics, 2005, (32): 304-315.
    [114] Martin G R, Chen C Y. Response of Piles Due to Lateral Slope Movement. Computers and Structures, 2005, (83): 588-598
    [115]刘小丽,张占民,周德培.预应力锚索抗滑桩的改进计算方法.岩石力学与工程学报, 2004, 23(15): 2568-2572
    [116]魏宁,傅旭东,邹勇,等.预应力锚索抗滑桩的有限元计算与应用.武汉大学学报(工学版), 2004, 37(5): 73-76
    [117]李双洋,赵德安,陈志敏.有限元法在预应力锚索桩设计计算中的应用.兰州交通大学学报(自然科学版), 2004, 23(6): 38-41
    [118]蒋新龙,郑明新.预应力锚索抗滑桩受力状态的有限元分析.华东交通大学学报, 2004, 21(2): 24-27
    [119]郑颖人,赵尚毅.用有限元强度折减法求边(滑)坡支挡结构的内力.岩石力学与工程学报, 2004, 23(20): 3552-3558
    [120]张乐文,汪稔.岩土锚固理论研究现状.岩土力学, 2002, 23(5): 627-631
    [121] Hanna T H.锚固技术在岩土工程中的应用.胡定译.北京:中国建筑工业出版社, 1986: 1-505
    [122]高永涛,吴顺川,孙金海.预应力锚杆锚固段应力分布规律及应用.北京科技大学学报, 2002, 24(4): 387-390
    [123]崔政权,李宁.边坡工程—理论与实践最新发展.北京:中国水利水电出版社, 1999, 1-313
    [124]尤春安.全长粘结式锚杆的受力分析.岩石力学与工程学报, 2000, 19(3):339-341
    [125]曹国金,姜弘道,熊红梅.一种确定拉力型锚杆支护长度的方法.岩石力学与工程学报, 2003, 22(7): 1141-1145
    [126]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式.岩土工程学报, 2001, 23(6): 696-699
    [127]何思明,王成华,吴文华,等.基于损伤理论的预应力锚索荷载-变形特性分析.岩石力学与工程学报, 2004, 23(5): 786-792
    [128] Li C, Stillborg B. Analytical Models for Rock Bolts. International Journal of Rock Mechanics and Mining Science, 1999, (36): 1013-1029
    [129] Cai Y, Esaki T, Jiang Y J. A rock Bolt and Rock Mass Interaction Model. International Journal of Rock Mechanics and Mining Sciences, 2004, (41): 1055-1067
    [130] Cooke R W, Price G, Tarr K. Jacked Piles in London Clay: a Study of Load Transfer and Settlement under Working Condition. Geotechnique, 1979, 29(2): 113-147
    [131]宰金珉.复合桩基理论与应用.北京:中国水利水电出版社, 2004: 15-56
    [132]刘春华.锚杆锚固段粘结力分布计算方法.公路交通技术, 2004, (6): 13-16, 19
    [133]方从严,卓家寿.锚杆加固机理的试验研究现状.河海大学学报(自然科学版), 2005, 33(6): 696-700
    [134]赵长海.预应力锚固技术.北京:中国水利水电出版社, 2001: 1-324
    [135]程良奎,胡建林.土层锚杆的几个力学问题——岩土工程中的锚固技术.北京:人民交通出版社, 1996: 229-236
    [136]尤春安,高明,张利民,等.锚固体应力分布的试验研究.岩土力学, 2004, 25(增): 63-66
    [137]陈妙峰,唐德高,周早生,等.锚杆锚固机理试验研究.建筑技术开发, 2003, 30(4): 21-23
    [138] Woods R I, Barkhordari K. The Influence of Bond Stress Distribution on Ground Design. In:Proc Int Symp on Ground Anchorages and Anchored Structures, London: Themas Telford, 1997: 300-306
    [139]贺若兰,张平,李宁,等.拉拔工况下全长粘结锚杆工作机理.中南大学学报(自然科学版), 2006, 37(2): 401-407
    [140] Celestino T B, Duncun J M. Simplified search for noncircular slip surfaces. In: Proc of the 10th Int Conf on Soil Mechanical and Foundation Engineering. Stockholm, 1981: 391-394
    [141] Nguyen V U. Determination of critical slope failure surfaces. Journal of Geotechnical Engineering, 1985, 111(2): 238-250
    [142] Li K S, White W. Rapid evaluation of the critical slip surface in slope stability problems. International Journal Numerical and Analytical Methods in Geomechanical, 1987, (11): 449-473
    [143] Arai K, Tagyo K. Determination of noncircular slip surface giving the minimum factor of safety in slope stability analysis. Soils and Foundation, 1985. 25(1): 43-45
    [144]邹广电.复杂边坡稳定分析条分法的优化方法.水利学报, 1989, (2): 55-63
    [145] Basudhar P K. SUMSATAB- A computer software for generalized stability analysis of zoned dams. In: Proc 6th Int Conf. on Numerical Methods in Geomechanics. Innsbruck, 1988: 1407-1412
    [146] Huang Y H.土坡稳定分析.包承纲译.北京:清华大学出版社,1988: 24-65
    [147]江见鲸.土建工程常用微机程序汇编.北京:水力电力出版社, 1987: 56-120
    [148] Castillo E, Revilla J. The calculus of variations and the stability of slopes. In: Proc 9th Int Conf on Soil Mechanics and Foundation Engineering.New York, 1977: 25-30
    [149] Ramamurthy T, Narayan C G P, Bhatkar V P. Variational method for slope stability analysis. In: Proc 9th Int Conf on Soil Mechanics and Foundation Engineering.New York, 1977: 39-142
    [150] Narayan, C G P, Bhatkar V D, Ramamurthy T. Nonlocal variational method in stability analysis. Journal of the Geotechnical Engineering, 1982, 108(11): 1443-1459
    [151] Baker R. Determination of the critical slip surface in slope stability computations. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, (4): 333-359
    [152] Yamagami T, Ueta Y. Noncircular slip surface analysis of the stability of slopes. Journal of Japan Landslide Society, 1986, 22(4): 8-16
    [153] Yamagami T, Ueta Y. Search for noncircular slip surfaces by the Morgenstern- Price method.In: Proc 6th Int Conf on Numerical Methods in Geomechanics. Innsbruck, 1988: 1335-1340
    [154] Greco V R. Efficient Monte Carlo technique for locating critical slip surface. Journal of Geotechnical Engineering, 1996, 122(7): 517-525
    [155] Chen Z Y. Random trials used in determining global minimum factors of safety of slopes. Canadian Geotechnical Journal, 1992, (20): 104-119
    [156]陈昌富.仿生算法及其在边坡和基坑工程中的应用:[湖南大学博士学位论文].长沙:湖南大学, 2001: 53-98
    [157]肖专文,张奇志,梁力,等.遗传进化算法在边坡稳定性分析中的应用.岩土工程学报, 1998, 20(1): 44-46
    [158] Goh A T C. Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. Cana Geotech J. 1999, (36): 382-391
    [159]王小平,曹立明.遗传算法—理论、应用与软件实现.西安:西安交通大学出版社, 2002: 73-74
    [160]陈国良,王熙法.遗传算法及其应用.北京:人民邮电出版社, 1996: 11-124
    [161]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社, 1999: 41-78
    [162] Srinivas M,Patnaik L M.Adaptive Probabilities of Crossover and Mutations in Genetic Algorithms.IEEE Trans System Man and Cyber,1994,24(4): 656-667
    [163]朱大勇,李焯芬,黄茂松,等.对3种著名边坡稳定性计算方法的改进.岩石力学与工程学报, 2005, 24(2): 183-194
    [164] Army U S. Stability of slopes and foundation,Engineering Manual,Visckburg, 1967: 26-38
    [165] Lowe J, Karaflath L. Stability of earth dams upon drawdown. In: Proc 1st Panamer Conf Soil Mech. Mexico City, 1960: 537-552
    [166] Chen C Y, Martin G R. Soil-structure interaction for landslide stabilizing piles. Computers and Geotechnics, 2002, 29(10): 363-386
    [167]李仁平,蔡爱国,盛初根.有限元法分析抗滑桩-土坡相互作用的稳定性.三峡大学学报(自然科学版), 2007, 27(5): 396-401
    [168] Hull T S, Poulos H G. Design method for stabilization of slopes with piles(discussion). Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(10): 911-913
    [169] Zeng S, Liang R. Stability analysis of drilled shafts reinforced slope. Soils and Foundations, 2002, 42(2): 93-102
    [170] Ausilio E, Conte E, Dente G. Stability analysis of slopes reinforced with piles. Computers and Geotechnics, 2001, (28): 591-611
    [171]年廷凯,栾茂田,杨庆.阻滑桩加固土坡稳定性分析与桩基的简化设计.岩石力学与工程学报, 2005, 24(19): 3427-3433
    [172] Li X P, He S M, Wang C H. Stability analysis of slopes reinforced with piles using limit analysis method. Advances in Earth structures, 2006, (151): 105-112
    [173]朱剑锋.岩土边坡稳定性与可靠度分析智能计算方法: [湖南大学硕士学位论文].长沙:湖南大学, 2006: 28-45
    [174]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数.岩土工程学报, 2002, 24(3): 343-346
    [175]徐次达,陈学潮,郑瑞芬.新计算力学加权残值法.上海:同济大学出版社, 1997: 1-29
    [176]胡海昌.加权残数法的几个理论问题.合肥工业大学学报, 1983, (4): 32-37
    [177]邱吉宝.加权残值法的理论方法与应用.北京:中国宇航出版社, 1990: 3-16
    [178]秦荣.计算结构力学.北京:科学出版社, 2001: 1-28
    [179]王磊.加权残数法及试函数.湖南大学学报, 1981, 18(3): 46-66
    [180]王磊.勒让德—加权残数法.重庆交通学院学报, 1984, (2): 21-32
    [181]徐次达,许昌时.切比雪夫多项式用于最小二乘法分析薄板弯曲问题.上海力学, 1988, (2): 44-50
    [182]严宗达.用贝塞尔函数作试函数及权函数解圆板的弯曲和稳定.天津大学学报, 1983, (4): 28-33
    [183]王恭先.抗滑支挡建筑物的发展动向.滑坡文集(第十三集),北京:中国铁道出版社, 1998: 60-64
    [184] Rollins K M, Peterson K T, Weaver T Z. Lateral Load Behavior of Full-scale Pile Group in Clay. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(6): 468-478
    [185]刘卫民,尉学勇,蔡庆娥.关于预应力锚索抗滑桩设计的思考.路基工程, 2006, (2): 48-51
    [186]李德营,殷坤龙,王磊,等.预应力锚索抗滑桩中锚索预应力的计算方法及对比研究.安全与环境工程, 2007, 14(2): 72-75
    [187]王化卿,李传珠,刘励忠,等.预应力锚索抗滑桩设计与施工.滑坡文集(第七集),北京:中国铁道出版社, 1990: 103-109
    [188]金布格,依申柯.锚杆抗滑桩组合结构的计算.滑坡文集(第五集),北京:中国铁道出版社, 1986: 117-120
    [189]邹兴普.锚索抗滑桩的设计计算.路基工程, 2000, (2):9-10
    [190]曾德荣,凌天清,范草原.预应力锚索在滑坡治理中的设计与施工.水文地质工程地质, 2000, (5):51-54
    [191]曾德荣,范草原.预应力锚索抗滑桩结构的室内试验研究.工程力学, 1999, (增): 521-525
    [192]余振锡.预应力锚索抗滑桩在滑坡治理中的应用.金属矿山, 1998, (4): 10-12, 27
    [193]申益民.预应力锚索桩设计探讨.路基工程, 1999, (5): 16-17
    [194]洪文聪,陈建欣.北厢工程锚索桩板墙的设计与施工.云南交通科技, 1999,15(1): 63-65, 49
    [195]陈新.多点锚拉桩板墙的变形约束计算法.四川联合大学学报(工程科学版), 1997, 1(5):68-74
    [196]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社, 2003: 513-514
    [197]俞茂宏.混凝土强度理论及其应用.北京:高等教育出版社, 2002: 74-98
    [198]俞茂宏.岩土类材料的统一强度理论及其应用.岩土工程学报, 1994, 14(2): 1-10
    [199] Lee Y K, Ghosh J. The Significance of J3 to the Prediction of Shear Bands. International Journal of Plasticity, 1996, 12(9): 1179-1197
    [200]范文,白晓宇,俞茂宏.基于统一强度理论的地基极限承载力公式.岩土力学, 2005, 26(10): 1617-1622
    [201]张文居,赵其华,刘晶晶.参数变异性对抗滑桩锚固深度可靠度的影响分析.水文地质工程地质, 2006, (3): 61-63
    [202]蒋建国,邹银生,周绪红.刚性抗滑桩锚固深度的简化计算.工程力学, 2001, (增): 457-460
    [203]胡晓军,王建国.基于强度折减的刚性抗滑桩锚固深度确定.土木工程学报, 2007, 40(1): 65-68
    [204]年廷凯,栗茂田,郑德凤,等.抗滑桩锚固深度的极限分析下限方法.水利学报, 2007, 38(6): 743-748
    [205]周春梅,殷坤龙.三峡库区滑坡治理中抗滑桩锚固深度的研究.武汉理工大学学报, 2006, 28(2): 38-41
    [206]周志刚.土层抗滑桩锚固深度探讨.路基工程, 1997, (3): 31-35
    [207]张俊.预应力锚杆(索)抗滑桩嵌固深度研究: [长安大学硕士学位论文].西安:长安大学, 2004: 29-46
    [208]王士川,陈立新.抗滑桩间距的下限解.工业建筑, 1997, 27(10): 32-36
    [209]王成华,陈永波,林立相.抗滑桩间土拱特性及最大桩间距分析.山地学报, 2001, 19(6): 556-559
    [210]常保平.抗滑桩的桩间土拱和临界间距问题探讨.滑坡文集(第十二集),北京:中国铁道出版社, 1998: 73-78
    [211]胡敏云.深基坑桩排式支护桩侧土压力及设计方法研究: [西南交通大学博士学位论文].成都:西南交通大学, 1998: 45-83
    [212]周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨.岩土工程学报, 2004, 26(1): 132-135
    [213]周应华,周德培,冯君.推力桩桩间土拱几何力学特性及桩间距的确定.岩土力学, 2006, 27(3): 455-457, 462
    [214]郑磊,殷坤龙,简文星,等.抗滑桩设计中关于确定桩间距问题的分析.水文地质工程地质, 2005, (6):71-74
    [215] Low B K, Tang S K, Choa V. Arching in Piled Embankments. Journal of Geotecnical Engineering, 1994, 120(11):1917-1937
    [216]李功伯,谢建清.滑坡稳定性分析与工程治理.北京:地震出版社, 1997: 164-170
    [217]刘金砺.桩基础设计与计算.北京:中国建筑工业出版社, 1990, 196
    [218]杨雪强,何世秀,庄心善.土木工程中的成拱效应.湖北工学院学报, 1994, 9(1): 1-7
    [219]吴子树,张利民,胡定.土拱的形成机理及存在条件的探讨.成都科技大学学报, 1995, (2): 15-19
    [220]贾海莉,王成华,李江洪.关于土拱效应的几个问题.西南交通大学学报, 2003, 38(4): 398-402
    [221]冯君,吕和林,王成华.普氏理论在确定抗滑桩间距中的应用.中国铁道科学, 2003, 24(6): 79-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700