用户名: 密码: 验证码:
复合型质子交换膜的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)被认为是最有希望成为航天、军事、电动汽车和区域电站的首选电源。质子交换膜作为PEMFC的“心脏”,起着阻隔燃料和氧化剂以及传递质子的作用。目前燃料电池中用的质子交换膜,主要是美国杜邦公司生产的全氟磺酸Nafion膜。但是Nafion膜具有价格昂贵,低湿度或高温时质子传导率低,甲醇渗透系数高等缺点。因此,低价格高性能的新型质子交换膜的开发成为目前研究的热点。聚苯并咪唑具有很好的热稳定性,优异的机械性能、好的阻醇性能、化学稳定性及成膜性,是作为质子交换膜的理想材料之一,但是它的缺点在于不具备传导质子的能力。磺化聚芳醚酮作为质子交换膜材料也表现出了很好的应用前景,但是低磺化度的聚芳醚酮质子传导率低而机械性能很好,阻醇性能好。高磺化度的磺化聚芳醚酮质子传导率较高,机械性能不好,阻醇性差。针对以上性能优异的两种材料所存在的问题本论开展了以下工作。首先,在聚苯并咪唑中掺入可以传导质子的酸性物质,高磺化度的磺化聚醚醚酮以及磷钨酸,以满足作为质子交换膜材料的基本要求。其次,由于无机物的加入可以改善聚合物的机械性能、热性能和阻醇性能,因此将无机氧化物与磺化聚醚醚酮相复合,既保持了磺化聚醚醚酮的质子传导率又增强了膜的机械性能,热稳定性,同时降低其甲醇渗透系数。
Proton exchange membrane fuel cells (PEMFCs) are the preferred power sources to spaceflight, military affairs, vehicles and portable devices, because of the virtues of the lowest working temperature highest specific energy, the fastest startup, the longest service life, and the widest applications. Proton exchange membrane is the“heart”of PEMFC for transferring protons from the anode to cathode as well as providing a barrier to the fuel gas cross-leaks between the electrodes. In the present, the membranes traditionally used in PEMFC are perfluorosulfonic polymers such as Dupont Nafion?, however, high cost, low proton conductivity under low relative humidity and high temperature, high methanol permeability have limited their usages.
     Hence, new types of proton exchange membranes with low cost and high performance attract lots of researchers. Polybenzimidazole (PBI) possesses good mechanical strength, high chemical and thermal stability at high temperatures, at the same time, the PBI membrane is highly impermeable to methanol, and the water drag coefficient is nearly zero. So,Polybenzimidazole he excellent material to be used as polymer electrolyte membrane. However, the shortcoming is the disability of proton conduct. Sulfonated poly(aryl ether)s (SPAEs) show very good potential usages in PEM, however, SPAEs with low IEC exhibited good mechanical strength and methanol resistance and low proton conductivity, SPAEs with high IEC exhibited superior proton conductivity, bad mechanical performance and relatively high methanol crossover.
     In order to solve these problems we have prepared a series of the composite membranes.
     At first, Polybenzimidazole was synthesized and mixed with highly sulfonated polyether-ether ketone (SPEEK) and 12-phosphotungstic acid (PWA), respectively. The aim was to keep the virtue and overcome its defect used as proton exchange membrane.
     In chapter 3, the SPEEK/PBI composite membranes were prepared. The morphology characteristics of the composite membranes were studied in detail by SEM, AFM, SAXS, etc. The relationships between the performance of the composite membrane and morphology were analyzed. Because of the interaction between sulfonic acid groups and amine groups the composite membranes became more compact and the intercluster distance decreased with the increasing content of PBI (0–20%),which lead to the cut down of water uptakes and following the decrease of proton conductivity (25 C: 0.048 0.01 S/cm). However, the lowest the proton conductivity of the composite membranes was still higher than 10 2 S/cm. The thermal stabilitiesand mechanical properties have shown a raise tendency. Therefore, considering all the performance of the composite membranes, we could conclude that the SPEEK/PBI composite membranes are promising for usage in DMFC.
     In chapter 4, PWA was successfully introduced into PBI membranes. In this paper, we also proposed a fast proton-conducting structure and mechanism at 100% relative humidity. The proton conductivity was dependent on the ratio between PWA and PBI. The interaction between PWA and PBI was studied by IR and the morphology of the membrane was studied by scanning electron microscope. The performance such as thermal stabilities and mechanical properties were tested and showed the elevated results. The PWA-encapsulated material may have a potential for polymer electrolyte membrane fuel cells operating at low temperatures under 100% relative humidity.
     Secondly, the research above found that the inorganic can improve the mechanical property of the polymer. So in chapter 5, Ga2O3 was blended into SPEEK. Aim to improve the mechanical property, methanol resistance and keep high proton conductivity. The results proved that the mechanical and thermal stabilities of the hybrid SPEEK membranes were dramatically improved by introduction of Ga2O3. The water uptakes of the hybrid membranes were decreased with the increasing content of inorganic section besides 10% wt. content of Ga2O3. which was caused by the dispersion of Ga2O3 as been proved by SEM. The water retentions at 80 C and methanol resistances of the hybrid membranes had been obviously enhanced. The proton conductivities of SPEEK/ Ga2O3 hybrid membranes decreased slightly at lower temperature compared with the pristine SPEEK membrane, however, it was higher than pristine SPEEK membrane at relativiely higher temperature ( above 600C). The selectivity of SPEEK/ Ga2O3 hybrid membranes showed higher results associate with SPEEK. These results indicated that the SPEEK/ Ga2O3hybrid membrane possessed good physical and chemical property and was promising to be used as PEMs in DMFCs.
引文
[1]衣宝廉.燃料电池-高效、环境友好的发电方式[M].北京:化工出版社,2000.
    [2]STEELE B C H, HEINZEL A. Materials for fuel-cell technologies [J]. Nature, 2001, 414:345-352.
    [3]APPLEBY A J, FOULKES F R. Fuel cell handbook [M]. New York: Van NostrandReinhold, 1989.
    [4]ZALBOWITZ M, THOMAS S. Fuel Cells: Green Power [M].U.S.: Department of Energy, 1999.
    [5]WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors [J]. Chemical Reviews, 2004, 104(10): 4245-4270.
    [6]毛宗强,陆文军,阎军.质子交换膜燃料电池最新进展及我国发展战略探讨[J].电池世界,1998,2:16一20.
    [7]毛宗强.质子交换膜燃料电池(PEMFc)最新进展[J].新能源,1999,21(1): 7-10.
    [8]陈延禧.聚合物电解质燃料电池的研究进展[J].电源技术,1999,20(1): 21-27
    [9]周运鸿.燃料电池的发展[J].电池世界, 1998,创刊号:3-5.
    [10]王艳华,王欧,林彬.前景广阔的新型化学电源一嫌料电池[J].辽宁化工, 1998,27(l):9一12.
    [11]王筱武.燃料电池[J].科技通报, 1999,15(3):242-243.
    [12]王瑛,黄黎中,王永立等.燃料电池技术要论[J].贵金属, 1997,18(1): 49-54.
    [13]EG&G Technical Services, Inc. Science Application International Corporation.Fuel Cell Handbook (Sixth Edition) [M].U.S.:Department of Energy (DOE).2002, 11.
    [14]CARRETTE L, FRIEDRICH K A, STIMMING U.Fuel cell: principles, types, fuels and applications [J].Chemphyschem, 2000, 1:162.
    [15]杨辉,卢文庆.应用电化学[M].北京:科学技术出版社,2001.
    [16]OSTWALD W. Die wissenschaftliche Elektro- chemie der. Gegenwart und die Technische der. Zeitschrift für Elektrotechnik und Elektrochemie, 1894, 1(4): 122-125
    [17]KORDESCH K, OLIVERIRA J. Fuel Cells, in: Ulmann’s Encyclopedia of Industrial Technology [M], Vol.A-12, Weinheim, Germany: VCH 1989, 55.
    [18]BACON F T. Research into the properties of the hydrogen-oxygen fuel cell [J]. BEAMA J, 1954, 6: 61-57.
    [19]HICKNER M A, HOSSEIN G, YU S, EINSLA B R, et al. Alternative Polymer Systems for Proton Exchange Membranes (PEMs) [J]. Chemical Reviews, 2004, 104(10):4587-4612.
    [20]汪继强.离子交换膜燃料电池技术的发展和应用前景[J].电源技术,1995,19(4):38-43.
    [21]JOON K. Fuel cells– a 21st century power system [J]. Journal of Power Sources, 1998, 71:12-18.
    [22]ADAMSON K-A, PEARSON P. Hydrogen and methanol: a comparison of safety, economics, efficiencies and emissions [J]. Journal of Power Sources, 2000, 86:548-555.
    [23]BEEK N R, HAMMERLI M.The Canadian Fuel Cell R&D Program. In: Fuel Cell Seminar, Part 3, 1996[C]. Oriando, USA,
    [24]HOGARTH M P, HARDS G A, Direct methanol fuel cells [J]. Platinum Metal Review, 1996, 40(4):150 159.
    [25]陈延禧,黄成德,孙燕宝.聚合物燃料电池的研究和开发[J].电池,1999, 29(6):243-248.
    [26]HWAN JUNG D, HYEONG LEE C, SOO KIM C, RYUL SHIN D. Performance of a direct methanol polymer electrolyte fuel cell [J]. Journal of Power Sources, 1998, 71(1-2): 169-173.
    [27]WAIDHAS M, DRENCKHAHN W, PREIDEL W, LANDES H. Direct-fuelled fuel cells. Journal of Power Sources [J], 1996, 61(1):91-97.
    [28]MARIE S. Fuel cell test bench design and manufacture. Fuel Cells Bulletin [J], 2000, 20:11-13.
    [29]魏昭彬,刘建国,乔亚光.直接甲醇燃料电池性能[J].电化学,2000,7(2):228-233.
    [30]REN X, WILSON M S, GOTTESFELD S. High Performance direct methanol polymer electrolyte fuel cell [J]. Journal of the Electrochemical Society, 1996, 143(1):L12-L15.
    [31]WANG K, GASTEIGER H A, MARKOVIC N M, et al. On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochimica Acta [J], 1996, 41(16):2587-2593.
    [32]LEY K L, Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. Journal of the Electrochemical Society [J], 1997, 144(5):1543-1548.
    [33]SRINIVASAN S. Fuel cells for extraterrestrial and terrestrial applications. Journal of the Electrochemical Society [J], 1989, 136: 410
    [34]BORRONI-BIRD, CHRISTAPHER E, Fuel cell commercialization issues for light duty vehicle applications. Journal of Power Sources [J], 1996, 61, 33-48.
    [35]THOMAS K, Fuel cells for transport: can the promise be fulfilled Technicalrequirements and demands from customers. Journal of Power Sources [J], 1996, 61, 61-69.
    [36]MASANOBU WAKIZOE, OMOURTAG A VELEV, Supramaniam Srinivasan, Analysis of proton exchange membrane fuel cell performance with alternate membranes. Electrochinica.Acta [J], 1995, 40, 335-344.
    [37]YOSHITAKE M, TAMURA M, YOSHIDA N, et al. Denki Kagaku [J], 1996, 64(6): 727-736.
    [38]YOSHIDA N, ISHISAKI T, WATAKABE A, et al. Electro- chimica Acta [J], 1998, 43(24): 3749-3754.
    [39]SAMMS S R, WASMUS S, SAVINELL R F. Thermal Stability of Nafion in Simulated Fuel Cell Environments. Journal of Electrochemical Society [J], 1996, 143(5):1498-1504.
    [40]HODGDON R B. Studies of perfluorinated ion exchange membrane for polymer electrolyte fuel cells. Journal of polymer science [J], 1968, 6:171-191.
    [41]SAVADOGO O. Emerging membranes for electrochemical systems (1) solid polymer electrolyte membranes for fuel cell systems [J]. Journal of New Materials for Electrochemical Systems, 1998, 1:47-65.
    [42]WEI J, STONE C, STECL A E. Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene) U.S., Patent 5,422,411 [p],1995
    [43]BEATTIE P D, ORFINO F P, BASURA V I, et al. Ionic conductivity of proton exchange membranes [J]. Journal of Electroanalytical Chemistry, 2001, 503:45-56
    [44]BASURA V I, CHUY C, BEATTIE P D, et al. Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchang membranes based on sulfonated a, a, ?-tuifluorostyrene (BAM?) and sulfonated styene-(ethylene-butylene)-styene triblock (DAIS-analytical) copolymers [J]. Journal of Electroanalytical Chemistry, 2001, 501:77-88
    [45]周其凤,胡汉杰.高分子化学[M].北京:化学工业出版社,2001,10.
    [46]JOCHEN A KERRES. Development of ionomer membranes for fuel cells [J]. Journal of Membrane Sciences, 2001, 185:3-27.
    [47]LEHTINEN T, SUNDHOLM G, HOLMBERG S, et al. Electrochemicalcharacterization of PVDF-based proton conducting membranes for fuel cells [J]. Electrochimica Acta, 1998, 43(12-13):1881-1890.
    [48]BUCI F N, GUPTA B, HAAS O, et al. Performance of differently cross-linked, partially fluorinated proton-exchang membranes in polymer electrolyte fuel-cells [J]. Journal of the Electrochemical Society, 1995, 142(9):3044-3048.
    [49]WILSON M S, VALERIO J A, GOTTESFELD S. Study of radiation-grafted FEP-G-Polystyrene membranes as polymer electrolytes in Fuel-Cells [J]. Electrochim Acta, 1995, 40(3):345-353
    [50]MOHAMED MAHMOUD NASEF, HAMDANI SAIDI, HUSSIN MOHD NOR, et al. Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly (tetrafluoroethylene-co-hexafluoropropylene) films. II. Properties of sulfonated membranes [J]. Journal of Applied Polymer Science, 2000, 78: 2443-2453.
    [51]SCOTT K, TAAMA W M, ARGYROPOLOULOS P. Performance of the direct methanol fuel cell with radiation-grafted polymer membranes [J]. Journal of Membrane Science, 2000, 171:119-130.
    [52]WILLIAM LEE, AKIO SHIBASAKI, KYOICHI SATIO, et al. Proton transport throuth polyethylene-Tetraflouroethylene-Copolymer-Based membrane containing sulfonic-acid group prepared by rigp [J]. Journal of the Electrochemical Society, 1996, 143(9):2795-2799.
    [53]ROUILLY M V, KOTZ E R, HAAS O, et al. Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto Teflon-FEP films. Synthesis and characterization [J]. Journal of Membrance Science, 1993, 81:89-95.
    [54]CAPUANO H, WANG G A. Behavior of Raipore radiation-grafted polymer membranes in H{sub}2/O{sub}2 fuel cells [J]. Journal of the Electrochemical Society, 1998, 145(3):780-784.
    [55]MATTSSON B, ERICSON H, TORELL M, et al. Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy [J]. Electrochimica Acta, 2000, 45:1405-1408.
    [56]KERRES J, CUI W, EIGENBERGER G. World Hydrogen Energy Conference. Stuttgart, June 23-28, 1996 [C]. Germany, P: 1951-1956.
    [57]ROGER A A, CHARLES ARONOLD, HOLLANDSWORTH J P. Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens [J]. Journal of Membrane Science, 1991, 56:143-151.
    [58]HUBNER G, RODUNER E. EPR investigation of HO·radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes [J]. Journal of Materials Chemistry, 1999, 9:409-418.
    [59]刘朋军,张连华.聚膦腈功能材料研究进展[J].化学研究与应用,2001,13(1):33-38.
    [60]贡长生,邝生鲁,童丽娜.聚膦腈的合成和应用研究进展[J].现代化工,1991,6:24-28.
    [61]徐师兵,郑福安,杨永刚.β-萘酚取代聚膦腈的合成与表征[J],高校化学学报,1994,15(11):1730-1732.
    [62]WYCISK R, PINTAURO P N. Sulfonated polyphosphazene ion-exchange membranes [J]. Journal of Membrane Sciences, 1996, 119:155-160
    [63]TANG H, PINTAURO P N, GUO Q, et al, Polyphosphazene membranes. III. Solid-state characterization and properties of sulfonated poly [bis(3-methylphenoxy)phosphazene] [J]. Journal of Applied Polymer Science, 1999, 71:387-399.
    [64]HARRY R A, MICHAEL A H, CATHERINE M A, et al. Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells [J]. Journal of Membrane Science, 2002, 201:47-54.
    [65]FEDKIN M V, ZHOU X Y, HOFMANN M A, et al. Evaluation of methanol crossover in proton-conducting polyphosphazene membranes [J]. Materials Letters, 2002, 52:192-196
    [66]AHMAD B, FARIBORZ A. Synthesis and characterization of new thermally stable polybenzimidazoles and poly(amide-benzimidazole)s [J]. European Polymer Journal, 2002, 38:2119-2124.
    [67]WANG J T, WAINRITHR J S, SAVINELL R F. A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte [J]. Journal of Apply Electrochemistry, 1996, 26:751-756.
    [68]POWERS E D, SERAD G A. High Performance Polymers: Their Origin and Development, Elsevier, New York, patent: 355-373[P], 1986
    [69]LINKOUS C A, ANDERSON H R, KOPITZKE R W. Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures [J]International Journal of Hydrogen Energy, 1998, 23:525-529.
    [70]KAWAHARA M, RIKUKAWA M, SANUI K, OGATA N, Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films [J]. Solid State Ionics, 2000, 136:1193-1196.
    [71]GLIPA X, HADDAD M E, JONES D J, ROZIERE J. Synthesis and characterization of sulfonated polybenzimidazole: a highly conducting proton exchange polymer [J]. Solid State Ionics, 1997, 97:323-331.
    [72]侯士法,何耀春,丁孟贤.非氟质子传导聚合物膜的制备与性能[J],高分子通报,2003,5,7.
    [73]GENIES C, MERCIER R, SILLOILLION B, CORNET N, et al. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes [J]. Polymer, 2001, 42:359-373.
    [74]SAVINELL R, LITT M. Proton Conducting Polymers.U.S.Patent.5525436[P], 1996.
    [75]SAVINELL R, LITT M, Proton conducting polymer electrolyte prepared by direct acid casting U.S.Patent. 6099988[P], 2000.
    [76]GUO X, FANG J, WATARI T, TANAKA K, et al. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic Acid [J]. Macromolecules, 2002, 35:6707-6713.
    [77]FAURE S, MERCIER R, ALDEBERT P, et al., Sulphonated polyimides, membranes and fuel cell, French Patent.9605707[P], 1996.
    [78]GENIES C, MERCIER R, SILLION B, et al. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium[J]. Polymer, 2001, 42:5097-5105.
    [79]GENIES C, MERCIER R, SILLION B, et al. Soluble sulfonated naphthalenic polyimides as materialsfor proton exchange membranes [J]. Polymer, 2001, 42: 359-373.
    [80]FANG J, GUO X, HARADA S, WATARI T, et al. Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4, 4‘-Diaminodiphenyl Ether-2,2‘-disulfonic Acid [J]. Macromolecules, 2002, 35:9022-9028
    [81]YANG C, COSTAMAGNA P, SRINIVASAN S. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells [J]. Journal of Power Sources, 2001, 103(1):1-9
    [82]HAILE S M, BOYSEN D A, CHISHOLM C R I. Solid acids as fuel cell electrolytes [J]. Nature, 2001, 410: 910-913.
    [83]BOYSEN D A, UDA T, CHISHOML C R I. High-Performance Solid Acid Fuel Cells Through Humidity Stabilization [J]. Seience,2004, 303:68-70.
    [84]TRICOLI V. Proton and methanol transport in poly(perfluorosulfonote) membranes containing Cs+ and H+ cations [J]. Journal of the Electrochemical Society, 1998, 145(11):3798-3801
    [85]JIA N,LEEFBVRE M C,HALYFARD J. Modification on Nafion Proton Exchange Membranes to Reduce Methanol Crossover in PEM Fuel Cells [J]. Electrochemical and Solid State Letters, 2000, 3(12):529-531
    [86]CHOI W C, KIM J D, WOO S IHL, Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell [J]. Journal of Power Sources, 2001, 96(2):411-414
    [87]HOBSON L J, OZU H, YAMAGUCHI M. Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells [J]. Journal of The Electrochemical Society, 2001, 148(10):A1185-A1190
    [88]FEICHTINGER J, GALM R, WALKER M, Plasma polymerized barrier films on membranes for direct methanol fuel cells [J]. Surface and Coatings Technology, 2001, 142-144:181-186
    [89]FINSTERWALDER F, HAMBITZER G, Proton conductive thin films prepared by plasma polymerization [J]. Journal of Membrane Science, 2001, 185(1): 105-124.
    [90]UCHIDA H, MIZUNO Y, WATANABE M, Resistance in Pt-Dispersed PEMs under DMFC Operation - Experimental Analyses [J]. Journal of The Electrochemical Society, 2002, 149(6): A682-A687.
    [91]WATANABE M, UCHIDA H, EMORI M. metal-oxides: Experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells [J]. Journal of Physical Chemistry B, 1998, 102: 3129-3137.
    [92]LIU J, WANG H, CHENG S A. Nafion–polyfurfuryl alcohol nanocomposite membranes with low methanol permeationElectronic Supplementary Information (ESI) available: Preparation and test methods of membrane electrode assemblies [J]. Chemical Communication, 2004, 6:728-729.
    [93]DENG Q, MOORE R B, MAURITZ K A. Novel Nafion/ORMOSIL Hybrids via in Situ Sol-Gel Reactions. 1. Probe of ORMOSIL Phase Nanostructures by Infrared Spectroscopy [J]. Chemistry of Materials, 1995, 7(12): 2259-2268.
    [94]KERRES J A. Development of ionomer membranes for fuel cells [J].Journal of Membrane Science, 2001, 185(1): 3-27
    [95]KEERES J A. Ullrich A, Hein M, Cross-Linked Polyaryl Blend Membranes for Polymer Electrolyte Fuel Cells [J]. Fuel Cells, 2004, 4(1-2):105-112
    [96]KERRES J A, ULLRICH A, HEIN M. Preparation and characterization of novel basic polysulfone polymers. Journal of polymer science: polymer chemistry, 2001 39:2874-2888.
    [97]ZAIDI S M J, MIKHAILENKO S D, ROBERTSON G P. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications[J]. Journal of Membrane Science, 2000, 173(1):17-34
    [98]MIKHAILENKO S D, ZAIDI S M J, KALIAGUINE S. Sulfonated polyether ether ketone based composite polymer electrolyte membranes [J]. Catalysis Today, 2001, 67(1-3):225-236
    [99]WAINRIGHT J S, WANG J T, WENG D. Acid-Doped Polybenzimidazoles - A New Polymer Electrolyte [J]. Journal of the Electrochemical Society, 1995, 142(7):L121-L123.
    [100]SAVINELL R F, LIU M H. Proton conducting polymers used as membranes, US Patent. 5,525,436 [P], 1996.
    [101]FONTAMELLA J J, WINTERSGILL M C, WAINRITHT S. High pressure electrical conductivity studies of acid doped polybenzimidazole [J]. Electrochimica Acta, 1998, 43(10-11):1289-1294.
    [102]ANTONUCCI P L, ARICO A S, CRETI P. Investigation of a direct methanol fuel cell based on a composite Nafion?-silica electrolyte for high temperature operation [J]. Solid State Ionic, 1999, 125:431-437
    [103]JUNG D H, CHO S Y, PECK D H, Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell [J]. Journal of Power Sources, 2002, 106(1-2): 173-177.
    [104]PELED E, DUVDEVANI T, MELMAN A. A Novel Proton-Conducting Membrane [J].Electrochemical and Solid State Letters, 1998, 1(5):210-211
    [105]PELED E, DUVDEVANI T, AHARON A. A Direct Methanol Fuel Cell Based on a Novel Low-Cost Nanoporous Proton-Conducting Membrane [J]. Electrochemical and Solid-State Letters, 2002, 3(12): 525-528.
    [106]PELED E, LIVSHITS V, RAKHMAN M. 0.5 W/cm2 Direct Methanol-Air Fuel Cell [J]. Electrochemical and Solid-State Letters, 2004, 7(12):A507-A510
    [107]PELED E, BLUM A, AHARON A. Novel Approach to Recycling Water and Reducing Water Loss in DMFCs [J]. Electrochemical and Solid-State Letters, 2003 6(12): A268-A271.
    [108]HSU W Y, GIERKE T D, Ion transport and clustering in nafion perfluorinated membranes [J]. Journal of Membrane Science, 1983, 13(3): 307-326
    [109]GEBEL G, LAMBARD J. Small-angle scattering study of water-swellon perfluorinated ionomer membrane [J]. Macromolecules, 1997, 30: 7914-7920.
    [110]HAUBOLD H G, VAD T, JUNGBLUTH H. Nano structure of NAFION: a SAXS study [J]. Electrochimica Acta, 2001, 46(10-11): 1559-1563.
    [111]BUNKER C E, MA B, SIMMONS K J. Steady-state and time-resolved fluorescence spectroscopic probing of microstructures and properties of perfluorinated polyelectrolyte membranes [J]. Journal of Electroanalytical Chemistry, 1998, 168:15-28.
    [112]Gebel G.. Small-angle scattering study of water-swellon perfluorinated ionomer membrane Macromolecules 1997, 30, 7914- 7920.
    [113]GEBEL G., MOORE R B. Small-Angle Scattering Study of Short Pendant Chain Perfuorosulfonated Ionomer Membranes [J]. Macromolecules, 2000, 33:4850-4855.
    [114]GEBEL G.. Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution [J]. Polymer, 2000, 41: 5829- 5838
    [115]EISENBERG A. Clustering of Ions in Organic Polymers. A Theoretical Approach [J]. Macromolecules, 1970, 3: 147-154.
    [116]FUJIMURA M, HASHIMOTO T J, KAWAI H. Small-angle x-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima [J]. Macromolecules, 1981, 14:1309-1315.
    [117]FUJIMRUA M, HASHIMOTO T J, KAWAI H. Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum [J]. Macromolecules, 1982, 15: 136-144
    [118]DING J, CHUY C, HOLDCROFT S. Solid Polymer Electrolytes Based on Ionic Graft Polymers: Effect of Graft Chain Length on Nano-Structured, Ionic Networks [J]. Advanced Functional Materials, 2002, 12:389-394.
    [119]SAUER B B, MCLEAN R S. AFM and X-ray Studies of Crystal and Ionic Domain Morphology in Poly(ethylene-co-methacrylic acid) Ionomers [J]. Macromolecules, 2000, 33:7939-7949.
    [120]YANG Y S, SHI Z Q, HOLDCROFT S. Synthesis of Sulfonated Polysulfone-block-PVDF Copolymers: Enhancement of Proton Conductivity in Low Ion Exchange Capacity Membranes [J]. Macromolecules, 2004, 37:1678-1681.
    [121]KREUER K D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J]. Journal of membrane science, 2001, 185: 29-39.
    [122]KIM Y S, WANG F, HICKNER M, ZAWODZINSKI T A, et al. Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications [J]. Journal of membrane science, 2003, 212:263-282.
    [123]KIM Y S, DONG L, HICKNER M A, PIVOVAR B S, et al. Processing induced morphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes [J]. Polymer, 2003, 44:5729-5736.
    [124]CHUANG S W, HSU S L. Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2006, 44: 4508-4513.
    [125]CHEDDIE D F, N. MUNROE D H. Three dimensional modeling of high temperature PEM fuel cells [J]. Journal Power Sources, 2006, 160:215-223.
    [126]CHENG C K, LUO J L, K. CHUANG T, SANGER A R. Propane Fuel Cells Using Phosphoric-Acid-Doped Polybenzimidazole Membranes [J]. The Journal of Physical Chemistry B, 2005, 109:13036-13042.
    [127]KIM H J, AN S J, KIM J Y , MOON J K, et al. Polybenzimidazoles for High Temperature Fuel Cell Applications [J]. Macromolecular Rapid Communications,2004, 25:1410–1413.
    [128]HE R, Q LI, BACH A, JENSEN J O, BJERRUM N J. Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells [J]. Journal of Membrane Science, 2006, 277:38–45.
    [129]PU H, MEYER W H. Wegner G. Proton transport in polybenzimidazole blended with H3PO4 or H2SO4 [J]. Journal of Polymer Science Part B: Polymer Physics,2002, 40:663–669.
    [130]RONGHUAM He, QINGFENG Li, JENS O J, NIELS J B. Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells [J]. Journal of Polymer Science Part A: Polymer Chemistry,2007, 45: 2989–2997.
    [131]PRABAKARAN R S, WEICHENG W, DILYANA M, et al. Functionalized Poly(benzimidazole)s as Membrane Materials for Fuel Cells [J]. Macromolecular Chemistry and Physics,2007, 208:2258–2267.
    [132]ZHAI Y, ZHANG H, ZHANG Y, XING D. A novel H3PO4/Nafion–PBI composite membrane for enhanced durability of high temperature PEM fuel cells [J]. Journal of Power Sources, 2007, 169:259–264.
    [133]JAVAID ZAIDI S M. Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate [J]. Electrochimica Acta,2005, 50: 4771–4777.
    [134]ZHANG H, LI X, ZHAO C, FU T, et al. Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance [J]. Journal of Membrane Science, 2008, 308: 66–74.
    [135]ARIZA M J, JONES D J, ROZIKRE J. Role of post-sulfonation thermal treatment in conducting and thermal properties of sulfuric acid sulfonated poly(benzimidazole)membranes [J]. Desalination, 2002,147:183-l 89.
    [136]BAE J M, HONMA I, MURATA M, YAMAMOTO T, et al. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells [J]. Solid State Ionics, 2002, 147: 189–194.
    [137]HE R, LI Q, XIAO G, BJERRUM N J. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors [J]. Journal of Membrane Science, 2003, 226:169–184.
    [138]PIETRO S. Proton conductive membranes based on silicotungstic acid/silica and polybenzimidazole [J]. Materials Letters, 2001, 47:241–246.
    [139]STAITI P, MINUTOLI M. Influence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes [J].Journal of Power Sources, 2001, 94:9-13.
    [140]XING B Z. SAVADOGO O. The Effect of Acid Doping on the Conductivity of Polybenzimidazole (Pbi) [J]. Journal of New Materials for Electrochemical Systems,1999, 2:95-101.
    [1]BRINKER K C, ROBINSON I M. Polybenzimidazoles. U.S., Patent: 2895948 [P], 1959.
    [2]VOGEL H, MARVEL C S. Polybenzimidazoles, New Thermally Stable Polymer [J]. Journal of Polymer Science, 1961, 50: 511-539.
    [3]CHUNG N T S. A critical review of polybenzimidazoles: Historical development and future R&D [J]. Macromolecular Chemistry and Physics, 1997 , C37(2) : 277-301.
    [4]WANG K Y, XIAO Y C, CHUNG T S. Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin [J]. Chemical Engineering Science, 2006, 61: 5807–5817.
    [5]浦鸿汀,刘改花。磷酸掺杂新型聚苯并咪唑的质子导电性能的研究功能材料[J]. 2005,36(2):217-220.
    [6]卿胜波,黄卫,颜德岳。耐高温含氟磺化聚苯并咪唑的合成及表征[J].化学学报, 2005, 63: 667-670.
    [7]卿胜波,黄卫,颜德岳。耐高温磺化聚苯并咪唑的合成与表征[J].高等学校化学学报,2005, 11:2145-2148.
    [8]TAKAKAZU K. Polyelectrolyte Behavior of a Polybenzimidazole in Formic Acid [J]. Polymer Journal,1981,13:85-87.
    [1]EIKERLING M, KORNYSHEV A A, KUZNETSOV A M, et al. Mechanisms of proton conductance in polymer electrolyte membranes [J]. Journal of Physical Chemistry B, 001, 105: 3646-3662.
    [2]DHARINEE D C. N-HETEROCYCLIC CARBENES AS PRECURSORS TO POLARISED MOLECULAR MATERIALS: EVIDENCE FOR DELOCALISATION IN AZINES POSSESSING STRONG [D]. B.Sc. (Hons.) Chemistry, University of Mauritius, 1997.
    [3]WANG F, HICKNER M, KIMA Y S, ZAWODZINSKI T A, et al. Direct polymerization of sulfonated poly(arylene ether sulfone)random(statis-tical)copolymers: candidates for new proton exchange membranes [J]. Journal of Membrane Science, 2002, 197:231–242.
    [4]WATARI T, WANG H Y, KUWAHARA K, TANAKA K, et al. Water vapor sorption and diffusion properties of sulfonated polyimide membranes [J]. Journal of Membrane Science, 2003, 219:137–147.
    [5]JUNG B, KIM B, YANG J M. Transport of methanol and protons through partially sulfonated polymer blend membranes for direct methanol fuel cell [J]. Journal of Membrane Science, 2004, 245:61.
    [6]LI X F, CHEN D J, XU D, ZHAO C,et al. SPEEKK/polyaniline(PANI)composite membranes for direct methanol fuel cell usages [J]. Journal of Membrane Science, 2006, 275:134–140.
    [7]WANG K Y, XIAO Y C, CHUNG T-S. Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin [J]. Chemical Engineering Science, 2006, 61:5807–5817.
    [8]GEBEL G, LAMBARD J. Small-angle scattering study of water-swollen perfluorinated ionomer membranes [J]. Macromolecules, 1997, 30:7914–7920.
    [9]DING J F, CHUY C, HOLDCROFT S. Solid polymer electrolytes based on ionic graft polymer: effect of graft chain length on nano-structured, ionic networks [J], Advance Functional Material, 2002, 12(5):389–394.
    [10]SAUER B B, MCLEAN R S. AFM and X-ray studies of crystal and ionic domain morphology in poly(ethylene-co-methacrylic acid)ionomers [J]. Macromolecules, 2000, 33:7939–7949.
    [11]EISENBERG A. Clustering of ions in organic polymers.A theoretical approach [J]. Macromolecules, 1970, 3:147-154.
    [12]KIM YS, HICKNER M A, DONG L M, PIVOVAR B S, et al. Sulfonatedpoly(arylene ether sulfone)copolymer proton exchange membranes:composition and morphology effects on the methanol permeability[J]. Journal of Membrane Science, 20042, 43:317–326.
    [13]WANG F, HICKNER M, KIMA Y S, et al. Direct polymerization of sulfonated poly(arylene ether sulfone)random(statistical)copolymers:candidates for new proton exchange membranes [J]. Journal of Membrane Science, 2002, 197:231–242.
    [14]LEE W-J, JUNG H-R, KIM C, LEE M S, et al. Preparation of polypyrrole/sulfonated-poly(2,6-dimethyl-1,4-phenylene oxide) conducting composites and their electrical properties [J]. Synthetic Metals, 2004, 143:59–67.
    [15]NORSTEN T B, GUIVER M D, MURPHY J, et al. Highly Fluorinated Comb-Shaped Copolymers as Proton Exchange Membranes (PEMs): Improving PEM Properties Through Rational Design Full Paper [J]. Advanced Functional Materials, 2006, 16:1814-1822.
    [16]KAO J, STEIN R S, MACKNINGHT W J, TAGGART W P, et al. Structure of the Cesium Salt of an Ethylene-Methacrylic Acid Copolymer from Its Radial Distribution Function [J].Macromolecules, 1974, 7: 95-100.
    [17]CURTIS L M, DANIEL F C, STUART L. Morphology of Ionomers [J]. Macromolecules 1973, 6: 344-353.
    [18]FUJIMURA M, HASHIMOTO T J, KAWAI H. Small-angle X-ray scattering study of perfluorinated ionomer membranes.Part 1.Origin of two scattering maxima [J]. Macromolecules, 1981, 14:1309–1315.
    [19] FUJIMURA M, HASHIMOTO T J, KAWAI H. Small-angle X-ray study of perfluorinated ionomer membranes.Part 2.Models for ionic scattering maximum [J]. Macromolecules, 1982, 15:136–144.
    [20]Z.S.Mo,H.F.Zhang,Structure of Crystalline Polymers by X-ray Diffraction, Science Publishing Company[J],China,October 2003,pp.307–311.
    [21]G.Gebel, R.B.Moore. Small-angle scattering study of short pendant chain perfuorosulfonated ionomer membranes [J],Macromolecules 33(2002)4850–4855.
    [22]WATARI T, WANG H Y, KUWAHARA K, et al. Water vapor sorption and diffusion properties of sulfonated polyimide membranes [J]. Journal of Membrane Science, 2003, 219:137–147.
    [23]SILVA V S, WEISSHAAR S, REISSNER R, et al.Performance and efficiency of a DMFC using nonfluorinated composite membranes operating at low/medium temperatures [J]. J.Power Sources, 2005, 145:485–494.
    [24]CHUANG S-W, HSU S L-C. Synthesis and properties of a new fluorine containing polybenzimidazole for high-temperature fuel-cell applications [J]. Journal of Polymer Science.:Part A:Polym.Chem., 2006, 44:4508–4513.
    [1]CHUANG S W, HSU S L. Synthesis and Properties of a New Fluorine-Containing Polybenzimidazole for High-Temperature Fuel-Cell Applications [J]. Journal of Polymer Science: Part A: Poly. Chem., 2006, 44: 4508-4513.
    [2]CHENG C K, LUO J L, CHUANG K. Propane Fuel Cells Using Phosphoric-Acid-Doped Polybenzimidazole Membranes [J]. The Journal of Physical Chemistry B, 2005 109:13036-13042.
    [3]KIM H-J, AN S J, KIM J-Y, MOON J K, et al. Polybenzimidazoles for High Temperature Fuel Cell Applications [J]. Macromolecular Rapid Communications , 2004, 25: 1410–1413.
    [4]HE R, LI Q, BACH A, JENSEN J O, et al. Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells [J]. Journal of Membrane Science, 2006, 277: 38–45.
    [5]PU H, MEYER W H, WEGNER G. Proton Transport in Polybenzimidazole Blended with H3PO4 or H2SO4 [J]. Journal of polymer science: part B polymer pysics, 2002, 40:663-669.
    [6]HE R, LI Q, JENSEN J O, BJERRUM N J. Doping Phosphoric Acid in Polybenzimidazole Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Journal of polymer science: part B polymer Chemistry 2007, 45:2989-2997.
    [7]SUKUMAR P R, WU W, MARKOVA D, NSA O U¨l, et al. Functionalized Poly(benzimidazole)s as Membrane Materials for Fuel Cells [J]. Macromolecular Chemistry and Physics, 2007, 208:2258–2267.
    [8]ARIZA M J, JONES D J, ROZIKRE J. Role of post-sulfonation thermal treatment in conducting and thermal properties of sulfuric acid sulfonated poly(benzimidazole) membranes [J]. Desalination, 2002, 147 :183-l 89.
    [9]HE R, LI Q, JENSEN J O, BJERRUM N J. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors [J]. Journal of Membrane Science, 2003, 226: 169–184.
    [10] Staiti P. Proton conductive membranes based on silicotungstic acidrsilica and polybenzimidazole [J]. Materials Letters, 2001, 47:241–246.
    [11] STAITI P, MINUTOLI M. Infuence of composition and acid treatment on protonconduction of composite polybenzimidazole membranes [J]. Journal of Power Sources, 2001, 94: 9-13.
    [12]NAKAMURA O, KODAMA T, OGINO I, MIYAKE Y. High-conductivity solid proton conductors: Dodecamolybdophosphoric Acid and Dodecamolybdophosphoric Acid Crystals [J]. Chemistry Letters, 1979, 1: 17-18.
    [13]XING B, SAVADOGO O. The effect of acid doping on the conductivity of polybenzimidazole (PBI) [J]. J. New Mater. Electrochem. Syst., 1999, 2: 95-101
    [14]BOUCHET R, SIEBERT E. Proton conduction in acid doped polybenzimidazole [J]. Solid State Ionics, 1999, 118:287–299.
    [15] KAWAHARA M, MORITA J, RIKUKAWA M, SANUI K, et al. Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules [J]. Electrochimica Acta, 2000, 45:1395–1398
    [16]YAMADA M, HONMA I. Heteropolyacid-Encapsulated Self-Assembled Materials for Anhydrous Proton-Conducting Electrolytes [J]. The Journal of Physical Chemistry B, 2006, 110:20486-20490.
    [17]YOO W S, CHOI J H, HAN S S, YOON W S, et al. Preparation of Organo-Soluble Poly[(2,2*-m-phenylene)- 5,5*-bibenzimidazole] with High Yield by Homogeneous Nitration Reaction [J]. Journal of Applied Polymer Science, 2000, 78: 438–445.
    [1]SHOESMITH J P, COLLINS R D, OAKLEY M J, STEVENSON D K. Status of solid polymer fuel cell system development [J]. Journal of Power Sources, 1994, 49:129-142.
    [2]RHEE C H, KIM H K, CHANG H, LEE J S. Physical and chemical properties of the composite membranes were characterized Membrane for Direct Methanol Fuel Cells [J].Chemistry of Materials, 2005, 17:1691-1697.
    [3]GURAU B, SMOTKIN E S. Methanol crossover in direct methanol fuel cells: a link between power and energy density [J]. Journal of Power Sources, 2002, 112: 339-352.
    [4]ARICO A S, RINIVASAN S, ANTONUCCI V. DMFCs: From fundamental aspects to technology development [J]. Fuel Cells, 2001, 1: 133-161.
    [5]HEINZEL A, BARRAGAN V M. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells [J]. Journal of Power Sources, 1999, 84:70-74.
    [6]ITOH T, HIRAI K, TAMURA M, UNO T, et al. Anhydrous proton-conducting electrolyte membranes based on hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells [J]. Journal of Power Sources, 2008, 178:627–633.
    [7]GIL M, JI X.L, LI X F, NA H, et al. Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications [J]. Journal of Membrane Science, 2004, 234: 75–81.
    [8]WANG F, CHEN T L, XU J P. Chem. Phys. Sodium sulfonate-functionalized polu(ether ether ketone)s [J]. Macromolecular Chemistry and Physics, 1998, 199:1421–1426.
    [9]MIKHAILENKO S D, ZAIDI S M, KALIAGUINE S. Sulfonated polyether ether ketone based composite polymer electrolyte membranes [J]. Catalysis Today, 2001, 67:225–236.
    [10]MIKHAILENKP S D, WANG K, KALIAGUINE S, XING P, et al. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK) [J]. Journal of Membrane Science, 2004, 233: 93–99.
    [11]LI X F, ZHAO C J, LU H, NA H. Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application [J]. Polymer, 2005, 46: 5820–5827.
    [12]LI X F, LIU C P, LU H, ZHAO C J, WANG Z. Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application [J]. Journal of Membrane Science, 2005, 255:149–155.
    [13]LI X, LIU C, XU D, ZHAO C, WANG Z, et al. Preparation and properties of sulfonated poly(ether ether ketone)s (SPEEK)/polypyrrole composite membranes for direct methanol fuel cells [J]. Journal of Power Sources, 2006, 162:1-8
    [14]NAGARALE R K, GOHIL G S, SHAHI V K. Sulfonated poly(ether ether ketone)/polyaniline composite proton-exchange membrane [J]. Journal of Membrane Science, 2006, 280:389–396.
    [15]ROEDER J, SILVA H, NUNES S P, PIRES A T N. Mixed conductive blends of SPEEK/PANI [J]. Solid State Ionics, 2005, 176:1411–1417.
    [16]CHUNAG S-W, HSU S L-C. Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2006, 44: 4508–4513.
    [17]SILVA V S, WEISSHAAR S, REISSNER R, RUFFMANN B, et al. Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures [J]. Journal of Power Sources, 2005, 145: 485–494.
    [18]SILVA V S, RUFFMANN B, VETTER S, MENDES A, et al. Characterization and application of composite membranes in DMFC [J]. Catalysis Today, 2005, 104: 205–212.
    [19]ZAIDI S M J. Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate [J]. Electrochimca Acta, 2005, 50: 4771–4777.
    [20]MECHERI B, DEPIFANIO A, DI VONA M L, TRAVERSA E, et al. Sulfonated Polyether Ether Ketone-based Composite Membranes doped with a Tungsten-based Inorganic Proton Conductor for Fuel Cell Applications [J]. Journal of the Electrochemical Society, 2006, 153 (3):A463–A467.
    [21]DI VONA M L, MARANI D, DEPIFAMIO A, TRAVERSA E, et al. A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization [J]. Polymer, 2005, 46:1754–1758.
    [22]FELTZ A, GAMSJAGER E. Semiconductor Properties of Thin and Thick Film Ga2O3 Ceramic Layers [J]. Journal of the European Society, 1998, 18:2217-2226.
    [23]VILLORA E G, MORIOKA Y, ATOU T, SUGAWARA T, et al. Fabrication and Magnetic Properties of FePt3 Nanowire Arrays [J]. Physica status solidi (a), 2002, 193:1-2
    [24]BABAN C, TOYDA Y, OGITA M. Oxygen sensing at high temperatures using Ga2O3 films [J]. Thin Solid Films, 2005, 484:369– 373.
    [25]HARWIG T, WUBS G J, DTRKSEN G J. Solid State Communication, 1976, 28 :1223.
    [26]BAUSEWEIN A, HACKER B, FLEISCHER M, MEIXNER H. Effects of Palladium Dispersions on Gas-sensitive Conductivity of Semiconducting Ga?O?Thin Film Ceramics [J]. Journal of the American Ceramic Society, 1997, 80: 317–323.
    [27]EPP J M, DILLARD J G. Effect of ion bombardment on the chemical reactivity of gallium arsenide (100) [J]. Chem. Mater., 1989, 1: 325-330
    [28]KUO C K, NICHOLSON P S. The mechanism of hydration of Na–β″-gallate [J]. Solid State Ionics, 1999, 124:171–177.
    [29]RISTIC M, POPVIC S, MUSIC S. Application of sol-gel method in the synthesis of gallium (III)-oxide [J]. Materials Letters, 2005, 59:1227–1233.
    [30]LIU F Q, YI B L, XING D M, YU J R, ZHANG H M. Nafion/PTFE composite membranes for fuel cell applications [J]. Journal of Membrane Science, 2003, 212:213–223.
    [31]CHIN I J, THRN-ALBRECHT T, LIM H C, RUSSELL T P, et al. On exfoliation of montmorillonite in epoxy [J]. Polymer, 2001, 42:5947–5952.
    [32]ZAWODZINSHI T A, DAVEY J, VALERIO J, GOTTERFELD S. The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes [J]. Electrochimica Acta, 1995, 40:297–302.
    [33]KORNSHEV A A, KUZNETSOV A M, SPOHR E, ULSTRUP J. Kinetics of proton transport in water [J]. The Journal of Physical Chemistry B, 2003, 107: 3351–3366.
    [34]WATARI T, WANG H Y, KUWAHARA K, TANAKA K, et al. Water vapor sorption and diffusion properties of sulfonated polyimide membranes [J]. Journal of Membrane Science, 2003, 219: 137–147.
    [35]RHEE C H, KIM H K, CHANG H, LEE J S. Physical and chemical properties of the composite membranes were characterized Membrane for Direct Methanol Fuel Cells [J]. Chem. Mater., 2005, 17: 1691–1697.
    [36]ZHONG S, CUI X, FU T, H. Na. Modification of sulfonated poly(ether ether ketone) proton exchange membrane for reducing methanol crossover [J]. Journal of Power Sources, 2008, 180: 23–28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700