用户名: 密码: 验证码:
聚阴离子型硅酸盐锂离子电池正极材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交结构正硅酸盐聚阴离子型化合物由于其高的理论容量和突出的安全性能等优点成为很有发展潜力的新一代锂离子电池正极材料。聚阴离子型正极材料通常具有价格低廉、电化学循环稳定性及热稳定性好等优点,但其低的电导率制约了其在高功率型电极材料方面的应用。本文采用改进的固相反应、溶胶凝胶法、及水热辅助溶胶凝胶法分别制备了Li_2FeSiO_4/C、Li_2Mn_xFe_(1-x)SiO_4/C及Li_2CoSiO_4系列电极材料,研究了合成方法对材料的结构、形貌、物理化学性质及电化学性能的影响。建立了一种新型的合成方法—水热辅助溶胶凝胶法,通过水热辅助溶胶凝胶法合成了具有良好性能的上述材料。采用多种结构分析、表面分析、磁性测量以及电化学研究方法等实验手段,深入分析研究了所合成材料的结构特征、物理化学性质及电化学性能,考察了影响材料电化学性能的主要因素。
     对不同方法合成Li_2FeSiO_4/C复合材料的研究表明由于Fe-O-Li-O-Fe的长程相互作用Li_2FeSiO_4在奈尔温度(T_N=20K)以下为反铁磁有序。对顺磁区域进行分析,得到居里常数C_p=3.06emu·K·mol~(-1)和奈尔温度θ_p=-38.1K。不同方法所合成的Li_2FeSiO_4/C复合材料的电化学研究表明材料的形貌、微结构及相纯度是影响Li_2FeSiO_4材料性能的主要因素。水热辅助溶胶凝胶法所合成材料显示出良好的电化学性能,具有高的放电容量、良好的高倍率性能和循环稳定性。以C/16电流充放电时,首次放电容量高达160mAhg~(-1)。在2C倍率下充放电,其首次放电容量达125mAhg~(-1)。即使在5C和10C倍率下充放电,其首次放电容量仍维持在91和78mAhg~(-1),放电容量开始随循环次数的增加略有上升然后维持稳定,循环50次后其放电容量没有衰减。水热辅助溶胶凝胶法所合成材料显示出良好的电化学性能,主要是由于其多孔纳米结构和高的相纯度以及通过表面碳包覆提高材料的电导率。高的放电容量及良好的高倍率充放电性能和循环稳定性显示所合成Li_2FeSiO_4/C复合正极材料是理想的动力电池(电动车/混合电动车)用锂离子电池正极材料。
     对不同方法合成Fe掺杂Li_2Mn_xFe~(1-x)SiO_4的研究表明Li_2Mn_xFe_(1-x)SiO_4可以在整个组成范围内形成很好的固熔体,掺杂后材料的结构没有明显变化。磁化率测量结果显示,Li_2Mn_xFe_(1-x)SiO_4的有效磁矩随Mn含量的增大而增大,与材料计量比相符。Li_2Mn_xFe_(1-x)SiO_4可以实现超过一个Li的可逆交换,水热辅助溶胶凝胶法所合成Li_2Mn_(0.5)Fe_(0.5)SiO_4/C复合正极材料的首次放电容量高达235mAhg~(-1)。,相当于可逆的嵌脱1.42个Li。Li_2Mn_xFe_(1-x)SiO_4(0     对不同方法合成Li_2CoSiO_4材料的研究表明Li_2CoSiO_4具有多种结构异形体,改变合成方法和合成条件可以得到不同相结构的Li_2CoSiO_4材料。磁化率材料结果显示,由于Co-O-Li-O-Co的长程相互作用固相法所合成Li_2CoSiO_4材料在奈尔温度(T_N=18K)以下为反铁磁有序。对顺磁区域进行分析,得到居里常数C_p=2.36emu·K·mol~(-1)和外斯常数θ_p=-31.95K。其有效磁矩μ_(eff)与高自旋四面体和假四面体CO~(2+)的磁矩值一致。在Li_2CoSiO_4材料中电子的轨道角动量没有被完全冻结而存在着某些“残余”部份。低的电导率以及无法采用原位碳包覆和有效的球磨碳包覆的方法来提高其电导率是导致Li_2CoSiO_4材料低的电化学活性的主要原因。通过改进合成方法、优化合成条件以及采用机械球磨的方法对材料进行碳包覆可以显著提高Li_2CoSiO_4材料的电化学活性。电化学测试结果显示Li_2CoSiO_4具有较高的充放电电位,第一个Li的嵌脱电位大约在4.1V。水热辅助溶胶凝胶法所合成材料具有最优的电化学性能,良好的电化学性能主要归因与其较小的粒径、均一粒径分布及高的相纯度。包覆碳纳米管后的Li_2CoSiO_4-C材料首次放电容量达到101mAhg~(-1)。
Lithium metal orthosilicates (Li_2MSiO_4, M = Fe, Mn, Co) are a new class of 'polyanion' compounds containing compact tetrahedral 'anion' structural units (SiO_4)~(4-) with strong covalent bonding. Orthosilicates are promising candidates for next generation of lithium ion batteries, due to their high theoretical capacity and excellent safety performance. Polyanion cathode materials are attractive for low-cost, good cyclic stability, and excellent thermal stability. However, their low electronic conductivity impedes their use as electrode materials in high-power batteries. In this work, Li_2FeSiO_4/C, Li_2Mn_xFe_(1-x)SiO_4/C and Li_2CoSiO_4 electrode materials were prepared by modified solid state reaction, sol-gel method and hydrothermal reaction. An in-situ carbon coating method by adding sucrose to the synthetic precursor with ball-milling techniques was introduced in order to improve the low electronic conductivity of these materials. More important, a new synthesis route (hydrothermal assisted sol-gel method) has been developed for the preparation of these materials. The structure character, physico-chemical properties and electrochemical performance of the prepared materials are studied in detail by various methods and techniques, including structural analysis, surface analysis, magnetization measurements and electrochemical techniques. The factors affecting the electrochemical performance of the materials were investigated.
     The studies of Li_2FeSiO_4/C composite materials prepared by different methods show that Li_2FeSiO_4 powders possess an antiferromagnetic ordering below T_N = 20 K due to long range Fe-O-Li-O-Fe interactions. Analysis of the paramagnetic region giving the Curie-Weiss parametersθ_p = - 38.1 K and C_p = 3.06 emuK·mol~(-1), show the divalent state of Fe cations. The morphology, micro-structure and phase purity are the main factors affecting the electrochemical performance of the material. The Li_2FeSiO_4/C composite material prepared through hydrothermal assisted sol-gel process displays a large discharge capacity of ca. 160 mAhg~(-1) at C/16 rate and shows superior charge and discharge capabilities under high rate conditions, which could be, at least in part, attributed to the high phase purity, porous aggregate nano-structure, and improved electronic conductivity through carbon connection. The high rate capability and excellent capacity retention of the Li_2FeSiO_4 material shows high potential for cathode materials for high-power lithium-ion batteries.
     The studies of Li_2Mn_xFe_(1-x)SiO_4/C composite materials prepared by different methods show that Li_2Mn_xFe_(1-x)SiO_4 solid solutions can be achieved in a wide compositional range. Magnetic susceptibility experiments give evidence that the effective momentμ_(eff) increases with the increase in Mn content x, consistent with the stoichiometric. Electrochemical tests show that more than one Li reversible exchange can be achieved for Li_2Mn_xFe_(1-x)SiO_4. An optimized capacity and energy density for Li_2Mn_xFe_(1-x)SiO_4 was achieved at x = 0.5. The Li_2Mn_(0.5)Fe_(0.5)SiO_4/C composite material prepared through hydrothermal assisted sol-gel process shows a capacity as high as 235 mAhg~(-1). The studies of the possible fading mechanism of Li_2Mn_xFe_(1-x)SiO_4 (x > 0) materials show that the poor cyclic performance of Li_2Mn_xFe_(1-x)SiO_4 (x > 0) is its intrinsic property. The poor cycling performance of the materials is associated with the Jahn-Teller effect of Mn~(3+), which cause the volumetric effect and destroys the structure of the materials.
     The studies of Li_2CoSiO_4 materials prepared by different methods show that two modifications of Li_2CoSiO_4 were prepared by different methods at various synthesis conditions. Magnetic susceptibility experiments give evidence that Li_2CoSiO_4 powers posses an antiferromagnetic ordering below T_N = 18 K due to long range Co-O-Li-O-Co interactions. Analysis of the paramagnetic region giving the Curie-Weiss parametersθ_p = - 31.49 K and C_p= 2.31 emu·K·mol~(-1). The low conductivity of this compound and the difficulty of performing in-situ carbon coating to improve its low electronic conductivity result in its poor electrochemical performance. Through improving the synthesis methods, optimizing the synthesis conditions and coating with carbon by ball milling process, we successfully synthesized Li_2CoSiO_4 material with uniform nanoparticles and high phase purity, which shows high electrochemical activity for the first time. Reversible extraction and insertion of the first lithium from and into Li_2CoSiO_4 at -4.1 V vs. lithium have shown that this material is a potential candidate for new high-voltage cathodes in lithium-ion batteries. After coated with carbon nanotubes (CNTs) the Li_2CoSiO_4 prepared through hydrothermal assisted sol-gel process shows a discharge capacity of 101 rnAhg~(-1) in the first cycle. The low electronic conductivity of Li_2CoSiO_4 and the parasitic reaction with the electrolytes contribute to the irreversible capacity loss of the material in the first charge-discharge cycle.
引文
[1] 汪继强,陈立泉.锂离子电池材料.雷永泉主编.新能源材料[M].天津:天津大学出版社,2000.
    [2] 吴宇平,戴晓兵,马军旗等.锂离子电池——应用与实践[M].北京:化学工业出版社,2004.
    [3] Wakihara M, Yamamoto O (Eds.)- Lithium-ion batteries: Fundamentals and Performance [M]. Weinheim: Wiley-VCH, 1998.
    [4] Tarascon J M, and Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414: 359-367.
    [5] 徐保伯,刘务华.锂离子电池的制造及其市场[J].电池,2002,32(4):242-244.
    [6] Majima M, Ujiie S, Yagasaki E, et al.Development of long life lithium ion battery for power storage[J]. J Power Sources, 2001,101 (1): 53-59.
    [7] Christophe P. The rechargeable battery market 2003-2008[C]. The Sixth China International Battery Fair, 2004.
    [8] Bruce P.G Solid-state chemistry of lithium power sources [J]. Chem. Commun. 1997, (19): 1817-1824.
    [9] 张忠如.厦门大学理学博士学位论文[D],厦门:2003.
    [10] Broussely M, Biensan P, Simon B. Lithium insertion into host materials: the key to success for Li ion batteries [J]. Electrochimica Acta, 1999,45 (1-2): 3-22.
    [11] M. Wakihara. Recent developments in lithium ion batteries. Mater. Sci. Eng. 2001, 33,109-134.
    [12] J. R. Dahn, Phase diagram of LixC6. Phys. Rev., 1991, B44, 9170-9177.
    [13] T. Ohzuku, Y. Iwakoshi, K. Sawai, Formation of Lithium-Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. J. Electrochem. Soc, 1993, 140: 2490-2497.
    [14] M Endo, C Kim, K Nishimura, et al, Recent development of carbon materials for Li ion batteries. Carbon, 2000,38: 183-197.
    [15] D. Aurbach, Y. Ein-Eli, O. Chusid, et al, The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable "Rocking Chair" Type Batteries. J. Electrochem. Soc., 1994,141: 603-610.
    [16] M Winter, J O Besenhard, P Novak, et al, Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials, 1998,10: 725-763.
    [17] J. O. Besenherd, J. Yang, M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997,68: 87-90.
    [18] K D Kepler, J T Vaughey, M M Thackeray, LixCu6Sn5 (0    [19] M Nishijima, T. Kagohashi, J. Yamaki, Synthesis and electrochemical studies of a new anode material, Li3 - xCoxN. Solid State Ionics, 1996, 83:107-111.
    [20] T. Shodai, S. Okada, S. Tobishima, I. Yamabi, Study of Li3-xMxN (M=Co, Ni or Cu) system for use as anode in lithium rechargeable cells. Solid State Ionics, 1996, (86-88): 785-789.
    [21] H. Li, X. Huang and L. Chen, et al, A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries. Electrochem. Solid State Lett., 1999,2:547-549.
    [22] C. S. Wang, G T. Wu and X. B. Zhang, et al, Lithium Insertion in Carbon-Silicon Composite Materials Produced by Mechanical Milling. J. Electrochem. Soc, 1998,145:2751-2758.
    [23] Y Idota, T Kubota, and A Matsufuji, et al, Tin-based amorphous oxide: a high capacity lithium-ion storage material. Science, 1997, 276: 1395-1397(1997).
    [24] I. A. Courtney, J. R. Dahn, Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc., 1997,144: 2045-2052.
    [25] P. Poizot, S. Laruelle, S. Grugeon, et al, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000,407:496-499.
    [26] A. Sanusi, M. Z. A. Yahya, S. Navaratnam, et al, Sulphide based anode material for lithium rechargeable battery. Ionics, 2003,9 (3-4): 253-257.
    [27] D. Guyomard, C. Sigala, A. Le Gal Salle, New amorphous oxides as high capacity negative electrodes for lithium batteries: the LixMVO_4 (M = Ni, Co, Cd, Zn; 1     [28] Y. Piffard, F. Leroux and D. Guyomard, et al, The amorphous oxides MnV2O6 + δ (0 < δ < 1) as high capacity negative electrode materials for lithium batteries. J. Power Source, 1997,68:698-703.
    [29] 28. S. Denis, E. Baudrin, M. Touboul, et al, Synthesis and Electrochemical Properties of Amorphous Vanadates of General Formula RVO4 (R=In, Cr, Fe, Al, Y) vs. Li. J. Electrochem. Soc., 1997, 144: 4099-4109
    [30] S S Kim, H Ikuta, M Wakihara, Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery. Solid State Ionics, 2001,139:57-65.
    [31] F. Leroux, G R. Goward, W. P. Power, et al, Understanding the Nature of Low-Potential Li Uptake into High Volumetric Capacity Molybdenum Oxides. Electrochem. Solid State Lett., 1998,1: 255-258.
    [32] Y. S. Fung, R. Q. Zhou, Room temperature molten salt as medium for lithium battery. J. Power Source, 1999, 81-82: 891-895
    [33] L. A. Dominey, Lithium Batteries, Elsevier Science Publisher, Amsterdam, Netherlands, 1994, Chapter 4: 137
    [34] K. Xua, C. A. Angell, Sulfone-Based Electrolytes for Lithium-Ion Batteries. J. Electrochem. Soc., 2002,149: A920-A926
    [35] X. Wang, E. Yasukawa, S. Mori, Electrochemical Behavior of Lithium Imide/Cyclic Ether Electrolytes for 4 V Lithium Metal Rechargeable Batteries. J. Electrochem. Soc., 1999,146: 3992
    [36] X. Wang, E. Yasukawa, S. Kasuya, Lithium Imide Electrolytes with Two-Oxygen-Atom-Containing Cycloalkane Solvents for 4V Lithium Metal Rechargeable Batteries. J. Electrochem. Soc., 2000, 147: 2421-2426
    [37] G Y. Gu, S. Bouvier, C. Wu, et al, 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries. Electrochim. Acta, 2000,45: 3127
    [38] X. Wang, E. Yasukawa, S. Kasuya, Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties. J. Electrochem. Soc., 2001,148: A1058-1065
    [39] R. McMillan, H. Slegr, Z. X Shu, et al, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Source, 1999,81-82: 20-26
    [40] M. Winter, R. Imhof, F. Joho, et al, FTIR and DEMS investigations on the electroreduction of chloroethylene carbonate-based electrolyte solutions for lithium-ion cells. J. Power Source, 1999, 81-82: 818-823
    [41] A. Naji, J. Ghanbaja, P. Willmann, et al, New halogenated additives to propylene carbonate-based electrolytes for lithium-ion batteries. Electrochim. Acta, 2000,45: 1893-1899
    [42] G H. Wrodnigg, J. O. Besenhard, M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells with Graphitic Anodes. J. Electrochem. Soc, 1999, 146: 470-472
    [43] M. Adach, K. Tanaka, K. Sekai, Aromatic Compounds as Redox Shuttle Additives for 4 V Class Secondary Lithium Batteries. J. Electrochem. Soc., 1999, 146: 1256-1261
    [44] F. Tran-Van, M. Provencher, Y. Choquette, et al, Dihydrophenazine derivatives for overcharge protection of rechargeable lithium batteries. Electrochim. Acta, 1999,44:2789-2792
    [45] D. Fauteux, Lithium electrode in polymer electrolytes. Electrochim. Acta, 1993,38(9): 1199-1210
    [46] 刘亚飞,白厚善.动力电池及其材料的发展动向.稀土信息,2003,7,8-12.
    [47] T. A. Hewston, B. L. Chamberland, A Survey of first-row ternary oxides LiMO_2 (M = Sc-Cu). J. Phys. Chetn. Solids, 1987,48:97-108.
    [48] Santiago E I, Andrade A V C, Paiva-Santos C O, et al. Structural and electrochemical properties of LiCoO_2 prepared by combustion synthesis [J]. Solid State Ionics, 2003, 158 (1-2): 91-102.
    [49] Peng Z S, Wan C R, Jiang C Y. Synthesis by sol-gel process and characterization of LiCoO_2 cathode materials [J]. J Power Sources, 1998, 72 (2): 215-220.
    [50] Chiang Y M, Jang Y I, Wang H F, et al. Synthesis of LiCoO_2 by decomposition and intercalation of hydroxides [J]. J. Electrochem. Soc, 1998, 145 (3): 887-891.
    [51] Gopukumar S, Jeong Y, Kim K B. Synthesis and electrochemical performance of tetravalent doped LiCoO_2 in lithium rechargeable cells [J]. Solid State Ionics, 2003, 159 (3-4): 223-232.
    [52] Zou M J, Yoshio M, Gopukumar S, et al. Synthesis of high-voltage (4.5 V) cycling doped LiCoO_2 for use in lithium rechargeable cells [J]. Chem. Mater., 2003,15 (25): 4699-4702.
    [53] Fey G T K, Weng Z X, Chen J G, et al. Preformed boehmite nanoparticles as coating materials for long-cycling LiCoO_2 [J]. J. Appl. Electrochem., 2004,34 (7): 715-722.
    [54] Kim B, Lee J G, Choi M, et al. Correlation between local strain and cycle-life performance of AlPO_4-coated LiCoO_2 cathodes [J]. J Power Sources, 2004,126 (1-2): 190-192.
    [55] Chen Z H, Dahn J R. Studies of LiCoO_2 coated with metal oxides [J]. Electrochem. Solid State Lett. 2003,6 (11):A221-A224.
    [56] 山本司,能间俊之,古川修弘.日本特许公报,特开平0528213l,1993.
    [57] Liu H S, Zhang Z R, Gong Z L, et al. Origin of deterioration for LiNiO_2 cathode material during storage in air[J]. Electrochem. Solid State Lett. 2004, 7 (7): A190-A193.
    [58] Lee Y S, Sun Y K, Nahm K S. Synthesis and characterization of LiNiO_2 cathode material prepared by an adiphic acid-assisted sol-gel method for lithium secondary batteries [J]. Solid State Ionics, 1999, 118 (1-2): 159-168 MAR
    [59] Arai H, Tsuda M, Saito K, et al. Structural and thermal characteristics of nickel dioxide derived from LiNiO_2 [J]. Journal of Solid State Chemistry, 2002,163 (1): 340-349.
    [60] Lee K K, Kim K B. Electrochemical and structural characterization of LiNi_(1-y)Co_yO_2 (0≤y≤0.2) positive electrodes during initial cycling [J]. J. Electrochem. Soc., 2000, 147 (5): 1709-1717.
    [61] Carlier D, Menetrier M, Delmas C. Li-7 MAS NMR study of electrochemically deintercalated Li_xNi_(0.30)Co_(0.70)O_2 phases: evidence of electronic and ionic mobility, and redox processes [J]. Journal of Materials Chemistry, 2001,11 (2): 594-603.
    [62] Delmas C, Croguennec L. Layered Li(Ni, M)O_2 systems as the cathode material in lithium-ion batteries [J]. Mrs Bulletin, 2002, 27 (8): 608-612.
    [63] Liu H S, Li J, Zhang Z R, et al. The effects of sintering temperature and time on the structure and electrochemical performance of LiNi_(0.8)Co_(0.2)O_2 cathode materials derived from sol-gel method [J]. Journal of Solid State Electrochemistry, 2003,7 (8): 456-462.
    [64] Gong Z L, Liu H S, Guo X J, Zhang Z R, Yang Y. Effects of preparation methods of LiNi_(0.8)Co_(0.2)O_2 cathode materials on their morphology and electrochemical performance [J]. Journal of Power Sources, 2004, 136 (1): 139-144.
    [65] Cho J, Kim G, Lim H S. Effect of preparation methods of LiNi_(1-x)Co_xO_2 cathode materials on their chemical structure and electrode performance [J]. J. Electrochem. Soc., 1999,146 (10): 3571-3576.
    [66] Cho J, Jung H S, Park Y C. Electrochemical properties and thermal stability of Li_(?)Ni_(1-x)Co_xO_2 cathode materials [J]. J. Electrochem. Soc., 2000,147(1): 15-20
    [67] Fey G T K, Subramanian V, Chen J G Synthesis of non-stoichiometric lithium nickel cobalt oxides and their structural and electrochemical characterization [J]. Electrochemistry Communications, 2001,3 (5): 234-238.
    [68] Alcantara R, Lavela P, Tirado J I, et al. Changes in structure and cathode performance with composition and preparation temperature of lithium cobalt nickel oxide [J]. J. Electrochem. Soc., 1998,145 (3): 730-736.
    [69] A. R. Armstrong, P. G Bruce, Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries. Nature, 1996,381:499-500.
    [70] T Ohzuku, Y Makimura, K Ariyoshi, Abstracts of the 41 st Battery Symposium in Japan, Nagoya, 2000:462.
    [71] Liu, Z.; Yu, A.; Lee, J. Y., Synthesis and characterization of LiNi_(1-x-y)Co_xMn_yO_2 as the cathode materials of secondary lithium batteries, J. Power Sources, 1999, 81-82: 416-419.
    [72] Yoshio, M.; Noguchi, H.; Itoh, J.-I.; Okada, M.; Mouri, T., Preparation and properties of LiCo__yMn_xNi_(1-x-y)O_2 as a cathode for lithium ion batteries, J. Power Sources 2000,90: 176-181.
    [73] Ohzuku, T.; Makimura, Y., Layered lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for lithium-ion batteries, Chem. Lett. 2001,7: 642-643.
    [74] Ngala, J. K.; Chernova, N. A.; Ma, M.; Mamak, M.; Zavalij, P.Y.; Whittingham, M. S., The synthesis, characterization and electrochemical behavior of the layered LiNi_(0.4)Mn_(0.4)Co_(0.2)O_2 compound, J. Mater. Chem.. 2004,14,214-220.
    [75] Jouanneau, S.; Dahn, J. R., Preparation, structure, and thermal stability of new Ni_xCo_(1-2x)Mn_x(OH)_2 (0<= x<= 1/2) phases, Chem. Mater. 2003, 15,495-499.
    [76] Michael M. Thackeray.a Christopher S. Johnson.a John T. Vaughey, N. Li and Stephen A. Hackney, Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries [J]. J. Mater. Chem., 2005,15: 2257-2267.
    [77] Z. Lu and J. R. Dahn, Synthesis, structure, and electrochemical behavior of Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3]O_2 [J]. J. Electrochem. Soc., 2002,149: A778-A791.
    [78] A. Robertson, P. G. Bruce, Mechanism of electrochemical activity in Li_2MnO_3 [J]. Chem. Mater., 2003,15: 1984-1992.
    [79] Z. Lu, Z. Chen and J. R. Dahn, Lack of cation clustering in Li[Ni_xLi_(1/3-2x/3)Mn_(2/3.-x/3]O_2 (0 < x ≤ 1/2) and Li[Cr_xLi_((1-x)/3)Mn_((2-2x)/3)]O_2 (0 < x < 1) [J]. Chem. Mater., 2003,15: 3214-3220.
    [80] Clare P. Grey, Won-Sub Yoon, John Reed, Gerbrand Ceder, Electrochemical activity of Li in the transition-metal sites of O3 Li[Li_((1-2x)/3)Mn_((2-x)/3)Ni_x]O_2 [J]. Electrochemical and Solid-State Letters, 2004, 7(9): A290-A293.
    [81] C. S. Johnson, J.-S. Kim, C. Lefief, N. Li, J. T. Vaughey , M. M. Thackeray, The significance of the Li_2MnO_3 component in 'composite' xLi_2MnO_3 center dot (l-x)LiMn_(0.5)Ni_(0.5)O_2 electrodes [J]. Electrochem. Commun., 2004, 6: 1085-1091.
    [82] W.-S. Yoon, S. Iannopollo, C. P. Grey, D. Carlier, J. Gorman, G Ceder, Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[Ni_xMn_((2-x)/3)Li_((1-2x)/3)]O_2 NMR studies and first principles calculations [J]. Electrochem. Solid State Lett, 2004,7: A167-A171.
    [83] J.-S. Kim, C. S. Johnson, J. T. Vaughey, M. M. Thackeray, S. A. Hackney, W. Yoon, C. P. Grey, Electrochemical and Structural Properties of xLi_2M'O_3·(l-x)LiMn_(0.5)Ni_(0.5)O_2 Electrodes for Lithium Batteries (M' = Ti, Mn, Zr; 0 ≤x ≤0.3) [J]. Chem. Mater., 2004,16: 1996-2006.
    [84] Park S H, Sun Y K, Synthesis and electrochemical properties of layered Li[Li_(0.15)Ni_((0.275-.x/2))Al_xMn_((0.575-x/2))]O_2 materials. J. Power Sources 2003,119,161-165.
    [85] Y. Wu, A. Manthiram, High capacity, surface-modifide layered Li[Li_((1-x))Mn_((2-x)/3)Ni_(x/3)Co_(x/3)]O_2 cathodes with low irreversible capacity loss [J]. Electrochemical and Solid State Letters, 2006,9 (5): A221-A224.
    [86] J. Barker, R. Pynenburg, R. Koksbang, Determination of thermodynamic, kinetic and interfacial properties for the Li//Li_xMn_2O_4 system by electrochemical techniques. J. Power Sources, 1994,52: 185-192
    [87] M. M. Thackeray, Manganese oxides for lithium batteries. Prog. Solid State Chem., 1997, 25: 1-71
    [88] W. David, M. M. Thackeray, J. B. Goodenough, et al, Structure refinement of the spinel-related phases Li_2Mn_2O_4 and Li_(0.2)Mn_2O_4. J. Solid State Chem., 1987,67: 316-323
    [89] A. Yamada, M. Tanaka, Jahn-Teller structural phase transition around 280K in LiMn_2O_4. Mater. Res. Bull., 1995,30:715-721
    [90] A. Yamada, K. Miura, K. Hinokuma, et al, Synthesis and Structural Aspects of LiMn_2O_(?)as a Cathode for Rechargeable Lithium Batteries. J. Electrochem. Soc, 1995,142: 2149
    [91] R J Gummow, A De Kock, M M Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics, 1994, 69: 59-67
    [92] D H Y Jang, Y J Shin, S M Oh, Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/Li_xMn_2O_4 Cells. J. Electrochem. Soc., 1996,143: 2204-2210
    [93] D Guyomard, J M Tarascon, Li Metal-Free Rechargeable LiMn_2O_4/Carbon Cells: Their Understanding and Optimization. J. Electrochem. Soc., 1992, 139: 937-947
    [94] D Guyomard, J M Tarascon, The carbon/Li_(1+x)Mn_2O_4 system. Solid State Ionics, 1994, 69: 222-237
    [95] G G Amatucci, N. Pereira, T. Zheng, et al, Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAl_xMn_(2-x)O_(4-y)F_z solid solution. J. Electrochem. Soc., 2001 148:A171-A182
    [96] G G Amatucci, A. du Pasquier, A. Blyr, et al, The elevated temperature performance of the LiMn_2O_4/C system: failure and solutions. Electrochem. Acta, 1999,45: 255-271
    [97] 施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005,17(4):604-613.
    [98] Padhi A K, Nanjundaswamy K S, Goodenough J B, et al. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc, 1997, 144: 1188-1194.
    [99] Padhi A K, Nanjundaswamy K S, Goodenough J B. Synthesis, redox potential evaluation and electrochemical characteriastics of NASICON-related-3D framework compounds [J]. Solid State Ionics, 1996,92: 1-10.
    [100] Padhi A K, Nanjundaswamy K. S, Masquelier C, et al. Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphate [J]. J. Electrochem Soc., 1997,144: 1609-1613.
    [101] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation [J]. J. Electrochem Soc, 1997,144:2581-2586.
    [102] A. Nytén, A. Abouimrane, M. Armand, T. Gustaffson, J. O. Thomas, Electrochemical performance of Li_2FeSiO_4 as a new Li-battery cathode material. Electrochem. Commun. 2005,7,156-160.
    [103] 杨裕生,王维坤,苑克国等.锂电池正极材料有机多硫化物的展望[J].电池,2002,32(1):1-5.
    [104] Clerc D G, Poshusta R D, Hess A C. Periodic Hartree-Fock study of Li_xTiS_2, 0≤x<≤1: The structural, plastic, and electronic effects of lithium intercalation in TiS_2[J]. J Phys. Chem. B, 1997, A101 (47): 8926-8931.
    [105] Badway F, Cosandey F, Pereira N, et al. Carbon metal fluoride nanocomposites - High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries [J]. J. Electrochem. Soc., 2003,150 (10): A1318-A1327.
    [106] Novak. Electrochemically active polymer for rechargeable batteries [J]. Chem. Rev., 1997,97(1): 207-212.
    [107] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO_4 for lithium battery cathodes [J]. J Electrochem Soc, 2001,148: A224-A229.
    [108] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Material, 2002,101: 123-128.
    [109] Andersson A S, Kalska B, Haggstrom L, et al. Lithium extraction/insertion in LiFePO_4: an X-ray diffraction and MSssbauer spectroscopy study [J]. Solid State Ionics, 2001,130(1-2): 41-52.
    [110] Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F et al. Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries:a new high-pressure form of LiMPO_4 (M = Fe and Ni) [J]. Chem. Mater. 2001, 13(5): 1570-1576.
    [111] Amine K, Yasuda H, Yamachi M. Olivine LiCoPO_4 as 4.8 V electrode material for lithium batteries [J]. J. Electrochem. Solid-State Lett, 2000,3(4):178-179
    [112] Okada S, Sawa S, Egashira M, et al. Cathode properties of phospho-olivine LiMPO_4 for lithium secondary batteries[J]. J Power Sources, 2001,97-98:430-432.
    [113] Azuma H, Tohda M. LiMPO_4 as the cathode for lithium batteries [J]. J. Electrochem. Solid-State Lett., 2002, 5(6):A135-A137
    [114] Rissouli K, Benkhouja K, Ramos-Barrado J R et al. Electrical conductivity in lithium orthophosphates [J]. Mater. Sci. Eng. B, 2003,98(3): 185-189
    [115] Molenda J, Stoklosa A, Bak T. Solid State Ionics, 1989,36:53-58.
    [116] Kawaia H, Nagatab M, Kageyamac H et al. 5 V lithium cathodes based on spinel solid solutions Li_2Co(1+x)Mn_(3-x)O_(?): -1≤X≤1 [J]. Electrochim. Ada, 1999,45(1-2):315-327.
    [117] Huang H, Yin S, Nazar L F. Approaching theoretical capacity of LiFePO_4 at room temperature at high rates [J]. J. Electrochem. Solid-State Lett. 2001,4(10):A170-A172.
    [118] Ravet N, Chouinard Y, Magnan J F et al. Electroactivity of natural and synthetic triphylite [J]. J. Power Source, 2001,97-98:503-507.
    [119] Yang S, Song Y, Zavalij P Y et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates [J]. Electrochem. Comm., 2002,4(3):239-244.
    [120] Chen Z, Dahn J R. Reducing carbon in LiFePCVC composite electrodes to maximize specific energy, volumetric energy, and tap density [J]. J. Electrochem. Soc., 2002,149 (9): A1184-A1189.
    [121] Franger S, Le Cras F, Bourbon C et al. LiFePO_4 synthesis routes for enhanced electrochemical performance [J]. J. Electrochem.. Solid-State Lett. 2002,5(10):A231-A233
    [122] Croce F, D'Epifanio A D, Hassoun J et al. A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode [J]. J. Electrochem. Solid-State Lett., 2002,5(3):A47-A50.
    [123] Barker J, Saidi M Y, Swoyer J L. Lithium iron(Ⅱ) phosphor-olivines prepared by a novel carbothermal reduction method [J]. J. Electrochem. Solid-State Lett., 2003,6(3):A53-A55.
    [124] Shi S, Liu L, Ouyang C et al. Enhancement of electronic conductivity of LiFePO_4 by Cr dopong and its identification by first-principles calculations [J]. Phys. Rev. B, 2003,68(19):19518.
    [125] Herle P.S, Ellis B, Coombs N et al. Nano-network electronic conduction in iron and nickel olivine phosphates [J]. Nature Mater. 2004, 3(3): 147-152.
    [126] Arnold G, Garche J, Hemmer R et al. Fine-particle lithium iron phosphate LiFePO_4 synthesized by a new low-cost aqueous precipitation technique [J]. J. Power Sources, 2003, 119-121:247-251.
    [127] Takahashi M, Tobishima S, Akei K, et al. Characterization of LiFePO_4 as the cathode material for rechargeable lithium batteries[J]. J Power Sources, 2001,97-98: 508-511.
    [128] Yamada A, Hosoya M, Chung S C et al. Olivine-type cathodes achievements and problems [J]. J. Power Sources, 2003, 19-121:232-238.
    [129] Andersson A S, Thomas J O, Kalska B, et al. Thermal stability of LiFePO_4-based cathodes[J], Electrochem Solid-State Lett, 2000,3 (2): 66-68.
    [130] Takahashi M, Tobishima S, Takei K, et al. Reaction behavior of LiFePO_4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2002,148: 283-289.
    [131] Prosini P P, Lisi M, Zane D et al. Determination of the chemical diffusion coefficient of lithium in LiFePO_4 [J]. Solid State Ionics, 2002, 148(1-2):45-51.
    [132] Shim J, Striebel K A. Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO_4 [J]. J. Power Sources, 2003,119-121:955-958.
    [133] Yang S, Song Y, Ngala K et al. Performance of LiFePO_4 as lithium battery cathode and comparison with manganese and vanadium oxides [J]. J. Power Sources. 2003,119-121: 239-246.
    [134] Prosini P P, Zane D, Pasquali M. Improved electrochemical performance of a LiFePO_4-based composite cathode [J] Electrochim Acta, 2001,46(23):3517-3523.
    [135] Li G, Azuma H, Tohda M. Optimized LiMn_yFe_(1-y)PO_4 as the cathode for lithium batteries [J]. J. Electrochem.Soc., 2002, 149(6):A743-A747.
    [136] Higuchi M, Katayama K, Azuma Y et al. Synthesis of LiFePO_4 cathode material by microwave processing [J]. J. Power Sources, 2003, 119-121:258-261.
    [137] Yang S, Zavalij P Y, Whittingham M S. Hydrothermal synthesis of lithium iron phosphate cathodes [J]. Electrochem. Comm., 2001, 3(9):505-508.
    [138] Tucker M C, Doeff M M, Richardson T J et al. ~7Li and ~(31)P magic angle spinning nuclear magnetic resonance of LiFePO_4-type materials [J]. J. Electrochem. Solid-State Lett., 2002, 5(5):A95-A98.
    [139] Prosini P P, Carewska M, Scaccia S et al. A new synthetic route for preparing LiFePO_4 with enhanced electrochemical performance [J]. J. Electrochem. Soc., 2002, 149(7):A886-A890.
    [140] Franger S, Cras F L, Bourbon C et al. Comparison betweem differnet LiFePO_4 synthesis routes and their influence on its physico-chemical properties [J]. J. Power Sources, 2003, 119-121:252-257.
    [141] Shi Z.C., Li Y.X., Ye W.L., et al. Mesoporous FePO_4 with enhanced electrochemical performance as cathode materials of rechargeable lithium batteries[J]. Electrochem. Solid-State. Lett., 2005, 8(8) A396-A399.
    [142] Yang S, Song Y, Zavalij P.Y., et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates[J] Electrochem. Comm, 2002,4(4): 239-244.
    [143] Hong Y.S., Ryu K.S., Park Y.J., et al., amorphous FePO_4 as 3 V cathode material for lithium secondary batteries[J]. J. Mater. Chem., 2002,(12), 1 870-1 874.
    [144] Prosini P.P., Lisi M., Scaccia S., et al., synthesis and characterization of amorphous hydrated FePO_4 and its electrode performance in lithium batteries[J] J.Electrochem.Soc.,2002,149(3), A297-A301.
    [145] Song Y, Yang S., Zavalij P.Y., et al., Temperature-dependent properties of FePO_4 cathode materials[J]. Mater.Res.Bull., 2002,(37): 1 249-1 257.
    [146] F.Croce, A.D'Epifanio, P.Reale, et al. Ruthenium oxide-added quartz iron phosphate as a new intercalation electrode in rechargeable lithium cells[J]. J.Electrochem.Soc., 2003,150(5): A576-A581.
    [147] Larsson, P.; Ahuia, R.; Nyten, A.; Thomas, J. O. An ab initio study of the Li-ion battery cathode material Li_2FeSiO_4. Electrochem. Commun. 2006,8,797-800.
    [148] Nyten, A.; Kamali, S.; Haggstrom, L; Gustafsson, T; Thomas, J. O. The lithium extraction/insertion mechanism in Li_2FeSiO_4. J. Mater. Chem. 2006,16,2266-2272.
    [149] Dominko, R.; Bele, M.; Gaberscek, M.; Meden, A.; Remskar, M.; Jamnik, J. Structure and electrochemical performance of Li_2MnSiO_4 and Li_2FeSiO_4 as potential Li-battery cathode materials. Electrochem. Commun. 2006,8,217-222.
    [150] Arroyo-de Dompablo, M. E.; Armand, M.; Tarascon, J. M.; Amador, U. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li_2MSiO_4 system (M = Fe, Mn, Co, Ni). Electrochem. Commun. 2006,8,1292-1298.
    [151] A. Nyten, M. Stjerndahl, H. Rensmo, H. Siegbahn, M. Armand, T. Gustafsson, K. Edstrom, J. O. Thomas, Surface characterization and stability phenomena in Li_2FeSiO_4 studied by PES/XPS. J. Mater. Chem. 2006, 16,3483-3488.
    [152] Zaghib, K.; Salah, A. A.; Ravet, N.; Mauger, A.; Gendron, F.; Julien, C. M. Structural, magnetic and electrochemical properties of lithium iron orthosilicate. J. Power Sources 2006,160,1381-1386.
    [153] Yang, Y; Li, Y. X.; Gong,Z. L. Chinese Patent Application, 1803608.
    [154] Gong, Z. L.; Li, Y. X.; Yang, Y. Synthesis and characterization of Li_2Mn_xFe_(1-x)SiO_4 as a cathode material for lithium-ion batteries. Electrochem. Solid State Lett. 2006,9, A542-A544.
    [155] Wu, S. Q.; Zhang, J. H.; Zhu, Z. Z.; Yang, Y. Structural and electronic properties of the Li-ion battery cathode material LixCoSiO_4. Curr. Appl. Phys. 2007,7,611-616.
    [156] Li, Y. X.; Gong, Z. L.; Yang, Y. Synthesis and characterization of Li_2MnSiO_4/C nanocomposite cathode material for lithium ion batteries. J. Power Sources 2007, doi:10.1016/j.jpowsour.2007.06.126.
    [157] Z. L. Gong, Y. X. Li, Y. Yang. Synthesis and electrochemical Performance of Li_2CoSiO_4 as Cathode Material for Lithium Ion Batteries. J. Power Sources 2007, doi:10.1016/j.jpowsour. 2007.06.250.
    [158] Kokalj A, Dominko R, Mali G, Meden A, Gaberscek M, and Jamnik J. Beyond One-Electron Reaction in Li Cathode Materials: Designing Li_2Mn_xFe_(1-x)SiO_4. Chem. Mater., 2007,19,3633-3640.
    [159] West, A. R.; Glasser, F. P. Preparation and crystal chemistry of some tetrahedral Li_3PO_4-type compounds. J. Solid State Chem. 1972,4,20-28.
    [160] Ait-Salah A, Zaghib K, Mauger A, Gendron F, Julien C M. Magnetic studies of the carbothermal effect on LiFePO_4. Phys. Status Solidi (a) 2006,203, R1-R3.
    [161] 姜寿亭,李卫.凝聚态磁性物理.北京.科学出版社,2003.
    [162] 张克力.同体无机化学.武汉.武汉大学出版社,2005.
    [163] Kittel C. Introduction to solid state physics. 2nd edn. New York. Wiley, 1956.
    [164] Julien C M, Ait-Salah A, Mauger A, Gendron F. Magnetic properties of lithium intercalation compounds. Ionics, 2006,12:21-32.
    [165] Ichida T, Shinjo T, Bando Y, Takada T. Magnetic Properties of α-NaFeO_2. J. Phys. Soc. Jpn., 1970, 29, 795-795.
    [166] Tabuchi M, Tsutsui S, Masquelier C, Kanno R, Ado K, Matsubara I, Nasu S, Kageyama H. Effect of cation arrangement on the magnetic properties of lithium ferrites (LiFeO_2) prepared by hydrothermal reaction and post-annealing method. J. Solid State Chem., 1998,140,159-167.
    [167] Hirakawa K, Kadowaki H, Ubukoshi K, J. Phys. Soc. Jpn. Experimental Studies of Triangular Lattice Antiferromagnets with S=l/2: NaTiO_2 and LiNiO_2. 1985, 54,3526-3536.
    [168] Hirakawa K, Kadowaki H, Physica. B, 1986,136, 335.
    [169] Klemp JP, Cox PA, Hodby JW, J. Phys. Condens Matter., 1990,2,6699.
    [170] Hirota K, Nakazawa Y, Ishikawa M. Specific heat and susceptibility of the S= 1/2 triangular lattice magnet LiNiO_2 sub. J. Magn. Magn. Mater., 1990, 90-91, 279-280.
    [171] Reimers JN, Dahn JR, Greedan JE, Stager CV, Liu G, Davidson I, von Sacken U. Spin Glass Behavior in the Frustrated Antiferromagnetic LiNiO_2. J. Solid State Chem., 1993, 102, 542-552.
    [172] Yamaura K, Takano M. Magnetic Properties of Li_(1-x)Ni_(1+x)O_2(0≤x≤ 0.08). J. Solid State Chem., 1996, 127, 109-118.
    [173] Shirakami T, Takematsu M, Hirano A, Kanno R, Yamaura K, Takano M, Atake T. Spin glass-like magnetic properties of LiNiO_2. Mater. Sci. Eng. B, 1998, 54,70-72.
    [174] Chappel E, Nunez-Regueiro MD, De Brion S, Chouteau G, Bianchi V, Courant D, Baffier N. Interlayer magnetic frustration in quasistoichiometric Li_(1-x)Ni_(1+x)O_2. Phys. Rev. B, 2002, 66, 132412.
    [175] Kobayashi H, Sakaebe H, Kageyama H, Tatsumi K, Arachib Y and Kamiyama T. Changes in the structure and physical properties of the solid solution LiNi_(1-x)Mn_xO_2 with variation in its composition. J. Mater. Chem., 2003, 13,590-595.
    [176] Sugiyama J, Hioki T, Noda S, Konani M. Antiferromagnetic transition of spinel LiMn_2O_4 detected by a Li-7-NMR technique. Mater. Sci. Eng. B, 1998,54, 73-78.
    [177] Jang Y, Chou FC, Chiang Y-M. Spin-glass behavior in LiMn_2O_4 spinel. Appl. Phys. Lett., 1999, 74, 2504-2506.
    [178] Jang Y, Chou FC, Huang B, Sadoway DR, Chiang Y-M. Magnetic characterization of orthorhombic LiMnO_2 and electrochemically transformed spinel Li-xMnO_2 (x < 1). J. Phys. Chem. Solids, 2003,64,2525-2533.
    [179] Arillo MA, Cuello G, Lopez ML, Martin P, Pico C, Veiga ML. Structural characterisation and physical properties of LiMMnO_4 (M = Cr, Ti) spinels. Solid State Sci. 2005, 7, 25-32.
    [180] Greedan JE, Raju NP, Wills AS, Morin C, Shaw SM. Structure and magnetism in lambda-MnO_2. Geometric frustration in a defect spinel. Chem Mater 1998, 10, 3058-3067.
    [181] Wills AS, Raju NP, Morin C, Greedan E. Two-dimensional short-range magnetic order in the tetragonal spinel Li_2Mn_2O_4. Chem. Mater. 1999, 11,1936-1941.
    [182] Goodenough JB. Magnetism and the chemical bond. New York. Wiley, 1963.
    [183] Goodenough JB, Manthiram A, James ACWP, Strobel P. Lithium insertion compounds. Mater. Res. Soc. Symp. Proc, 1989, 135,391.
    [184] Jang Y, Chou FC, Huang B, Sadoway DR, Chiang Y-M. Magnetic characterization of lambda-MnO_2 and Li_2Mn_2O_4 prepared by electrochemical cycling of LiMn_2O_4. J. Appl. Phys., 2000, 87, 7382-7388.
    [185] Oohara Y, Sugiyama J, Kontani M. Neutron scattering study of the charge ordering and the spin ordering of the magnetically frustrated spinel antiferromagnet. J. Phys. Soc. Jpn., 1999,68,242-246.
    [186] Sugiyama J, Atsumi T, Koiwai A, Sasaki T, Hioki T, Noda S, Kamegashira N. The effect of oxygen deficiency on the structural phase transition and electronic and magnetic properties of the spinel LiMn_2O_4-delta. J. Phys. Condens. Matter., 1997, 9, 1729-1741.
    [187] Santoro R P and Newman R E. Antiferromagnetism in LiFePO_4. Acta Crystallogr. 1967,22, 344-347.
    [188] Rousse G, Rodnguez-Carvajal J, Patoux S and Masquelier C. Magnetic Structures of the Triphylite LiFePO_4 and of Its Delithiated Form FePO_4. Chem. Mater., 2003,15,4082-4090.
    [189] Mays J M. Phys. Rev. Nuclear Magnetic Resonances and Mn-O-P-O-Mn Superexchange Linkages in Paramagnetic and Antiferromagnetic LiMnPO_4. 1963,131,38-53.
    [190] Bozorth R M and Kramer V. J. Phys. Rad., 1959,20,393.
    [191] Dai D, Whangbo M-H, Koo H.-J, Rocquefelte X, Jobic S, Villesuzanne A. Analysis of the Spin Exchange Interactions and the Ordered Magnetic Structures of Lithium Transition Metal Phosphates LiMPO_4 (M = Mn, Fe, Co, Ni) with the Olivine Structure. Inorganic Chemistry, 2005,44,2407-2413.
    [192] Rousse, G; Rodriguez-Carvajal, J.; Patoux, S.; Masquelier, C. Magnetic Structures of the Triphylite LiFePO_4 and of Its Delithiated Form FePO_4. Chem. Mater., 2003,15,4082-4090.
    [193] Arcon D, Zorko A, Dominko R, and Jaglicic Z. A comparative study of magnetic properties of LiFePO_4 and LiMnPO_4. J. Phys.: Condens. Matter, 2004,16,5531-5548.
    [194] H. Kobayashi, H. Sakaebe, H. Kageyama, K. Tatsumi, Y. Arachib, T. Kamiyama, Changes in the structure and physical properties of the solid solution LiNi|_(1-x)Mn_xO_2 with variation in its composition. J. Mater. Chem. 2003,13,590-595.
    [195] A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, Magnetic properties of Li(Mn_yFe_(1-y))PO_4 and its delithiated phases. Applied Physics Letters 2005,87,252503.
    [196] A. Ait Salah, A. Mauger, K. Zaghib, J. B. Goodenough, N. Ravet, M. Gauthier, F. Gendron, C. M. Julien, Reduction Fe~(3+) of Impurities in LiFePO_4 from Pyrolysis of Organic Procure or Used for Carbon Deposition. J.Electrochem.Soc., 2006, 153(9): A1692-A1701.
    [197] K. Zaghib, N. Ravet, M. Gauthier, F. Gendron, A.Mauger, J. B.Goodenough, C. M. Julien, Optimized electrochemical performance of LiFePO_4 at 60℃ with purity controlled by SQUID magnetometry. J. Power Sources. 2006,163, 560-566.
    [1] 刘汉三,厦门大学理学博士学位论文[D],厦门:2003.
    [2] 钱逸泰等著,《结晶化学导论》.中国科学技术大学出版社,合肥,1999.
    [3] M Thompson 等著,符斌,殷欣平译,《ICP光谱分析指南》,冶金工业出版社,北京,1991
    [4] 赵藻藩,周性尧等编,《仪器分析》,高等教育出版社,北京,1990
    [5] 齐文启,孙宗光,现代科学仪器,1998,6:41-45
    [6] 刘世宏等编,X-射线光电子能谱分析 [M].,科学出版社,北京:1988.
    [7] Uebou Y, Okada S, Egashira M. et al. Cathode properties of pyrophosphates for rechargeable lithium batteries [J]. Solid State Ionics, 2002,148(3-4):323-328.
    [8] 吴瑾光主编.近代傅立叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994.
    [9] 周玉,武高辉,材料分析测试技术-材料X射线与电子显微分析,哈尔滨工业大学出版社,哈尔滨,1998.
    [10] 常铁军,祁欣编,《材料近代分析测试方法》,哈尔滨工业大学出版社,哈尔滨,1999.
    [11] 张克力.固体无机化学.武汉.武汉大学出版社,2005.
    [12] C. M. Julien, A. Ait-Salah, A. Mauger, F. Gendron, Magnetic properties of lithium intercalation compounds. IONICS 2006, 12, 21-32.
    [13] 周文生.磁性测量原理,北京:电子工业出版社,1988.
    [14] 储炜,厦门大学理学博士学位论文,厦门,1999
    [15] 藤(?)昭等著,陈震,姚建年译,《电化学测定方法》,北京大学出版社,北京,1995.
    [16] 田昭武等著,《电化学研究方法》,科学出版社,北京,1984.
    [1] A. Nyten, A. Abouimrane, M. Armand, T. Gustaffson, J. O. Thomas, Electrochemical performance of Li_2FeSiO_4 as a new Li-battery cathode material. Electrochem. Commun. 2005,7,156-160.
    [2] R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik, Structure and electrochemical performance of Li_2MnSiO_ and Li_2FeSiO_4 as potential Li-battery cathode materials. Electrochem. Commun. 2006,8,217-222.
    [3] P. Larsson, R. Ahuia, A. Nytén, J. O. Thomas, An ab initio study of the Li-ion battery cathode material Li_2FeSiO_4. Electrochem. Commun. 2006,8,797-800.
    [4] A. Nyten, S. Kamali, L. Haggstrom, T. Gustafsson, J. O. Thomas, The lithium extraction/insertion mechanism in Li_2FeSiO_4. J. Mater. Chem. 2006,16,2266-2272.
    [5] M. E. Arroyo-de Dompablo, M. Armand, J. M. Tarascon, U. Amador, On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li_2MSiO_4 system (M = Fe, Mn, Co, Ni). Electrochem. Commun. 2006,8,1292-1298.
    [6] A. Nyten, M. Stjemdahl, H. Rensmo, H. Siegbahn, M. Armand, T. Gustafsson, K. Edstrom, J. O. Thomas, Surface characterization and stability phenomena in Li_2FeSiO_4 studied by PES/XPS. J. Mater. Chem. 2006, 16,3483-3488.
    [7] K. Zaghib, A. A. Salah, N. Ravet, A. Mauger, F. Gendron, C. M. Julien, Structural, magnetic and electrochemical properties of lithium iron orthosilicate. J. Power Sources 2006,160,1381-1386.
    [8] Z. L. Gong, Y. X. Li, Y. Yang, Synthesis and characterization of Li_2Mn_xFe_(1-x)SiO_4 as a cathode material for lithium-ion batteries. Electrochem. Solid State Lett. 2006,9, A542-A544.
    [9] K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997,144,1188-1194.
    [10] S. Y.Chung, J. T.Bloking, Y. M. Chiang, Electronically conductive phospho- olivines as lithium storage electrodes. Nat. Mater. 2002,101,123-128.
    [11] N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, M. Armand, Electroactivity of natural and synthetic triphylite. J. Power Sources 2001,97,503-507.
    [12] H. Huang, S.-C. Yin, L. F. Nazar, Approaching theoretical capacity of LiFePO_4 at room temperature at high rates. Electrochem. Solid-State Lett. 2001,4, A170.
    [13] P. P. Prosini, D. Zane, M. Pasquali, Improved electrochemical performance of a LiFePO_4-based composite cathode. Electrochim. Acta 2001,46,3517.
    [14] S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002,1,123.
    [15] P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 2004,3,147.
    [16] A. Yamada, S. C. Chung, K. Hinokuma, Optimized LiFePO_4 for lithium battery cathodes. J. Electrochem. Soc. 2001,144, A224-A229.
    [17] A. Manthiram, J. Kim, Low temperature synthesis of insertion oxides for lithium batteries. Chem Mater. 1998, 10, 2895-2909.
    [18] P. Tarte, Infrared Spectroscopic Study of Ortho-silicates and Orthogermantes. Spectrochim. Acta 1962, 18, 467-483.
    [19] A. M. Pires, M. R. Davolos, Luminescence of europium(Ⅲ) and manganese(Ⅱ) in barium and zinc orthosilicate. Chem. Mater. 2001,13,21-27.
    [20] P. Tarte, Isomorphism and polymorphism of the compounds Li_3PO_4, Li_3AsO_4 and Li_3VO_4. J. Inor. & Nuclear Chem. 1967,29,915-923.
    [21] F. A. Cotton, G Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, New York, 1988.
    [22] H. M. Cheng, J. M. Ma, Z. G Zhao, L. M. Qi, Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chem. Mater. 7 (1995) 663-671.
    [23] L. Neel, in: C. Dewitt, B. Drefus, P. D. De Gennes, (Ed.) Low Temperature Physics, Gordon and Beach, New York, 1962, p. 413.
    [24] M. E. Zhitomirsky, A. Honecker, O. A. Petrenko, Field induced ordering in highly frustrated antiferromagnets. Phys. Rev. Lett. 2000, 85,3269-3272.
    [25] R. N. Bhowmik, R. Nagarajan, R. Ranganathan, Magnetic enhancement in antiferromagnetic nanoparticle of CoRh_2O_4. Phys. Rev. B 2004,69,054430.
    [1] Y. X. Li, Z. L. Gong, Y. Yang, J. Power Sources 2007, doi:10.1016/j.jpowsour. 2007.06.126
    [2] K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997,144,1188-1194.
    [3] A. Yamada, Y. Kudo, K.Y. Liu, Reaction mechanism of the olivine-type Li_(1-x)(Mn_(0.6)Fe_(0.4))PO_4 (0 ≤x <≤1) J. Electrochem. Soc. 2001,148, A747-A754.
    [4] A. Yamada, S. C. Chung, Crystal chemistry of the olivine-type Li(Mn_yFe_(1-y))PO_4 and (Mn_yFe_(1-y))PO_4 as possible 4 V cathode materials for lithium batteries. J. Electrochem. Soc. 2001,148, A960-A967
    [5] A. Yamada, Y. Kudo, K.Y. Liu, Phase diagram of Li_(1-x)(Mn_yFe_(1-y))PO_4 (0 ≤ x, y≤ 1). J. Electrochem. Soc. 2001,148,A1153-A1158.
    [6] G H. Li, H. Azuma, M. Tohda, Optimized LiMn_yFe_(1-y)PO_4 as the cathode for lithium batteries. J. Electrochem. Soc. 2002,149, A743-A747.
    [7] G H. Li, Y. Kudo, K. Y. Liu, H. Azuma, M. Tohda, X-ray absorption study of Li_xMn_yFe_(1-y)PO_4 (0 ≤ x ≤ 1,0 y ≤ 1). J. Electrochem. Soc. 2002,149, A1414-A1418.
    [8] A. Yamada, M. Hosoya, S. C.Chung, Y. Kudo, K. Hinokuma, K. Y. Liu, Y. Nishi, Olivine-type cathodes achievements and problems. J. Power Sources 2003,119,232-238.
    [9] A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, Magnetic properties of Li(Mn_yFe_(1-y))PO_4 and its delithiated phases. Applied Physics Letters 2005, 87, Art. No. 252503.
    [10] A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, K. Itoh, M. Yonemura, T. Kamiyama, Electrochemical, magnetic, and structural investigation of the Li_(1-x)(Mn_yFe_(1-y))PO_4 olivine phases. Chem. Mater. 2006, 18, 804-813.
    [11] J. Yao, S. Bewlay, K. Konstantionv, V. A.Drozd, R. S.Liu, X. L.Wang, H. K.Liu, G X.Wang, Characterisation of olivine-type LiMn_xFe_(1-x)PO_4 cathode materials. J. Alloys and Compounds 2006,425,362-366.
    [12] R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik, Structure and electrochemical performance of Li_2MnSiO_4 and Li_2FeSiO_4 as potential Li-battery cathode materials. Electrochem. Commun. 2006,8,217-222.
    [13] A. Nyten, A. Abouimrane, M. Armand, T. Gustaffson, J. O. Thomas, Electrochemical performance of Li_2FeSiO_4 as a new Li-battery cathode material. Electrochem. Commun. 2005,7,156-160.
    [14] K. Zaghib, A. A. Salah, N. Ravet, A. Mauger, F. Gendron, C. M. Julien, Structural, magnetic and electrochemical properties of lithium iron orthosilicate. J. Power Sources 2006, 160, 1381-1386.
    [15] K. Xu, C. A. Angell, Sulfone-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 2002, 149, A920-A926.
    [16] M. Wohlfahrt-Mehrens, C. Vogler, J. Garche, Aging mechanisms of lithium cathode materials. J. Power Sources 2004,127,58-64.
    [17] K. Amine, J. Liu, S. Kang, I. Belharouak, Y. Hyung, D. Vissers, G. Henriksen, Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. J. Power Sources 129 (2004) 14-19.
    [18] X. Wu, C. A. Angell, Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem. Solid State Lett. 2001,4, E1-E4.
    [19] K. Xu, S. S. Zhang, T. R. Jow, W. Xu, C. A. Angell, LiBOB as salt for lithium-ion batteries - A possible solution for high temperature operation. Electrochem. Solid State Lett. 2002,5, A26-A29.
    [20] K. Xu, S. S. Zhang, B. A. Poese, T. R. Jow, Lithium bis(oxalato)borate stabilizes graphite anode in propylene carbonate. Electrochem. Solid-State Lett. 2002,5, A259-A262.
    [21] J. C. Panitz, U. Wietelmann, M. Wachtler, S. Strobele, M. Wohlfahrt-Mehrens, Film formation in LiBOB-containing electrolytes. J. Power Sources 2006,153,396-401.
    [1] M. E. Arroyo-de Dompablo, M. Armand, J. M. Tarascon, U. Amador, On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li_2MSiO_4 system (M = Fe, Mn, Co, Ni). Electrochem. Commun. 2006, 8,1292-1298.
    [2] S. Q. Wu, J. H. Zhang, Z Z. Zhu, Y. Yang, Structural and electronic properties of the Li-ion battery cathode material Li_xCoSiO_4. Curr. Appl. Phys. 2007,7,611-616.
    [3] A. R. West, F. P. Glasser, Preparation and crystal chemistry of some tetrahedral Li_3PO_4-type compounds. J. Solid State Chem. 1972,4,20-28.
    [4] M. Wintenberger, C. R. Acad, Sc. Paris 1970, C271, 669.
    [5] O. Khan, Molecular Magnetism, Wiley-VCH, Weinheim, Germany, 1993.
    [6] F. A. Cotton, G Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, New York, 1988.
    [7] D. M. Jenkins, A. J. Di Bilio, M. J. Allen, T. A. Betley, J. C. Peters, Elucidation of a low spin cobalt(Ⅱ) system in a distorted tetrahedral geometry. J. Am. Chem. Soc. 2002,124,15336-15350.
    [8] H. Kumagai, C. Kepert, M. Kurmoo, Construction of hydrogen-bonded and coordination-bonded networks of cobalt(Ⅱ) with pyromellitate: Synthesis, structures, and magnetic properties. Inorg. Chem. 2002, 41, 3410-3422..
    [9] S. L. Tey, M. V. Reddy, G V. S. Rao, B. V. R. Chowdari, J. B. Yi, J. Ding, J. J. Vittal, Synthesis, structure, and magnetic properties of [Li(H_2O)M(N_2H-3CO_2)_3]-0.5H_2O (M = Co, Ni) as single precursors to LiMO_2 battery materials. Chem. Mater. 2006,18,1587-1594.
    [10] NIST Standard Reference Database 20, Version 3.4 (Web Version, 2003), http://srdata.nist.gov/xps/, 2004.
    [11] L. Black, A. Stumm, K. Garbev, P. Stemmermann, K.R. Hallam, GC. Allen, X-ray photoelectron spectroscopy of the cement clinker phases tricalcium silicate and beta-dicalcium silicate. Cem. Concr. Res. 2003,33,1561-1565.
    [12] M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, R. Kanno, Comparative kinetic study of olivine Li_xMPO_4 (M = Fe, Mn). J.Electrochem. Soc. 2004, 151, A1352.
    [13] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. B. Leriche, M. Morcredtte, J. M. Tarascon, C. Masquelier, Toward understanding of electrical limitations (electronic, ionic) in LiMPO_4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 2005,152, A913-921.
    [14] N. N. Bramnik, K. Nikolowski, C. Baehtz, K. G Bramnik, and H. Ehrenberg, Phase Transitions Occurring upon Lithium Insertion-Extraction of LiCoPO_4. Chem. Mater. 2007, 19, 908-915.
    [15] H. M. Cheng, J. M. Ma, Z. G Zhao, L. M. Qi, Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chem. Mater. 7 (1995) 663- 671.
    [16] P. Tarte, Spectrochim. Infrared Spectroscopic Study of Ortho-silicates and Orthogermantes. Spectrochim. Acta 1962, 18,467.
    [17] A. M. Pires, M. R. Davolos, Luminescence of europium(Ⅲ) and manganese(Ⅱ) in barium and zinc orthosilicate. Chem. Mater. 2001,13,21-27.
    [18] P. Tarte, Isomorphism and polymorphism of the compounds Li_3PO_4, Li_3AsO_4 and Li_3VO_4. J. Inor. & Nuclear Chem. 1967,29,915-923.
    [19] L. Neel, in: C. Dewitt, B. Drefus, P. D. De Gennes, (Ed.) Low Temperature Physics, Gordon and Beach, New York, 1962, p. 413.
    [20] M. E. Zhitomirsky, A. Honecker, O. A. Petrenko, Field induced ordering in highly frustrated antiferromagnets. Phys. Rev. Lett. 2000, 85, 3269-3272.
    [21] R. N. Bhowmik, R. Nagarajan, R. Ranganathan, Magnetic enhancement in antiferromagnetic nanoparticle of CoRh_2O_4. Phys. Rev. B 2004,69,054430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700