用户名: 密码: 验证码:
山区高桥墩—桩基结构体系承载特性及其分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高桥墩-桩基结构体系的承载特性及其分析方法是西部山区公路建设所面临的新课题之一。由于山区地形、荷载及工况等条件的复杂性,高桥墩-桩基结构体系无论是承载机理和变形分析,还是稳定性计算方法均缺乏深入研究。因此,如何全面掌握山区高桥墩-桩基础的承载机理、受力特性与分析方法,对其合理设计计算具有重要的理论与工程实际意义。为此,本文结合国家自然科学基金项目“陡坡段桥梁桩基设计理论与数值模拟方法研究”(50578060)和湖南省交通科技项目“高陡边坡段桥梁桩基设计与防护技术研究”(200513),从理论分析、数值模拟、室内模型试验等方面对其进行深入系统的研究,以期丰富山区高桥墩-桩基结构体系设计计算理论。
     本文首先在总结国内外已有相关研究文献的基础上,引入岩体结构控制理论,对桩周岩体工程特性及其风化分带方法进行了分析,建立出山区高桥墩-桩基基岩风化程度的量化表达式。通过分析与总结边坡稳定性分析方法后,考虑边坡稳定性分析的不确定性因素,引入基于模糊理论的边坡多级模糊评判方法对桩周岩质边坡进行稳定性分析。针对山区高桥墩-桩基结构体系的受力特点,探讨了山区高桥墩-桩基结构体系的承载机理和受力特性,借鉴平地基桩桩身内力及变形计算分析思路,通过分析边坡上基桩前后岩(土)体抗力及推力分布规律,建立复杂荷载下高桥墩-基桩的计算模型,采用幂级数方法求解,导出高桥墩.基桩内力及位移计算方法,并开发出相应计算程序。
     其次,在分析稳定性分析基本理论及基桩失稳荷载求解方法的基础上,考虑基桩失稳破坏的非线性与突发性特点,引入突变理论,建立山区高桥墩-桩基体系稳定失稳的尖点突变模型,基于突变理论基本原理,求得了山区高桥墩-桩基结构体系稳定失稳条件,并建立出山区高桥墩-桩基结构体系失稳破坏荷载与其对应墩顶水平位移确定方法。在此基础上,针对山区桩端岩溶发育问题,考虑溶洞顶板破坏的突发性及其影响因素的模糊性,提出岩溶区高桥墩-桩基结构体系下伏溶洞顶板安全厚度确定的突变模型与桩端溶洞顶板稳定性评价的突变评判新方法。
     为了进一步探讨山区高桥墩-桩基结构体系的承载机理和受力特性,结合工程实际,借助非线性有限元分析软件,在考虑桩-岩接触等非线性因素的基础上,建立出山区高桥墩-桩基结构单排双桩的三维弹塑性模型,分析了不同荷载条件下山区高桥墩-桩基的受力特性及其稳定性影响因素,深化了对山区高桥墩-桩基结构体系承载特性的认识。
     此外,采用非确定性分析方法,在总结可靠度基本理论及现有可靠性分析常用方法的基础上,针对现有方法的局限性,引入响应面方法,建立高桥墩-桩基结构体系稳定的改进响应面方法。针对高桥墩-桩基结构体系岩土参数区间性特点,引入区间理论和非概率思想,建立了基于区间理论的高桥墩-桩基结构体系稳定性非概率可靠性分析方法,从而形成较完整的山区高桥墩-桩基结构体系稳定性非确定性分析方法。
     最后,通过高桥墩-桩基室内模型试验验证了本文理论方法的正确性。试验共分两大部分:第一部分是承载特性试验,完成了竖向荷载、侧向荷载、水平荷载及复杂荷载下4组模型桩受力特性试验,探讨不同桩顶自由长度、不同嵌固深度、不同基桩刚度以及不同边坡坡度等对基桩受力的影响,进一步深化山区高桥墩.桩基的受力特性和承载机理;第二部分是高桥墩.桩基失稳破坏试验,通过设计不同墩桩长度比、墩桩刚度比及不同墩顶边界约束等组合条件下的模型试验,探讨了高桥墩-桩基屈曲工作性状,获得了不同桩基埋深、墩桩刚度比、墩顶约束等条件下的高桥墩-桩基的失稳破坏荷载。理论与试验结果表明:理论计算与试验值吻合较好,展示了本文方法的合理性与工程参考价值。
The load mechanics and analysis method for higher pile-column bridge pier structural system are of new tasks faced by highway transportation construction in western mountainous areas. For the complexity of alpine (coteau) terrain and various of loading condition and working condition, the bearing mechanism, deformation analysis and stability calculation methods of high pile-column bridge pier structural system are all deficient for further study. Therefore, it is significative in theoretical analysis and engineering practice to master its bearing mechanism, mechanical characteristics and analysis method comprehensively for rational design of this system. In this paper, combined with the supports of the program of National Natural Science Foundation "study on the buckling mechanism for pile foundation with high pile-cap based on meshless method"(50378036) and the scientific project of Communications Department of Hunan Province "study on the bearing mechanism and optimization design for piles foundation with high bridge piers in mountainous district"(200513), the load mechanics and analysis method of higher pile-column bridge pier structural system were researched and discussed in order to enrich its design and calculation theory based on theoretical analysis, numerical simulation and model experiment.
     Firstly, based on comprehensive analysis of the domestic and overseas related references, the engineering characteristics and its mass methods to distinguish weathering zones were analyzed by introducing rock masses structure control theory , a quantization expression is established for rock masses around the higher pile-column bridge pier structural system. With analysis and summary of the slope-stability analysis methods, a method about multilevel fuzzy comprehensive evaluation is introduced to evaluate rock slop around higher pile-column bridge pier structural system by considering its uncertain factors. According to the stress characteristics of higher pile-column bridge pier structural system, the bearing behavior and loading mechanism of higher pile-column bridge pier were discussed and the analytical thought was used for references which includes stress and deformation of conventional pile in the plain under loads, the externality loads include axial loads, horizontal loads, lateral distribution thrust forces and resistances from pile side rock. With the distribution of resistances and thrust forces simplified and the calculation model of higher pile-column bridge pier structural system established, the internal force calculation method of higher pile-column bridge pier structural system is deducted with power series method applied and the relevant computer program is developed.
     Secondly, on the basis of analyzing stability calculating theory and load calculation method of pile ,according to the nonlinearity and abruptness features of higher pile-column bridge pier, a mechanical model is set up by synthetically analyzing the higher pile-column bridge pier. Based on the catastrophe theory, the cusp catastrophe model of higher pile-column bridge pier is established by the determination of its potential function and bifurcation set equation, the necessary instability conditions of high pile-column bridge pier are deduced, and the determination method for column-buckling and lateral displacement of higher pile-column bridge pier are derived. In accordance with the problem of karst development under pile , according to the abruptness and fuzziness features of cave roof , the determining methods of safe thickness of cave roof under high pile-column bridge pier and load-bearing capacity of high pile-column bridge pier are proposed and the new stability evaluation method for cave roof under pile tip in karsts region is established by combining introducing catastrophe theory and fuzzy analysis with fuzzy subordinate function and catastrophe progression.
     In order to further study on bearing mechanism and load characterize of higher pile-column bridge pier structural system, combining practical projects and with the aid of nonlinear finite element analysis software, based on considering nonlinear factors including discontinuous deformation between pile and rock contact area, the three-dimensional elastoplastic model for single-row double pile of higher pile-column bridge pier structural is established, and the stress distribution is obtain according to different characteristic in different construction stage. The stress characteristic is achieved under different load condition through calculation and the stability influence factors are also fully discussed, so the bearing mechanism of higher pile-column bridge pier structural system is more profound understand.
     Then, using nondeterminism analysis method, at the based of summering reliability basic theory and present reliability assessment method, aiming at the limits of present reliability analysis method, the improved response surface method of higher pile-column bridge pier structural system is presented for reliability calculation by introducing response surface method. Basing on the interval feature of higher pile-column bridge pier structural system mechanic parameters, interval theory and non-probabilistic thought are introduced to build up non-probabilistic reliability analysis method of higher pile-column bridge pier structural system in which uncertain geotechnical mechanic parameters is viewed as interval variable. Thus, the more whole nondeterminism analysis method of higher pile-column bridge pier structural system is formed.
     At last, laboratory model tests on high pile-column bridge piers are carried out, it totally includes two parts. The first part is about bearing characteristic experiment , four groups of model piles tests are carried out. The influence factors of pile foundation are researched with different load mode, different pile shaft free length, different pile shaft fixity depth and different slope angle etc. The bearing mechanism and load characteristics of higher pile-column bridge pier structural system are further deepened. The second one is about the failure and instability experiments of higher pile-column bridge piers, the buckling working behavior of higher pile-column bridge piers is studied by taking into account of the different factors of pier-pile length ratio, boundary condition and material stiffness, buckling failure mechanism and loads of higher pile-column bridge piers are gained. The theoretical and experimental results show that the theoretical calculating values agree well with the experimental ones and the rationality and engineering reference value of the method in the paper is verified and displayed.
引文
[1]横山幸满著,唐业清,吴庆荪译.桩结构物的计算方法和计算实例.北京:中国铁道出版社,1984,74-76
    [2]范文田.轴向与横向力同时作用下柔性桩的分析.西南交通大学学报,1986,23(1):39-44
    [3]王用中,张河水.弹性地基梁的压弯计算及其应用.桥梁建设,1985,14(4):30-52
    [4]赵善锐.纵横弯曲桩各截面状态矢量得计算.第五届全国土力学与基础工程会议论文集,北京:中国建筑工业出版社,1987,88-90
    [5]赵明华,侯运秋,曹喜仁.倾斜荷载下基桩的受力研究.湖南大学学报,1997,24(2):98-102
    [6]赵明华,侯运秋,单远铭.倾斜荷载下桥梁桩基的计算与试验研究.湖南大学学报,1999,26(2):86-91
    [7]赵明华,吴鸣.大变形条件下桩土共同工作及试验研究.岩土工程学报,2001.23(4):436-440
    [8]Meyerhof G G.Ghosh.D P.Ultimate capacity of flexible piles under eccentric and inclined loads.Canadian Geotechnical Journal,1989,26(3):34-42
    [9]Meyerhof GG.,Sastry.V V R N.Bearing Capacity of Rigid Piles under Eccentric and Inclined Loads.Canadian Geotechnical Journal,1985,22(6):267-276
    [10]Sastry V V R N,Meyerhof G G..Behavior of flexible piles under inclined loads.Canadian Geotechnical Journal,1990,27(1):19-28
    [11]Terzaghi K,Peck R.B.,Soil mechanics in Engineering Practive,1948,115
    [12]曹汉志.桩的轴向荷载传递及荷载-沉降曲线的数值计算方法.岩土工程学报,8(6):37-49
    [13]陈龙珠,梁国钱.桩轴向荷载-沉降曲线的一种解析算法.岩土工程学报,1994,16(6):30-38
    [14]Delpak R,Omer J.R.and Robinson.R.B.,Load/settlement Predication for large-diameter Bored Piles in mercia mudstone,Proc.Instn.Civ.Engrs,Geotech.Engng.2000,143(9):201-224
    [15]建筑地基基础设计规范(GB 50007-2002).北京:中国建筑工业出版社,2002.71-72
    [16]公路桥涵与基础设计规范(JTJ024-85).北京:人民交通出版社,1994,21-22
    [17]赵明华,曹文贵,刘齐建等.嵌岩桩按桩顶沉降控制竖向承载力的方法研究.岩土工程学报,2004,26(1):67-71
    [18]Reese L C.Analysis of laterally loaded piles in weak rock.Journal of Geotechnical and Geoenvironmental engineering,1997,101(11):1010-1017
    [19]Reese L C.,and Wang,S T.Analysis of piles under lateral loading with nonlinear flexural rigidity.Proc.,U.S.FHWA Int.Conf.on Des.and Constr of Deep Found.,Fed.Hwy.Admin.,U.S.Dept.of Transp,Washington,D.C.1994,144-146
    [20]Rollins K M.,Gerber T M.,Lane J D.,and Ashford S.A..Lateral Resistance of a Full-Scale Pile Group in Liquefied Sand.Journal of Geotechnical and Geoenvironmental engineering,2005,109(1):115-125
    [21]McCullough N J.,Dickenson S E..The Behavior of Piles in Sloping Rock Fill at Marginal Wharves.Journal of Geotechnical and Geoenvironmental engineering,2004,108(1):1-10
    [22]马辉,廖小平.抗滑桩结构的力学分析与应用研究.中国地质灾害与防治学报,1996,7(1):34-38
    [23]沈珠江.桩的抗滑阻力和抗滑桩的极限设计.岩土工程学报,1992,14(1):51-56
    [24]肖世国,周德培,宋从军.岩石高边坡工程中埋入式抗滑桩的应用、岩土工程学报,2003,25(5):638-641
    [25]Ito T,Matsui T.Methods to estimate lateral force acting on stabilizing piles.Soil and Foundations,1975,14(4):43-59
    [26]Ito T.et al.Design method for the stability analysis of the slope with landing pier.Soil and Foundations,1979,19(4):87-88
    [27]Ito T,Matsui T.& Hong W.P.Design method for stabilizing piles against landslide- one row of piles.Soil and Foundations,1981,21(1):21-37
    [28]Ito T,et al.Extended design method for multi-row stabilizing piles against landslide.Soil and Foundations,1982,22(1):87-89
    [29]Hassiotis S,Chameau J.L& and Gunaratne M.Design method for stabilization of slopes with piles.J.Geotech.Engrg,1997,123(4):314-323
    [30]Cai F,Ugai K.Numeriacl analysis of the stability of a slope reinforced with piles.Soils and Foundations,200,40(1):73-84
    [31]李仁平,陈仁朋,陈云敏.阻滑桩加固土坡的极限设计方法.浙江大学学报,2001,35(6):618-622
    [32]Chow Y K.Analysis of piles used for slope stabilization.International Journal for Numeriacl and Analytical Methods in Geomechanies,1996,20(9):635-646
    [33]Chen L T,Poulos H G.Piles subjected to lateral soil movements.Journal of Geotechnial and Geoenvironmental Engineering,ASCE,1997,123(9):802-811
    [34]邹广电,陈生水.抗滑桩工程的整体设计方法及其优化数值模型.岩土工程学报,2003,25(1):11-17
    [35]刘小丽,张占民,周德培.预应力锚索抗滑桩的改进计算方法.岩石力学与工程学报,2004,23(15):2568-2572
    [36]赵明华,刘建华,杨明辉.倾斜荷载下高陡边坡桥梁基桩内力计算.岩石力学与工程学报,2006,25(11):2352-2358
    [37]杨明辉.岩质陡坡桥梁桩基承载机理及其分析方法研究.湖南大学博士学位论文.2006,71-79
    [38]Osterberg O.New device for load testing driven piles and drilled shaft separates friction and end bearing piling and deep foundation,1989,421-427
    [39]江苏省地方标准.桩承载力自平衡测试技术规程(DB32/T 291-1999),1999,88
    [40]杜志红.大灌注桩的原型试验与承载力及嵌岩深度的判定.土工基础,1999,13(2):6-10
    [41]中华人民共和国标准.建筑地基基础设计规范(GBJ7-89).北京:中国建筑工业出版社,1989,87-99
    [42]中华人民共和国国家标准.铁路桥涵地基和基础设计规范(TB10002.5).北京:中国铁道出版社,2005,32-33
    [43]交通部标准.公路桥涵地基基础设计规范(JTJ024-85).北京:人民交通出版社,2000,41-42
    [44]Gleser S M..lateral load tests on vertical fixed-head and free-head piles,Symposium on Lateral load tests on piles,ASTM Special Publ.1953,154(6):75-93
    [45]Kubo K.,Experimental study of the behaviour of laterally loaded piles,Proc.6th ICSMFE,1965,12(2):275-279
    [46]黄埔江大桥指挥部.黄埔江大桥钢管桩试验.桥梁建设,1975:5-6
    [47]黄河洛口桩基试验组.黄河洛口桩基试验报告.济南,黄委会山东河务局科技情报站,1985,2-3
    [48]卢世深,林亚超.桥梁钻孔桩试验.北京:人民交通出版社,1980:10
    [49]胡玉山.嵌岩钻孔桩横向受力试桩的分析.岩土工程学报,1985,(4):54-63
    [50]刘云云,陈竹昌.扭矩作用下嵌岩桩桩顶内力分布的模型试验.岩土力学,2000,21(2):119-122
    [51]张四平,邓安福.软质岩中嵌岩桩模型试验技术的研究.重庆建筑工程学院学报,1990,12(3):68-76
    [52]吕福庆,吴文等.嵌岩桩静载试验结果的研究与讨论.岩土力学,1996(1):84-96
    [53]Scott.R.F.Pile testing in centrifuge,Proc.IOth ICSMFE,1981,33(2):837-842
    [54]Barton,Y.O.Response of pile groups to lateral loading in the centrifuge,application of centrifuge modeling to geotechnical design,Ed.Craig,W.H.England,1984,454-474
    [55]Nunez.I.L.et al.Modeling laterally loaded piles in calcareous sand cenrifuge 88,Paris,1988,371-383
    [56]Dykeman,P.and Valsangkar,A.J.Model studies of socketed caissons in soft rock.Can.Geotech.J.1996,33(9):747-759
    [57]张利,胡定.用离心模型研究桩基承载特性.岩土工程学报,1991,13(3):26-35
    [58]张利民,胡定.用离心模型模拟横向受荷桩中残余效应研究.土木工程学报,1992,32(8):71-76
    [59]Kishida H.,and Meyerhof,G.G.Bearing capacity of pile groups under eccentric loads in sand,Proceedings of the 6th International Conference on soil Mechanics and Foundation Engineering,1965,12(4):270-273
    [60]Meyerhof,G.G.,and Ranjan,G.The bearing capacity of rigid piles under inclined loads in sand,Ⅰ:Vertical piles.Canadian Geotechnical Journal,1972,9(4):440-446
    [61]Meyerhof,G.G.,Yalcin,A.S.and Mathur,S.K.Ultimate pile capacity for eccentric inclined load.Journal of the geotechnical engineering division,ASCE,1983,109(GT3):408-423
    [62]Meyerhof,G.G.,and Sastry,V.V.R.N.Bearing capacity of rigid piles under eccentric and inclined loads.Canadian Geotechnical Journal,1985:22(3),267-275
    [63]Sastry,V.V.R.N.,and Meyerhof,G.G.Lateral soil pressures and displacements of rigid piles in homogeneous,;soils under eccentric and inclined loads.Canadian Geotechnical Journal,1986,23(3):281-286
    [64]Yalcin,A.S.,and Meyerhof,G.G.Bearing capacity of flexible piles under eccentric and inclined loads in layered soil.Canadian Geotechnical Journal,1991,28(6):909-916
    [65]Sastry,V.V.R.N.and Meyerhof,G.G.Behavior of flexible piles in layered sands under eccentric and inclined loads.Canadian Geotechnical Journal,1994,31(4):513-520
    [66]Meyerhof,G.G.Behavior of pile foundations under special loading conditions:1994 R.M hardy keynote address.Canadian Geotechnical Journal,1995,32(2):204-219
    [67]Sastry V.V.R.N.and Meyerhof G G.Behavior of flexible piles in layered clays under eccentric and inclined loads,Canadian geotechnical journal,1995,32(5):387-396
    [68]赵明华,吴鸣,郭玉容.轴横向荷载下桥梁基桩的受力分析及试验研究.中国公路学报,2002,15(1):50-54
    [69]刘建华.岩质边坡桥梁基桩受力分析的理论与试验研究.湖南大学博士学位论文.2007,54-56
    [70]邬龙刚.承重阻滑桩承载机理及受力分析研究.湖南大学硕士学位论文,2007,14-17
    [71]刘建华,赵明华,邬龙刚.岩质边坡上桥梁基桩受力分析及试验研究.中南公路工程,2006,31(4):25-29
    [72]Koizumi Y.& Ito K..Field tests with regard to pile driving and bearing capacity of pile foundation,Soil and foundation,1967,7(3):30
    [73]Cooke R.W.,Price G.& Tarr K.J.,Jacked pile in London clay:a study of load transfer and semlement under working conditions,Geotechnique,1979,29(2):113-147
    [74]'Neill M.W.O,Hawkins R.S.&.Mahar L.J,Load transfer mechanisms in pile and pile groups,J.Geotech.Engng,ASCE,1982,18(12):1605-1623
    [75]刘金砺,袁振隆,张国平.钻孔群桩工作机理与承载能力的研究.建筑科学研究报告,中国建筑科学研究院,1984:2-1
    [76]Timoshenko S P,Grre J M.Theory of Elastic Stability.New York:Mc Graw-Hill,1961
    [77]毕尔格麦斯特G.斯托依普H等.稳定理论(下).王生传等译.北京:中国建筑工业出版社,1974,123-122
    [78]Broms B B.Precasting piling practice.London:Thomas Telford LTD,1981,33-44
    [79]Poulos H G,Davis E H.Pile foundation analysis and design.Sydney:The University of Sydney,1980,323-335
    [80]Toakley A R.Buckling loads for elastically supported struts.Journal of Engineering Mechanics Division,ASCE,1965,91(3):205-231
    [81]Reddy A S,Valsangkar A J.Buckling of fully and partially embedded piles.Journal of Soil Mechanics and Foundation Divison,ASCE,1970,96(6):1951-1965
    [82]Reddy A S,Valsangkar A J,and Mishar G C.Buckling of fully and partially embedded tapered piles.In:Proc.4th Asian Regional.Conf.on Soil Mech.and Found.Engrg.,1971,49(1):301-304
    [83]Davisson M T.Estimating loads for piles.In:Proc.Second Pan American Conf.on Soil Mech.and Found.Engrg.,1963,41(1):351-371
    [84]Davisson M T,Robinson K E.Bending and buckling of partially embedded piles.In:Proc.6th Int.Conf.on Soil Mech.and Found.Engrg,1965,43(2):243-246
    [85]Bowles J E.基础工程分析与设计.唐念兹译.北京:中国建筑工业出版社,1987:467-469
    [86]胡人礼.关于桥梁基桩采用m法计算土壤抗力的几个问题.铁路标准设计通讯,1973,23(1):18-26
    [87]朱大同.端部嵌固桩的计算长度.铁路标准设计通讯,1974,(5):27-29
    [88]朱大同.桩顶转角受约束的基桩的计算长度.铁路标准设计问题,1977,(1):14-17
    [89]赵明华.桥梁基桩稳定计算长度.工程力学,1987,4(1):94-105
    [90]赵明华.桥梁桩基的屈曲分析及试验.中国公路学报,1990,3(4):47-57
    [91]Zhao Ming-hua.Study on the buckling of piles.In:Proc.ICSEC,1990:440-445
    [92]赵明华,王季柏.摩擦桩的屈曲分析.湖南大学学报,1995,22(6):109-114
    [93]赵明华,王季柏.基桩计入摩阻力的屈曲分析.岩土工程学报,1996,18(3):87-90
    [94]Gaber M A,Wang J J,Kiger S A.Effect of boundary condition on buckling of friction piles.Journal of Engineering Mechanics,ASCE,1994,120(6):1392-1400
    [95]Gaber M A,Wang J J,Zhao M.Buckling of piles with general power distribution of lateral subgrade reaction.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(2):123-130
    [96]朱大同,傅朝方.桩的计算长度.中国公路学报,2001,14(4):67-69
    [97]傅朝方,朱大同,赵文好.侧摩阻力对桩稳定性的影响.华东公路,2002,(4):71-74
    [98]San-Shyan Lin,Wei-Kuang Chang.Buckling of piles in a layered elastic medium[J].Journal of the Chinese Institute of Engineers,2002,25(2):157-169
    [99]杨维好,宋雷.顶部自由、底部嵌固桩的稳定性分析.工程力学,2000,17(5):63-66
    [100]杨维好,黄家会.负摩阻力作用下端部嵌固桩的竖向稳定性分析.土木工程学报,1999,32(2):59-61
    [101]彭锡鼎.考虑桩侧土壤弹性抗力时桩的临界荷载计算.土木工程学报,1996,29(5):43-48
    [102]Brandtzaeg A,Harboe E.Buckling tests of slender steel piles in soft,quick clay.In:Proc.,4th International Conference On Soil Mechanics and Found.Engineering,1957,91(2):19-23
    [103]Bergefelt A.The axial and lateral load bearing capacity,and failure by buckling of piles in soft clay.In:roc.,4th International Conference On Soil Mechanics and Found.Engineering,1957,91(2):8-13
    [104]Klohn E J,Hughes G T.Buckling of long unsupported timber piles.Journal of Soil Mechanics and Foundation Division,ASCE,1964,98(6):107-12
    [105]Golder H G,Skipp B O.The buckling of piles in soft clay.In:Proc.,4th International Conference On Soil Mechanics and Found.Engineering,1957,91(2):35-39
    [106]Lee K L.Buckling of partially embedded piles in sand.Journal of Soil Mechanics and Foundation Division,ASCE,1968,94(1):255-270
    [107]Sovinc I.Buckling of piles with initial curvature.In:Proc.,10th International Conference On Soil Mechanics and Found.Engineering,1981,34(2):851-856
    [108]程翔云.变截面高墩几何非线性的数值法分析.公路,1996,(6):1-4
    [109]白青侠,郝宪武.考虑重力条件下高薄壁桥墩弹性稳定性分析.西北建筑工程学院学报,2001,18(1):37-41
    [110]王刚,王岚,刘洪.轻型桥墩稳定性的非线性分析.内蒙古工业大学学报,2002,21(1):60-63
    [111]何畅,向中富.具有初始缺陷的高桥墩非线性稳定分析.重庆交通学院学报,2003,22(3):4-7
    [112]王振阳,赵煜,徐兴.高墩大跨径桥梁稳定性.长安大学学报(自然科学版),2003,23(4):38-40
    [113]潘志炎,史方华.高桥墩稳定性分析.公路,2004,12(9):60-62
    [114]Ronold K O.Probabilistic approach to differential Settlements of tripod platform.Journal of The Geotechnical engineering Division,ASCE,1991,117(8):1023-1131
    [115]Briaud J.Measured and predicted axial response of 98 piles.Journal of The Geotechnical Engineering Division,ASCE,1988,114(9):932-943
    [116]Ferregut C.Reliability analysis of drilled piers in expansive soils.Canadian Geotechnical Journal,1991,28(6):45-52
    [117]Feber M H,Stenstrup H B.Reliability based reassessment of an existing pile foundation.In:Proceedings of The 14th international Conference on Soil Mechanics and Foundations Engineering.Hamburg,1997,34(2):626-635
    [118]Phoon K K,Quek S T,Chow Y K.Reliability analysis of pile settlement.Journal of The Geotechnical Engineering Division,ASCE,1990,116(11):1717-1735
    [119]Matsumoto T,Michi Y,Hayashi M.Reliability of dynamic load testing on steel pipe piles in soft rock.In:Proceedings of The 14th International Conference on Soil Mechanics and Foundations Engineering.Hamburg,1997,112(2):636-640
    [120]Hamilton J M,Murff J D.Selection of LRFD resistance factors for pile foundation design.In:Structures Congress 92.edited by Morgan J,ASCE,1992,114(4)285-293
    [121]Ronold K O.Reliability analysis of tension pile.Journal of The Geotechnical Engineering Division,ASCE,1990,116(5):760-773
    [122]Folse M D.Reliability analysis for laterally loaded piling.Journal of The Structural Engineering,ASCE,1989,115(5):1011-1020
    [123]陈忠汉,高大钊.用多参数最优解法求桩侧分层土极限摩阻力.工程勘查,1988,13(5):38-41
    [124]李启信.土层概率模型及其在桩基分析中的应用.岩土工程学报,1989,78(6):120-127
    [125]高大钊,曾朱家.桩基竖向承载力的分项系数研究.同济大学学报,1993,22(1):37-41
    [126]赵春风,徐超,高大钊.单桩竖向抗压承载力的分项系数研究.地下空间,2003,23(4):396-400
    [127]吴佳多,朱天益.华东地区沉桩时桩结构可靠度的分项与研究.见:中国土木工程学会桥梁及结构工程学会结果可靠度委员会全国第二届学术交流会议论文集.重庆,1989:34-38
    [128]杨克己,王福员,李启信等.抗拔单桩的可靠度分析.见:中国土木工程学会桥梁及结构工程学会结果可靠度委员会全国第二届学术交流会议论文集.重庆,1989:39-45
    [129]傅旭东,茜平一,刘祖德.单桩沉降可靠度的随机有限元分析.铁道学报,2002,24(1):70-75
    [130]Banerjee P.K.Integral equation methods for analysis of piece-wise non-homogeneous three-dimensional elastic solids of arbitrary shape.International Journal of Mechanical Sciences,1976,18(6):293-303
    [131]Banerjee P.K,Davies T.G.Behaviour of axially and laterally loaded single piles embedded in nonhomogeneous soils.Geotechnique,1978,28(3):309-326
    [132]Butterfield R,Banerjee P.K.The elastic analysis of compressible piles and pile groups,Geotechnique,1970,21(1),43-60,
    [133]Buterfield R,Banerjee P K.The problem of pile-group-pile cap interaction].Geotechnique,1971,21(2):135-142
    [134]Wolf J.P,Darbre G.R.Dynamic-stiffness matrix of surface foundation on layered halfspace based on stiffness-matrix approach.GA Technologies Inc,1983,183-206
    [135]Wolf J.P,Darbre G.R.Dynamic-stiffness matrix of embedded and pile foundations by indirect boundary-element method.Nuclear Engineering and Design,1984,80(4):331-42
    [136]Poulos H.G..Comparison Between Theoretical and Observed Behaviour of Pile Foundations.Environmental Conference,Proceedings of the Technical Association of the Pulp and Paper Industry,1980,98(1):95-103
    [137]Goodman R.F,Tayor R,L.A model for the mechanics of Jointed rock.International Journal Soil Mech & Found Div ASCE,1968.94(3):637-660
    [138]Naylor D.J.& Hooper J.A.An effective stress finite element analysis to predict the short and long term behaviour of a pile draft foundation on London Clay.Proc.Conf.Settlements of structures,Cambridge.pp.394-402;discussion,pp.779-782.London:Pentech,1974,777-778
    [139]倪新华.筏基-桩基-土体共同作用的数值分析,同济大学,1990,66-68
    [140]吴永红,顾晓鲁.桩基加固软土地基的有限元分析.第三届地基处理学术讨论会论文集,1992,44-45
    [141]徐志英.岩石力学(第三版).北京:水利电力出版社,1993:4-20
    [142]中国科学院地质研究所工程地质与抗震研究室.岩体工程地质力学的原理和方法.中国科学,1972,1(1):12-14
    [143]中国科学院地质所.谷德振文集.北京:地质出版社,1994,33-34
    [144]蒋建平.大直径桩基础竖向承载性状研究博士后,同济大学,2004,114-115
    [145]中华人民共和国建设部主编.《岩土工程勘察规范》(GB50021-2001),北京:中国建筑工业出版社,2002,77-78
    [146]吴忠仕.按Q值进行围岩分级的工程实践.现代隧道技术,2001,38(4):44-47
    [147]韩爱果,聂德新.某电站地下厂房围岩质盆综合分级.地质灾害与环境保护,2002,13(2):75-79
    [148]赵明华,李刚,曹喜仁等.土力学地基与基础疑难释义.北京:中国建筑工业出版社,1998,66-68
    [149]戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究.岩石力学与工程学报,2002,2l(4):517-52
    [150]Bathe K.J.and Cimento A.P.some Practical Procedures fore the soluction of Nonlinear Finite Element Equations.J.Computer Methads in Appl.Mech.and Eng.,1980,22(4):59-85
    [151]Cundall,P.A.A computer Modcl for Simalating Progressive Large Scale Movement in Bcocky Systems.In Proc;Symp.Znt.Soci.Rock Mech.,vol.1,Paper on 8,Nancy,France,1971,115-116
    [152]王泳嘉.离散单元法一种适用节理岩石力学分析的数值方法.第一届全国岩石力学数值计较及摸型试验论文集,1986,87-88
    [153]陈昌伟.离散单元法及其在岩质高边坡稳定分析中的应用.清华大学硕士论文,1992,66-67
    [154]鲁军等.岩体动静力稳定分析的三维离散元法.清华大学学报,1995,6(2):21
    [155]Zhang Chu han,O.Pekau,Jim Feng and Wang Guanglun.Application of Distinet Element Method is Dynamic Analysis of High Rock Slope and Blocky Structures.Soil Dynamics and Eovrthquake.1997,16(7):385-394
    [156]王如路.岩体非连续变形分析理论研究及其在三峡船闸岩体高边坡工程中的应用,同济大学博士后研究工作报告,1998,57-58
    [157]徐卫亚,王思敬.关于三峡永久船闸高边坡快速施工地质超前预报的几个问题.工程地质学报.1994,22(4):21-33
    [158]Vanmarcke EH.Probabilistie Modecing of soil Profiles.ASCEJ.Geoteeh.Eng.Div.,1997,103(11 ):1227-1246
    [159]刘端伶,谭国焕.岩石边坡稳定性和Fuzzy综合评判法.岩石力学与工程学报,1999,18(2):170-175
    [160]贺仲雄,赵大勇.模糊数学及其派生决策方法.中国铁道出版社,1992,66-67
    [161]李贵安,张志宏,段凤英.模糊数学及其应用.冶金工业出版社,1994:145-147
    [162]黄崇福,王家鼎.模糊信息分析与应用.北京师范大学出版社,1992,77
    [163]佐滕悟.基桩承载力机理.:上工技术,1965,20(1):1-5
    [164]赵明华,贺炜,邹新军.计入桩侧摩阻力非线性特性的基桩承载力分析方法.湖南大学学报:自然科学版,2007,34(4):5-9
    [165]Coyle H M,Reese L C.Load transfer for axially loaded piles in clay.Journal of the Soil Mechanics and Foundations Division,ASCE,1966,92(2):1-26
    [166]Kraft L M,Focht J A,Amerasinghe S F.Friction capacity of piles driven into clay.Journal of the Geotechnical Engineering Division,ASCE,1981, 107(11):1521-1541
    [167]建筑桩基技术规范(JGJ94-94).北京:中国建筑工业出版社,1995,88-89
    [168]刘树亚.嵌岩桩理论研究和设计中的几个问题.岩土力学,1999,20(4):86-92
    [169]史佩栋,梁晋渝.嵌岩桩竖向承载力研究.岩土工程学报,1994,16(4):32-36
    [170]Poulos H.G.增加边坡稳定性的加强桩设计(译自Canada Geotechnical.J.Vol.32,1995,808-818),路基工程,1996,24(5):43-45
    [171]陈铁云,沈惠申.结构的屈曲.上海:上海科学技术文献出版,1993:1-19
    [172]赵明华.桥梁桩基计算与检测.北京:人民交通出版社,2000:1-3,10-21,45-82.92-104
    [173]铁道部第三勘测设计院.铁路工程设计技术手册(桥梁地基和基础).北京:人民铁道出版社,1983:1-48
    [174]吉林省交通科学研究所.交通部公路规划设计院.公路桥梁钻孔桩计算手册.北京:人民交通出版社,198l:47-53
    [175]交通部科学研究院.河南省交通局,吉林省交通局等.公路桥梁钻孔桩(上册).北京:人民交通出版社,1978:147-150
    [176]交通部公路规划设计院.公路桥涵地基与基础设计规范(JTJ024-85).北京:人民交通出版社,1985:24-36
    [177]约瑟夫.E.波勒斯(Joseph E Bowles)著.基础工程分析与设计(第5版).童小东等译.北京:中国建筑工业出版社,2004,12-14
    [178]Riks E..An incremental approach to the solution of snapping and buckling problems.International Solids Structure,1979,15(3):529-551
    [179]Chen W.F..钢框架稳定设计.周绥平译.上海:世界图书出版公司,1999,112-113
    [180]双德斯PT.突变理论入门.凌复华译.上海:上海科学技术文献出版社,1983,66-67
    [181]工程地质手册编写委员会.工程地质手册(第三版).北京:中国建筑工业出版社,1992.,45-46
    [182]赵明华,陈昌富,曹文贵等.嵌岩桩桩端岩层抗冲切安全厚度研究.湘潭矿业学院学报,2003,18(4):41-45
    [183]黎斌,范秋雁,秦风荣.岩溶地区溶洞顶板稳定性分析.岩石力学与工程学报,2002,21(4):532-536.
    [184]曹文贵,程晔,赵明华.公路路基岩溶顶板安全厚度确定的数值流形方法研究.岩土工程学报.2005,27(6):621-625.
    [185]李炳行,肖尚惠,莫孙庆.岩溶地区嵌岩桩桩端岩体临空面稳定性初步探讨.岩石力学与工程学报,2003,22(4):633-635.
    [186]张跃,邹寿平,宿芬.模糊数学方法及其应用.北京:煤炭工业出版社,1992,22-24
    [187]徐卫亚,蒋中明,石安池.基于模糊集理论的边坡稳定性分析.岩土工程学报,2003,25(4):409-413.
    [188]陈火红.MARC有限元实例分析教程.北京:机械工业出版社,2003,6-9
    [189]MSC.Marc Volume C:Program Input Version 2003.MARC Analysis Research Corporation 1997,12-14
    [190]李继华.可靠性数学.北京:中国建筑工业出版社,1988,32-54
    [191]Bennett R M.Investigation of Methods for Structural System Reliability.University of Illinois at Urbana-Champaign,1983,122(9):547-553
    [192]Hak-Fong Ma.Reliability.Analysis of Redundant Ductile Structural System.University of Illinois at Urbana-Champaign,1981,67(9):554-562
    [193]Rackwitz.Practical probabilistic approach to design.In:Comite European du Beton.Paris,1976,112(6):179-184
    [194][194]Wong F S.Slope reliability and response surface method.Journal of Geotechnical Engineering,ASCE,1985,111(1):32-53
    [195]Faravelli L.Response surface approach for reliability analysis.Journal of Engineering Mechanics,ASCE,1989,115(12):2763-2781
    [196]Bucher C G,Bourgund U.A fast and efficient response surface approach for structural reliability problems.Structural Safety,1990,89(7):57-66
    [197]Liu Y W,Moses F.A sequential response surface method and its application in the reliability analysis of aircraft structural system.Structural Safety,1994,45(16):39-46
    [198]佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面方法.土木工程学报,1997,30(4):51-57
    [199]苏永华,何满潮,曹文贵.岩体地下结构围岩稳定非概率可靠性的凸集合模型分析方法.岩石力学与工程学报,2005,24(3):377-382.
    [200]Rubio Eva,HallJim W,ANDERSON Malcolm G.Uncertainty analysis in a slope hydrology and stability model using probabilistic and imprecise information.Computers and Geotechnics,2004,31(5):529-536.
    [201]吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间分析的非概率可靠性分析方法.计算力学学报,2002,19(3):260-264.
    [202]郭书祥,张陵,李颖.结构非概率可靠性指标的求解方法.计算力学学报,2005,22(2):227-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700