用户名: 密码: 验证码:
纳米材料修饰电极及在环境分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有的小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道等效应及由此产生的一系列独特的物理、化学性质使其已成为当前科技领域的研究热点,在纳米电子学、纳米化学、传感器、环境检测、医药、生物技术等诸多领域已有较多的应用。分子印迹技术是指为得到在空间结构和结合位点上与某一模板分子完全匹配、且对模板分子具有特异识别能力的新型聚合物的实验制备技术。分子印迹聚合物敏感材料与生物敏感材料如酶、抗体等相比,具有抗恶劣环境、稳定性高和使用寿命长等优点,因此在分析分离,特别是固相萃取、膜分离技术、异构体分离、传感器等领域获得广泛研究。目前,运用纳米材料作为化学修饰电极的修饰材料是化学修饰电极新的发展方向。本论文主要将贵金属纳米粒子、纳米管等纳米材料应用于构建电化学传感器。将纳米金属和碳纳米管制备成复合材料,利用它们具有的协同作用以期得到较高的电催化活性;利用氨基对金溶胶的强烈亲和作用在氨基硅烷修饰电极上自组装一层纳米金,以期利用纳米金的高催化活性提高电化学传感器的灵敏度;同时利用了高选择性的分子印迹技术,制备自组装分子印迹膜电极,提高电化学传感器的选择性。本论文的具体研究内容包括:
     1.以碳纳米管(CNTs)和氯铂酸为原料制备铂微粒/碳纳米管修饰电极(Pt/CNTs/GCE)。铂微粒采用循环伏安法电化学沉积制备。以该修饰电极作为甲醛的电化学传感器,用循环伏安法(CV)和线性扫描伏安法(LSV)研究了甲醛在该电极上的电化学行为,优化了实验条件,在此基础上建立了一种测定甲醛的伏安分析方法。
     2.以碳纳米管(CNTs)和氯金酸为原料制备纳米金/碳纳米管修饰电极(Au /CNTs/GCE)。纳米金采用循环伏安法电化学沉积制备。用循环伏安法和线性扫描伏安法研究了甲基对硫磷在该电极上的电化学行为。FE-SEM和XRD技术表征了修饰膜的特性。考察了电解质溶液的pH值及富集时间、纳米金的负载量等因素对于对硫磷的还原峰电流的影响。
     3.以含有氨基的硅烷,如N-[3-(三甲氧硅基)丙基]-乙二胺及3-氨丙基-三乙氧基硅烷与金溶胶通过自组装制备亚硝酸盐的电化学传感器。用循环伏安法、微分脉冲伏安法(DPV)及微分脉冲安培法(DPA)研究了亚硝酸盐在该电极上的电化学行为。
     4.以对硫磷为模板分子,四丁基高氯酸铵为支持电解质,邻氨基硫酚为聚合物单体,用电聚合的方法在金电极上制备自组装邻氨基硫酚分子印迹膜。用印迹膜修饰电极和非印迹膜修饰电极对一系列与对硫磷相近的化合物如甲基对硫磷、对氧磷、辛硫磷和氧乐果、硝基苯及邻、间、对硝基苯酚进行检测。
     5.通过电聚合在玻碳电极上将磷钨杂多酸掺杂在聚吡咯中,制备了磷钨杂多酸/聚吡咯修饰玻碳电极(PW12/PPY/GCE)。用Nafion作为离子选择性渗透膜排除抗坏血酸根、尿酸根和硝酸根等阴离子的干扰。用循环伏安法研究了Nafion/PW12/PPY/GC的电化学行为,并用微分脉冲伏安法和微分脉冲安培法研究了NO在该修饰电极上的电化学行为。
The small size effect, the surface and interface effect, the quantum size effect and the macroscopic quantum tunnel effect of nanometer materials results in series of interesting physical and chemical properties, which have become hotspots in scientific and technological fields in recent year. The nano-materials have been applied in many fields including nanoelectronics, nanochemistry, sensors, environmental monitoring, medicine, biotechnology and so on. Molecular imprinting is a method for making selective binding sites in synthetic polymers by using a molecular template. After the removal of the template, the remaining polymer gives rise to“memory sites”that are sterically and chemically complementary to the imprint species. Compared to the natural entities such as antibodies and enzymes, the artificially generated molecular recognition materials possess the virtue of anti-harsh environment, high stability and long use life which made them is useful for analytical separations, in particular in solid-phase extraction, membrane separation technique, separation of isomers and sensors.
     At present, the application of nano-materials as new chemically modified materials is a new trend in the field of chemically modified electrodes. In this paper, precious metals nanoparticles, carbon nanotubes were applied to composite electrochemical sensors. Nanoparticles/nanotubes composite possess interesting synergistic properties which can enhance the catalysis activity of the modified electrodes. With the high affinity of the–NH2 groups towards gold surface, gold nanoparticles can be self-assembled on the electrode and acted as excellent catalyst. Due to the high selectivity of molecular imprinting technolygy, the self-assembled imprinting film modified electrodes were constructed. In detail, the thesis including such study as follows:
     1. Platinum particles were electrochemically deposited on glassy carbon electrodes (GCE) modified with carbon nanotubes. The chemically modified glassy carbon electrodes with platinum particles and carbon nunotubes (Pt/CNTs/GCE) were used as formaldehyde sensors. Electrochemica1 behaviors of formaldehyde at Pt/CNTs/GCE were investigated by cyclic voltammetry (CV) and linear scan voltammetry (LSV). Experimental conditions were optimized, and a voltammetric method for determining formaldehyde was developed.
     2. Gold nanoparticles were electrochemically deposited on glassy carbon electrodes modified with carbon nanotubes (Au/CNTs/GCE). Electrochemica1 behaviours of methyl-parathion at Au/CNTs/GCE were investigated by cyclic voltammetry and linear scan voltammetry. Field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) techniques were used for characterization of the composite. The effect of pH, accumulation time and amount of the deposited gold microparticles on the reduction peak current of methyl-parathion at the Au/MWCNTs/GCE were investigated.
     3. The modified sensors were fabricated by N-[3-(trimethoxysilyl) propyl]-ethylene diamine (TSPED) or (3-aminopropyl)-trimethoxysilane on glass carbon electrodes. Colloidal gold particles were modified by self-assembling onto the amine groups of the sol-gel. Electrochemica1 behaviours of nitrite on sol-gol and gold nanoparticles modified glassy carbon electeodes (AuNPs/TSPED/GCE) and AuNPs/ATS/GCE were investigated by differential pulse voltammetry (DPV) and differential pulse amperometry (DPA).
     4. Cyclic voltammetry was employed in the process of electropolymerization on gold electrode. Parathion was used as template molecule; tetrabutyl ammonium perchlorate was used as supporting electrolyte and o-aminothiophenol as polymer monomer. Parathion imprinted and nonimprinted polymer films were exposed to a series of closely related compounds and the sensor exhibited good selectivity and sensitivity to parathion.
     5. A polypyrrole (PPY) doped by phosphotungstic heteropolyacid (PW12) and Nafion (Nf) doubly layer modified glassy carbon electrode (Nf/PW12/PPY/GCE) was prepared. The Nafion layer modified on the surface of electrocatalyst could effectively eliminate the interferences from common species anion in biological samples such as ascorbate, urate and nitrite. The electrochemical behaviours of nitric oxide at the Nf/PW12/PPY/GCE were investigated by cyclic voltammetry.
引文
1金利通,鲜跃仲,张芬芬.纳米电化学与生物传感器的研究进展.华东师范大学学报. 2005, 12(5-6):13~24.
    2 J. Manso, M.L. Mena, P. Yá?ez-Sede?o, J. Pingarrón. Electrochemical Biosensors Based on Colloidal Gold–Carbon Nanotubes Composite Electrodes. Journal of Electroanalytical Chemistry. 2007,603 (1): 1~7.
    3 S.S. Fan, F. Xiao, L.Q. Liu, F.Q. Zhao, B.Z. Zeng. Sensitive voltammetric response of methylparathion on single-walled carbon nanotube paste coated electrodes using ionic liquid as binder. Sensors and Actuators B. 2008, 132 (1): 34~39.
    4 L. Xiao, G.G. Wildgoose, R.G. Compton. Sensitive Electrochemical Detection of Arsenic (III) using Gold Nanoparticle Modified Carbon Nanotubes via Anodic Stripping Voltammetry. Analytica Chimica Acta. 2008, 620(1-2): 44~49.
    5 B.K. Jena, C.R. Raj. Highly Sensitive and Selective Electrochemical Detection of Sub-Ppb Level Chromium (VI) using Nano-Sized Gold Particle. Talanta. 2008, 76 (1): 161~165.
    6 C.L. Xiang, Y.J. Zou, L.X. Sun, F. Xu. Direct Electrochemistry and Electrocatalysis of Cytochrome c Immobilized on Gold Nanoparticles–Chitosan–Carbon Nanotubes-Modified electrode. Talanta. 2007, 74(2): 206~211.
    7 X. Mao, J.H. Jiang, Y. Luo, G.L. Shen, R.Q. Yu. Copper-Enhanced Gold Nanoparticle Tags for Electrochemical Stripping Detection of Human IgG. Talanta. 2007, 73(3): 420~424.
    8 G. Wulff, A. Sarhan. Use of Polymers with Enzyme-Analogous Structures for the Resolution of Racements. Angewandte Chemie-International Edition. 1972, 11(4): 341~344.
    9赵宝辉,陆燕,王旭东,李晨曦.支载型分子印迹聚合物膜的制备及其透过选择性研究.分析化学. 2006, 36(7): 1003~1006.
    10尹俊发,杨更亮,张轶华,刘海燕,陈义.原位聚合那格列奈分子印迹手性固定相的分子识别特性研究.化学学报. 2004, 62(19): 1922~1926.
    11董伟,刘红,陆霜,杨生涛,彭新华.分子印迹聚合物的合成及其仿生催化性能的研究.南京理工大学学报. 2006, 30(3): 361~365.
    12李礼,胡树国,何锡文,李文友,陈朗星,张玉奎.应用分子印迹-固相萃取法提取中药活性成分非瑟酮.高等学校化学学报. 2006, 27(4): 608~611.
    13邴乃慈,许振良,杨座国,王学军.热聚合制备左旋氧氟沙星分子印迹聚合物的条件.南京工业大学学报. 2006, 28(1): 41~45.
    14王淼,刘萍,贾金平,胡晓芳.新型固相微萃取头测定胶粘剂中苯及其同系物.环境科学与技术. 2006, 29(6): 43~45.
    15左言军,余建华,黄启斌.分子印迹纳米膜的制备及其在检测神经性毒剂沙林中的应用.分析化学. 2003, 31(7): 7692~7731.
    16杜小燕,彭涛,李俊锁.沙拉沙星分子印迹聚合物的制备及其吸附特性.分析化学. 2003, 31(6): 720~722.
    17 S. Marx, A. Zaltzman, I. Turyan. Parathion Sensor Based on Molecularly Imprinted Sol-Gel Films. Analytical Chemistry. 2004, 76(1): 120~126.
    18 C.Y. Li, C.F. Wang, B. Guan, Y.Y. Zhang, S.S. Hu. Electrochemical Sensor for the Determination of Parathion Based on p-tert-Butylcalix [6] arene-1,4-crown-4 Sol–Gel Film and Its Characterization by Electrochemical Methods. Sensors and Actuators B. 2005, 107(1): 411~417.
    19 C.Y. Li, C.F. Wang, C.H. Wang, S.S. Hu. Construction of a Novel Molecularly Imprinted Sensor for the Determination of O, O-dimethyl-(2,4-dichlorophenoxy acetoxyl) (3-nitrophenyl) Methinephosphonate. Analytical Chimica Acta. 2005, 545(2): 122~1286.
    20 C.Y. Li, C.F. Wang, C.H. Wang, S.S. Hu. Development of a Parathion Sensor Based on Molecularly Imprinted Nano-TiO2 Self-Assembled Film Electrode. Sensors and Actuators B. 2006, 117(1): 166~171.
    21 W.M. Tolles. Self-assembled materials. Mrs Bulletin. 2000, 25(10): 36~38.
    22 T. Masciangioli, W.X. Zhang. Environmental Technologies at the Nanoscale. Environtal Science and Technology. 2003, 37 (5): 102A~108A.
    23 R.F. Service, P. Szuromi, J.Uppenbrink. Strength in Numbers. Science. 2002, 295(5564): 2395~2395.
    24刘冰,任亭兰. 21世纪材料发展的方向—纳米材料.青岛大学学报. 2000, 13 (3) :91~95.
    25张立德,牟季美.纳米材料[M].北京:化学工业出版社. 2000.
    26张梅,陈焕春,杨绪杰,陆路德,汪信.纳米材料的研究现状及展望.导弹与航天运载技术. 2000, (3):11~16.
    27袁颂东,袁静玲.纳米催化剂的制备及其在环保领域的应用.湖北工学院学报. 2001, 16 (4): 72~76.
    28魏方芳.纳米材料的研究及应用.化学工程与装备. 2007, (3):28~30.
    29 N. Alexeyeva, K. Tammeveski. Electroreduction of Oxygen on Gold Nanoparticle/PDDA- MWCNT Nanocomposites in Acid Solution. Analytica Chimica Acta. 2008, 618(2): 140~146.
    30 G.D. Liu, Y.H. Lin. Biosensor Based on Self-assembling Acetylcholinesterase on Carbon Nanotubes for Flow Injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents. Analytical Chemistry. 2006, 78(3): 835~843.
    31陈海澜.纳米材料在电催化领域的应用与特性分析.科技资讯. 2008, (16): 9~9.
    32李莉,魏子栋,李兰兰.电沉积纳米材料研究现状.电镀与精饰. 2004, 26(3): 9~15.
    33杨宏州,邓友全. Au/PAni/GC电极的制备及对甲醛的电催化氧化研究.化学学报. 2002,60(4): 569~573.
    34 W.H. Cheng, K.C. Wu, M.Y. Lo, C.H. Lee. Recent advances in nano precious metal catalyst research at Union Chemical Laboratories, ITRI. Catalysis Today. 2007, 97(2-3): 145~151.
    35宁慧森,白国义.纳米金属催化剂的制备方法及其比较.化学推进剂与高分子材料. 2007, 5(3): 15~18.
    36刘威,陈爱平,林嘉平,戴智明,邱炜,刘伟,朱孟钦,臼田昭司.均相水解法制备金红石含量可控的纳米TiO2.化学学报. 2004, 62(12): 1148~1152.
    37 K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan. Preparation and Characterization of Au Colloid Monolayers. Analytic Chemistry. 1995, 67(4): 735~743.
    38胡晓歌,王铁,程文龙,汪尔康,董绍俊.金属纳米线的合成与组装.分析化学. 2004, 32(9): 1240~1245.
    39 I. Willner, B. Willnrt. Functional Nanoparticle Architectures for Sensoric, Optoelectronic, and Bioelectronic Applications. Pure and Applied Chemistry. 2002, 74(9): 1773~1783.
    40刘江疆,林金明.纳米粒子在分析化学领域的应用进展.生命科学仪器. 2005, 3(4):3~11.
    41 O. Shulga, J.R. Kirchhoff. An Acetylcholinesterase Enzyme Electrode Stabilized by an Electrodeposited Gold Nanoparticle Layer. Electrochemistry Communication. 2007, 9(5): 935~940.
    42 O. Domínguez-Renedo, L. Ruiz-Espelt, N. García-Astorgano, M.J. Arcos-Martínez. Electrochemical Determination of Chromium (VI) using Metallic Nanoparticle-Modified Carbon Screen-Printed Electrodes. Talanta. 2008, 76(4): 854~858.
    43 S. Kumar, S.Z. Zou. Electrooxidation of Carbon Monoxide and Methanol on Platinum-Overlayer-Coated Gold Nanoparticles: Effects of Film Thickness. Langmuir. 2007, 23(13): 7365~7371.
    44 C. Humbert, B. Busson, J.P. Abid, C. Six, H.H. Girault, A. Tadjeddine. Self-Assembled Organic Monolayers on Gold Nanoparticles: A Study by Sum-Frequency Generation Combined with UV–vis Spectroscopy. Electrochimica Acta. 2005, 50(15): 3101~3110.
    45 M.H. Mashhadizadeh, K. Eskandari, A. Foroumadi, A. Shafiee. Copper (II) Modified Carbon Paste Eectrodes Based on Self-Assembled Mercapto Compounds-Gold-Nanoparticle. Talanta. 2008, 76(3): 497~502.
    46 T.Y. Dong, C.L. Huang, C.P. Chen, M.C. Lin. Molecular Self-Assembled Monolayers of Ruthenium(II)-Terpyridine Dithiol Complex on Gold Electrode and Nanoparticles. Journal of Organometallic Chemistry. 2007, 692(23) :5147~5155.
    47 S. Moses, S.H. Brewer, S. Kraemer, R.R. Fuierer, L.B. Lowe, C. Agbasi,M. Sauthier, S. Franzen. Detection of DNA Hybridization on Indium Tin Oxide Surfaces. Sensors andActuators B. 2007, 125(2): 574~580.
    48 X.J. Zhao, Z.B. Mai, X.H. Kang, Z. Dai, X.Y. Zou. Clay–Chitosan–Gold Nanoparticle Nanohybrid: Preparation and Application for Assembly and Direct Electrochemistry of Myoglobin. Electrochimica Acta. 2008, 53(14): 4732~4739.
    49 X. Mao, M. Baloda, A.S. Gurung, Y.H. Lin, G.D. Liu. Multiplex Electrochemical Immunoassay using Gold Nanoparticle Probes and Immunochromatographic Strips. Electrochemistry Communications. 2008, 10(10): 1636~1640.
    50 R.J. Cui, H.P. Huang, Z.Z. Yin, D. Gao, J.J. Zhu. Horseradish Peroxidase-Functionalized Gold Nanoparticle Label for Amplified Immunoanalysis Based on Gold Nanoparticles/Carbon Nanotubes Hybrids Modified Biosensor. Biosensors and Bioelectronics. 2008, 23(11): 1666~1673.
    51 M. ?ubuk?u, S. Timur,ü. Anik. Examination of Performance of Glassy Carbon Paste Electrode Modified with Gold Nanoparticle and Xanthine Oxidase for Xanthine and Hypoxanthine Detection. Talanta. 2007, 74(3): 434~439.
    52 Y.G. Zhou, S.Yang, Q.Y. Qian, X.H. Xia. Gold Nanoparticles Integrated in a Nanotube Array for Electrochemical Detection of Glucose. Electrochemistry Communications. 2009, 11(1): 216~219.
    53 Y. Liu, S. Wu, H.X. Ju, L. Xu. Amperometric Glucose Biosensing of Gold Nanoparticles and Carbon Nanotube Multilayer Membranes. Electroanalysis. 2007, 19(9): 986~992.
    54 G.Y. Kim, M.S. Kang, J. Shim, S.H. Moon. Substrate-Bound Tyrosinase Electrode using Gold Nanoparticles Anchored to Pyrroloquinoline Quinone for a Pesticide Biosensor. Sensors and Actuators B. 2008, 133(1):1~4.
    55 Y.H. Qu, H. Min, Y.Y. Wei, F. Xiao, G.Y Shi, X.H. Li, L.T. Jin. Au–TiO2/Chit Modified Sensor for Electrochemical Detection of Trace Organophosphates Insecticides. Talanta. 2008, 76(4): 758~762.
    56 M.C. Tsai, P.Y. Chen. Voltammetric Study and Electrochemical Detection of Hexavalent Chromium at Gold Nanoparticle-Electrodeposited Indium Tinoxide (ITO) Electrodes in Acidic Media. Talanta. 2008, 76(3): 533~539.
    57 J. Li, X.Q. Lin. Electrocatalytic Oxidation of Hydrazine and Hydroxylamine at Gold Nanoparticle—Polypyrrole Nanowire Modified Glassy Carbon Electrode. Sensors and Actuators B. 2007, 126(2): 527~535.
    58 F. Xiao, F.Q. Zhao, J.W. Li, R. Yan, J.J. Yu, B.Z. Zeng. Sensitive Voltammetric Determination of Chloramphenicol by using Single-Wall Carbon Nanotube–Gold Nanoparticle–Ionic Liquid Composite Film Modified Glassy Carbon Electrodes. Analytica Chimica Acta. 2007, 596(1): 79~85.
    59 A. Sivanesan, P. Kannan, S. A. John. Electrocatalytic Oxidation of Ascorbic Acid using a Single Layer of Gold Nanoparticles Immobilized on 1,6-Hexanedithiol Modified Gold Electrode. Electrochimica Acta. 2007, 52(28): 8118~8124.
    60 E.V. Milsom, J. Novak, M. Oyama, F. Marken. Electrocatalytic Oxidation of Nitric Oxide at TiO2–Au Nanocomposite Film Electrodes. Electrochemistry Communications. 2007, 9(3): 436~442.
    61 S. Iijima. Helical microtubules of graphitic carbon. Nature. 1991, 354(6348): 56~58.
    62 C.T. White, D.H. Robertson, J.W. Mintmire. Helical and rotational symmetries of nanoscale graphitic tubules. Physic Review B. 1993, 47(9): 5485~5488.
    63 P.J. Britto, K.S.V. Santhanam, P.M. Ayajan. Carbon Nnanotube Electrode for Oxidation of Dopamine. Bioelectrochemistry and Bioenergetics. 1996, 41(1): 121~125.
    64 M.D. Rubianes, G.A. Rivas. Carbon Nanotubes Paste Electrode. Electrochemistry Communications. 2003, 5(8): 689~694.
    65 Y. Wang, W.Z. Wei, X.Y. Liu, X.D. Zeng. Carbon nanotube/chitosan/gold nanoparticles- based glucose biosensor prepared by a layer-by-layer technique.Materials Science and Engineering C-Biomimetic and Supramolecular Systems. 2009, 29(1): 50~54.
    66 P.P. Joshi, S.A. Merchant, Y.D. Wang, D.W. Schmidtke. Amperometric Biosensors Based on Redox Polymer-Carbon Nanotube-Enzyme Composites. Analytical Chemistry. 2005, 77(10): 3183~3188.
    67 Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, S.F.Y. Li. Direct Electrochemistry of Horseradish Peroxidase at Carbon Nanotube Powder Microelectrode. Sensors and Actuators B. 2002, 87(1): 168~172.
    68王聪,徐基贵,张莉,王红艳.碳纳米管壁负载金属的研究进展.宿州学院学报. 2005, 20(3): 78~81.
    69 S. Hrapovic, E. Majid, Y.L. Liu, K. Male, J.H.T. Luong. Metallic Nanoparticle-Carbon Nanotube Composites for Electrochemical Determination Explosive Nitroaromatic Compounds. Analytical Chemistry. 2006, 78(15): 5504~5512.
    70 M.H. Yang, J.H. Jiang, Y.H. Yang, X.H. Chen, G.L. Shen, R.Q. Yu Carbon Nanotube/Cobalt Hexacyanoferrate Nanoparticle-Biopolymer System for the Fabrication of Biosensors. Biosensors and Bioelectronics. 2006, 21(10): 1791~1797.
    71 G.Y. Gao, D.J. Guo, C. Wang, H.L. Li. Electrocrystallized Ag Nanoparticle on Functional Multi-Walled Carbon Nanotube Surfaces for Hydrazine Oxidation. Electrochemistry Communications. 2007, 9(7): 1582~1586.
    72 K.B. Male, S. Hrapovic, Y.L. Liu, D.S. Wang, J.H.T. Luong. Electrochemical Detection of Carbohydrates using Copper Nanoparticles and Carbon Nanotubes. Analytica Chimica Acta.2004, 516(1): 35~41.
    73 Y. Liu, S. Wu, H.X. Ju, L. Xu. Amperometric Glucose Biosensing of Gold Nanoparticles and Carbon Nanotube Multilayer Membranes. Electroanalysis. 2007, 19(9): 986~992.
    74张立德.纳米材料[M].北京:化学工业出版社. 2000: 20~38.
    75常竹,祝宁宁,赵琨,樊浩,何品刚,方禹之.苯胺纳米线修饰的DNA电化学传感器的研究.化学学报. 2007, 65(2): 135~139.
    76 F.L. Qu, M.H. Yang, G.L. Shen, R.Q. Yu. Electrochemical Biosensing Utilizing Synergic Action of Carbon Nanotubes and Platinum Nanowires Prepared by Template Synthesis. Biosensors and Bioelectronics. 2007, 22(8): 1749~1755.
    77黄余改,王海燕,胡效亚.聚天青B/铜纳米复合物膜修饰电极用于葡萄糖的测定.分析化学. 2006, 34(8): 1119~1121.
    78 C.L. Xiang, Y.J. Zou, L.X. Suna, F. Xu. Direct Electrochemistry and Enhanced Electrocatalysis of Horseradish Peroxidase Based on Flowerlike ZnO–Gold Nanoparticle–Nafion Nanocomposite. Sensors and Actuators B. 2009, 136(1): 158~162.
    79 S.Y. Xu, G.L. Tu, B. Peng, X.Z. Han. Self-assembling Gold Nanoparticles on Thiol-Functionalized Poly(styrene-co-acrylic acid) Nanospheres for Fabrication of a Mediatorless Biosensor. Analytical Chimica Acta. 2006, 570(2): 151~157.
    80马曾燕,李将渊,向伟.多巴胺在聚L-半胱氨酸/多壁碳纳米管修饰电极上的电化学行为及其伏安测定.应用化学. 2009, 26(2): 224~228.
    81张宏,金葆康.纳米金修饰玻碳电极在抗坏血酸共存下选择性测定去甲肾上腺素.分析化学. 2002, 30(11): 125~128.
    82龚兰新,魏翠梅,胡劲波,李启隆.阿霉素在纳米钴修饰电极上的电化学行为及其应用.药学学报, 2008, 43(3): 303~307.
    83 O. Domínguez-Renedo, L. Ruiz-Espelt, N. García-Astorgano, M.J. Arcos-Martínez. Electrochemical Determination of Chromium (VI) using Metallic Nanoparticle-Modified Carbon Screen-Printed Electrodes. Talanta. 2008, 76(4): 854~858.
    84 M.C. Tsai, P.Y. Chen. Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media. Talanta. 2008, 76(3): 533~539.
    85 J. Li, X.Q. Lin. Electrocatalytic Reduction of Nitrite at Polypyrrole Nanowire–Platinum Nanocluster Modified Glassy Carbon Electrode. Microchemica Journal. 2007, 22(8): 1749~1755.
    86 G.Y. Gao, D.J. Guo, H.L. Li. Electrocatalytic Oxidation of Formaldehyde on Palladium Nanoparticles Supported on Multi-Walled Carbon Nanotubes. Journal of Power Sources. 2006, 162(2): 1094~1098.
    87 Z.L. Zhou, T.F. Kang, Y. Zhang, S.Y. Cheng. Electrochemical sensor for formaldehyde based on Pt-Pd nanoparticles and a Nafion-modified glassy carbon electrode. Microchimica Acta. 2009, 164(1-2): 133~138.
    88 G.D. Liu, Y.H. Lin. Electrochemical Sensor for Organophosphate Pesticides and Nerve A- gents using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry. 2005, 77 (18): 5894~5901.
    89 C.Y. Li, C.F. Wang, Y. Ma, W. Bao, S.H. Hu. A Novel Amperometric Sensor and Chromatographic Detector for Determination of Parathion. Analytical Bioanalytical Chemistry. 2005, 381(5): 1049~1055.
    90 K.A. Joshi, J. Tang, R. Haddon, J. Wang, W. Chen, A. Mulchandani. A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode. Electroanalysis. 2005, 17(1): 54~58.
    91 R.P. Deo, J. Wang, I. Block, A. Mulchandani, K.A. Joshi, M. Trojanowicz, F. Scholz, W. Chen, Y.H. Lin. Determination of Organophosphate Pesticides at a Carbon Nanotube/ Organophosphorus Hydrolase Electrochemical Biosensor. Analytica Chimica Acta. 2005, 530(2): 185~189.
    92曹长青,叶招莲,杨龙誉,邵春雷,侯惠奇.β-PbO2/TiO2电极对茜素红废水的降解效果和机理研究.环境化学. 2008, 27(5): 569~573.
    93 C.B. Barretto, R.L.T. Parreira, R.R. Goncalves, D.C. de Azevedo, F. Huguenin. Platinum Nanoparticles Embedded in Layer-By-Layer Films from SnO2/Polyallylamine for Eethanol Electrooxidation. Journal of Power Sources. 2008, 185(1): 6~12.
    94杨芬,甘复兴,张学俊,汪帆,刘品华,彭天蔚. Sb-SnO2/Ti纳米涂层电极对对硝基苯酚的电催化氧化.环境科学与技术. 2008, 31(7): 14~17.
    95张金花,褚道葆.碳纳米管/纳米TiO2复合膜修饰电极的制备及其对马来酸的电催化还原.合成化学. 2008, 16(4): 410~413.
    96张学炜,孙慧,董襄朝,吕宪禹.分子印迹技术及其应用研究进展.天津农学院学报. 2002, 9(3): 23~28.
    97 I. Chianella, S.A. Piletsky, I.E. Tothill, B. Chen, A.P.F. Turner. MIP-Based Solid Phase Extraction Cartridges Combined with MIP-Based Sensors for the Detection of Microcystin-LR. Biosensors and Bioelectronics. 2003, 18(2-3): 119~127.
    98 I. Chianella, M. Lotierzo, S.A. Piletsky, I.E. Tothill, B.N. Chen, K. Karim, A.P.F. Turer. Rational Design of a Polymer Specific for Microcytin-LR using a Computational Approach. Analytical Chemistry. 2002, 74(6):1288~1293.
    99 Y.C. Chen, J.J. Brazier, M.D. Yan, P.R. Bargo, S.A. Prahl. Fluorescence-Based Optical Sensordesign for Molecular Imprinted Polymers. Sensors and Actuators B. 2004, 102(1):107~116.
    100 F.L. Dickert, P. Lieberzeit, M. Tortshanoff. Molecular Imprints as Artificial Antibodies- a New Generation of Chemical Sensors. Sensor and Actuator B. 2000, 65(1-3): 186~189.
    101 S.A. Piletsky, E.V. Piletskaya, A.V. Elgersma, K. Yano, I. Karube, Y.P. Parhometz, A.V. Elskaya. Atrazine Sensing by Molecularly Imprinted Membranes. Biosensors and Bioelectronics. 1995, 10(9-10): 959~964.
    102 T.L. Panasyuk, V.M. Mirsky, S.A. Piletsky, O.S. Wolfbeis. Electropolymerized Molecularly Imprinted Polymers as Receptor Layers in Capacitive Chemical Sensors. Analytical Chemistry. 1999, 71(20): 4609~4613.
    103 T. Panasyuk-Delaney, V.M. Mirsky, M. Ulbricht, O.S. Wolfbeis. Impedometric Herbicide Chemosensors Based on Molecularly Imprinted Polymers. Analytica Chimica Acta. 2001, 435(1): 157~162.
    104 D. Kriz, O. Ramstrom, A. Svensson, K. Mosbach. Introducing Biomimetic Sensor Based on a Molecularly Imprinted Polymer as a Recognition Element Combined with Fiber-Optic Detection. Analytical Chemistry. 1995, 67(13): 2142~2144.
    105 D. Kriz, K. Mosbach. Competitive amperometric morphine sensor-based on an agarose immobilised molecularly imprinted polymer. Analytica Chimica Acta. 1995, 300(1-3): 71~75.
    106 S.A. Piletsky, E.V. Piletskaya, T.A. Sergeyeva. T.L. Panasyuk, A.V. Elskaya. Molecularly Imprinted Self-Assembled Films with Specificity to Cholesterol. Sensors and Actuator B. 1999, 60(2-3): 216~220.
    107董赫,童爱军,李隆弟.发光性分子印迹聚合物的合成及其对组胺的识别性能研究.高等学校化学学报. 2002, 23(6): 1018~1021.
    108 W.L. Xing, L.R. Ma,Z.H. Jiang, F.H. Cao, M.N. Jia. Portable Fiber-Optic Immunosensor for Detection of Methsulfuron Methyl. Talanta. 2000, 52(5): 879~883.
    109 T.A. Roberto, N. Ramaier. Fibre-optic Pesticide Biosensor Based on Covalently Immobilized Acetylcholinesterase and Thymol Blue. Talanta. 1997, 44(8): 1335~1352.
    110 H.S. Ji, S. McNiven, K. Ikebukuro, I. Karube. Selective Piezoelectric Odor Sensors using Molecularly Imprinted Polymers. Analytical Chimica Acta. 1999, 390(1-3): 93~100.
    111 S. Marx, A. Zaltzman, I. Turyan. Parathion Sensor Based on Molecularly Imprinted Sol-Gel Films. Analytical Chemistry. 2004, 76(1) : 120~126.
    112卢春阳,何海成,马向霞,张佳,何锡文.除草剂青莠定分子印迹聚合物的合成及结合性能研究.化学学报. 2004, 62(8): 799~803.
    113孙宝维,武利庆,李元宗.由不同功能单体合成的对羟基苯甲酸分子印迹聚识别特性的实验和理论研究.化学学报. 2004, 62(6): 598~602.
    114 P. Andrea, S. Miroslav, S. Silvia, M. Stanislav. A Solid Binding Matrix/Molecularly Imprinted Polymer-Based Sensor System for the Determination of Clenbuterol in Bovine Liver using Differential-Pulse Voltammetry. Sensors and Actuators B. 2001, 76(1-3): 286~294.
    115郭洪声,何锡文,邓昌辉,李一峻.药物扑热息痛分子模板聚合物的选择性富集与识别特性研究.高等学校化学学报. 2000, 21(3): 2073~2075.
    116雷建都,谭天伟.萘普生分子印迹拆分及亲和吸附平衡常数的测定.高等学校化学学报. 2002, 23(11): 2073~2075.
    117张国庆,杨更亮,范子琳,李志伟,陈义.氨基比林原位分子印迹柱的制备及其在水中的结合性质.分析化学. 2005, 33(10): 1393~1396.
    118左言军,余建华,黄启斌,赵建军,潘勇,林原.沙林酸印迹聚邻苯二胺纳米膜制备及结构表征.物理化学学报. 2003, 19(6): 528~532.
    119史瑞雪,郭成海,张东江,朱春野,左言军,邓云度.运用电化学方法制备分子印迹聚合物膜.高分子材料科学与工程. 2003, 19(6): 213~215.
    120刘志航,宦双燕,沈国励,俞汝勤.以分子印迹电聚合膜为仿生受体检测辛可宁.高等学校化学学报. 2005, 26(6): 1049~1051.
    121吴朝阳,张晓蕾,杨云慧,沈国励,俞汝勤.尼古丁分子印迹聚邻氨基酚敏感膜传感器.湖南大学学报(自然科学版). 2005, 32(3): 10~14.
    122 C. Malitesta, I. Losito, P.G. Zambonin. Molecularly Imprinted Electrosynthesized Polymers: New Materials for Biomimetic Sensors. Analytical.Chemistry. 1999, 71(7): 1366~1370.
    123 T. Seki, K. Yamaji, Y. Orita, S. Moriguchi, A. Shinoda. Simultaneous Determination of Uric Acid and Creatinine in Biological Fluids by Column-Switching Liquid Chromatography with Ultraviolet Detection. Journal of Chromatography A. 1996, 730(1-2): 139~145.
    124周兴国,李桂玲.悬浮聚合法制备咖啡因分子印迹聚合物微球及其性能研究.中草药. 2005, 36(5): 692~695.
    125 E. Turiel, A. Martin-Esteban, P. Fernandoz, C. Perez-Conde, C. Camara. Molecular Recognition in a Propazine-Imprinted Polymer Rand its Application to the Determination of Triazines in Environmental Samples. Analytical Chemistry. 2001, 73(21): 5133~5141.
    126 X.L. Xu, G.L. Zhou, H.X. Li, Q. Liu, S. Zhang, J.L. Kong. A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles. Talanta. 2009, 78(1): 26~32.
    2闫金萍.甲醛及其对人体健康的危害.化学世界. 2004, (10): 558~559。
    3刘群.家用纺织品甲醛污染的防治方法探讨.上海纺织科技. 2005, 33(9): 29~30
    4 R. Kataky, M.R. Bryce, L. Goldenberg, S. Hayes, A. Nowak. A Biosensor for Monitoring Formaldehyde Using a New Lipophilic Tetrathiafulvalene-Tetracyanoquinodimethane Salt and a Polyurethane Membrane. Talanta. 2002, 56(3): 451~458.
    5 S. Abbasi,M. Esfandyarpour,M.A. Taher, A. Daneshfar. Catalytic-kinetic Determination of Trace Amount of Formaldehyde by the Spectrophotometric Method with a Bromate-Janus Green System. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007, 67(3-4): 578~581.
    6华红慧,岳振峰,郑卫平,林燕奎,韩瑞阳,王耀宇.乙酰丙酮分光光度法检测菌菇类及水产品中甲醛含量的研究.食品科学. 2007, 28(4): 273~276.
    7徐溢,张文品,田鹏,张波,温志渝.药物合成中间体中残余甲醛的微型光谱快速检测.光谱学与光谱分析. 2009, 29(2): 471~475.
    8 Q. Li, M. Oshima,S. Motomizu. Flow-Injection Spectrofluorometric Determination of Trace Amounts of Formaldehyde in Water after Derivatization with Acetoacetanilide. Talanta. 2007, 72(5): 1675~1680.
    9 Z.Q. Zhang, H.T. Yan, X.F. Yue. Catalytic determination of trace formaldehyde with a flow injection system using the indicator reaction between crystal violet and bromate. Microchimica Acta. 2004, 164(3-4): 259~263.
    10 A.I. Lazrus, S.Tanaka, N.Teshima, S. Yasuda, N. Ura. Fluorimetric Flow Injection Analysis of Trace Amount of Formaldehyde in Environmental Atmosphere with 5,5-Dimethylcyclohexane-1,3-Dione. Talanta. 2002, 58(6): 1271~1278.
    11 T. Shiraishi, Y. Soma, O. Ishitani, K. Sakamoto. Application of an Integrated Prepstation-GC-NPD System to Automated Continuous Measurement of Formaldehyde and Acetaldehyde in the Atmosphere. Journal of Environmental Monitoring. 2001, 3(6): 654~660.
    12 W.A. McClenny, K.D. Oliver, H. J. Jacumin, E.H. Daughtrey. Ambient Level Volatile Organic Compound (VOC) Monitoring Using Solid Adsorbents-recent USEPA Studies. Journal of Environmental Monitoring. 2002, 4(5): 695~705.
    13马敬军,周德庆,柳淑芳,马洪明.二硝基苯肼衍生-高效液相色谱法测定水产品中甲醛含量的研究.海洋水产研究. 2005, 26(1): 28~31.
    14 M. Possanzini, V.D. Palo. Simultaneous Determination of HCHO, CH3CHO and O(x) in Ambient Air by Hydrazine Reagent and HPLC. Annali di Chimica. 2003, 93(1-2): 149~156.
    15 S. Ngamchana, W. Surareungchai. Sub-Millimolar Determination of Formalin by Pulsed Amperometric Detection. Analytica Chimica Acta. 2004, 510(2): 195~201.
    16 M. H?mmerle, E.A.H. Hall, N. Cade, D. Hodgins. Electrochemical Enzyme Sensor for Formaldehyde Operating in the Gas Phase. Biosensors and Bioelectronics B. 1996, 11(3): 239~246.
    17 Y. Herschkovitz, I. Eshkenazi, C.E. Campbell, J. Rishpon. An Electrochemical Biosensor for Formaldehyde. Journal of Electroanalytical Chemistry. 2000, 491(1-2): 182~187.
    18 R. Knake, P. Jacquinot, P.C. Hauser. Amperometric Detection of Gaseous Formaldehyde in thePpb Range. Electroanalysis. 2001, 13(8-9): 631~634.
    19 A. Ciszewski, G. Milczarek. Kinetics of Electrocatalytic Oxidation of Formaldehyde on a Nickel Porphyrin-Based Glassy Carbon Electrode. Journal of Electroanalytical Chemistry. 1999, 469(1): 18~26.
    20 R.W. Gillett, H. Kreibich, G.P. Ayers. Measurement of Indoor Formaldehyde Concentrations with a Passive Sampler. Environmental Science and Technology. 2000, 34(10): 2051~2056.
    21李凤霞,刘文杰,李菊等. 4160型甲醛分析仪与酚试剂法测定空气中甲醛浓度的对比研究.环境与健康杂志. 2003, 20(2): 112~113.
    22郝玉翠,康天放,刘桐珅,丁中华.甲醛的铂微粒修饰玻碳电极伏安法测定.分析测试学报. 2008, 27(1): 60~62.
    23 Z.L Zhou, T.F. Kang, Y. Zhang, S.Y. Cheng. An electrochemical sensor for formaldehyde based on Pt-Pd nanoparticles and Nafion modified glassy carbon electrode. Microchimica Acta. 2009, 164(1-2): 133~138.
    24 G. Y. Gao, D. J. Guo, H. L. Li. Electrocatalytic Oxidation of Formaldehyde on Palladium Nanoparticles Supported on Multi-walled Carbon Nanotubes. Journal of Power Sources. 2006, 162(2): 1094~1098.
    25 R.X. Wang, D.J. Zhang, Y.M. Zhang, C.B. Liu. Boron-doped carbon canotubes serving as a novel chemical sensor for formaldehyde. Journal of Physical Chemistry B. 2006, 110(37): 18267~18271.
    26郭淼,方向生,糜裕宏,张孝彬,陈裕泉.氯化铜掺杂的多壁碳纳米管对甲醛的气敏响应研究.传感技术学报. 2006, 19(4): 953~956.
    27 S. Hrapovic, E. Majid, Y. L. Liu, K. B. Male, J. H. T. Luong. Metallic Nanoparticle-Carbon Nanotube Composites for Electrochemical Determination Explosive Nitroaromatic Compounds. Analytical Chemistry. 2006, 78(15): 5504~5512.
    28 S. Hrapovic, Y. L. Liu, K.B. Male, J. H. T. Luong. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes. Analytical Chemistry. 2004, 76(4): 1083~1088.
    29杭世平.空气中有害物质的测定方法(第二版)[M].北京:人民卫生出版社. 1986, 335~336.
    30 Y. Liu, S. Wu, H.X. Ju, L. Xu. Amperometric Glucose Biosensing of Gold Nanoparticles and Carbon Nanotube Multilayer Membranes. Electroanalysis. 2007, 19(9): 986~992.
    31 A. J. Bard, L. R. Faulkner. Electrochemical Methods. New York: John Wiley & Sons. 1980: 540.
    32 K. Nishimura, R. Ohnishi, K. Kunimatsu, M. Enyo. Surface Species Produced on Pt Electrodes during HCHO Oxidation in Sulfuric Acid Solution as Studied by Infrared Reflection- absorption Spectroscopy (IRRAS) and Differential Electrochemical Mass Spectroscopy (DEMS). Journal of Electroanalytical Chemistry. 1989, 258(2): 219~225.
    1龙惠珍,陆贻通.世界有机磷农药急性中毒概况.有机磷农药译丛. 1997, 19(3): 54~56.
    2何颖,张涛,康天放.蔬菜中有机磷农药残留的分光光度法快速检测.环境化学. 2005, 24(6): 711~713.
    3尉志文,克明,王玉瑾等.薄层色谱扫描法和气相色谱/质谱法快速诊断有机磷农药中毒.中国药物与临床. 2006, 6(8): 594~596.
    4杨亚平,林森.气相色谱法测定蔬菜中有机磷农药的残留量.化学分析计量. 2003, 12(5): 23~24.
    5高如瑜,王笛,杨华铮等.手性有机磷农药对映体在纤维素类手性固定相上的分离.农药学学报. 1999, 1(1): 87~89.
    6 A. Cappiello, G. Famiglini, P. Palma, F.Mangani. Trace Level Determination of Organophosphorus Pesticides in Water with Tthe New Direct-Electron Ionization LC/MS Interface. Analytical Chemistry. 2002, 74(14): 3547~3554.
    7王建,贾斌,林秋萍等.气相色谱-质谱联用法确证蔬菜中多种有机磷农药残留.理化检验-化学分册. 2006, 42(7): 533~535.
    8 Tena M.T., Rios A., Valcarcel M., et al. Supercritical fluid extraction of organophosphorus pesticides from orange samples: effect of solid additives on recovery. Chromatographia A. 1997, 46(9/10): 524~528.
    9康天放,赵华,张雁,章辛夷.用植物酯酶法快速检测蔬菜中的有机磷农药.北京工业大学学报. 2006, 32 (12): 1057~1061。
    10 R.P. Deo, J. Wang, I. Block, A. Mulchandani, K.A. Joshi, M. Trojanowicz, F. Scholz, W. Chen, Y.H. Lin. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Analytica Chimica Acta. 2005, 530(2): 185~189.
    11刑少,刘洁生.免疫传感器在食品污染检测中的应用.食品科学. 1999, 8: 6~8.
    12康天放,何颖,金钰等.蔬菜中有机磷农药残留的生物传感器法检测.环境科学与技术. 2005, 28(5): 37~40.
    13高慧丽,康天放,王小庆等.溶胶-凝胶法固定乙酰胆碱酯酶生物传感器测定有机磷农药.环境化学. 2005, 24(6): 707~710.
    14康天放,刘润,鲁理平等.再生丝素固定乙酰胆碱酯酶生物传感器.应用化学. 2006, 23(10): 1099~1103.
    15 C.Y. Li, C.F. Wang, Y. Ma, W. Bao, S.H. Hu. A novel amperometric sensor and chromatographic detector for determination of parathion. Analytical Bioanalytical Chemistry. 2005, 381(5): 1049~1055.
    16 Y. H. Lin, F. Lu, J. Wang. Disposable Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Agents. Electroanalysis. 2004, 16(1-2): 145~149.
    17 G.. D. Liu, Y. H. Lin. Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry. 2005, 77(18): 5894~5901.
    18 J. M. Zen, J. J. Jou, A. S. Kumar. A Sensitive Voltammetric Method for the Determination ofParathion Insecticide. Analytica Chimica Acta. 1999, 396(1) : 39~44.
    19 A. N. Shipway, M. Lahav, I. Willner, Nanostructured Gold Colloid Electrodes. Advanced Materials. 2000, 12(13): 993~998.
    20 Barisci JN , Wallace GG, Banghman RH , et al. Electrochemical studies of single-wall carbon nanotubes in aqueous solutions. Journal of Electroanalytical Chemistry. 2000, 488(2): 92~98.
    21 Derycke V , Martel R , Appenzeller J , et al . Carbon nanotube inter- and intramolecular logic gates. Nano Letters. 2001, 1(9): 453~456.
    22 L.Q. Jiang, L. Gao. Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles. Carbon. 2003, 41(15): 2923~2929.
    23 F.L. Qu, M.H. Yang, G.L. Shen , R.Q. Yu .Electrochemical Biosensing Utilizing Synergic Action of Carbon Nanotubes and Platinum Nanowires Prepared by Template Synthesis. Biosensors and Bioelectronics. 2007, 22(8): 1749~1755.
    24 M.H. Yang, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials. 2006, 27(2): 246~255.
    25 K.B. Male, S. Hrapovic, Y.L. Liu, D.S. Wang, J.H.T. Luong. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Analytica Chimica Acta. 2004, 516(1): 35~41.
    26 S. Hrapovic, E. Majid, Y.L. Liu, K. Male, J.H.T. Luong. Metallic nanoparticle-carbon nanotube composites for electrochemical determination explosive nitroaromatic compounds. Analytical Chemistry. 2006, 78(15): 5504~5512.
    27 X.H. Kang, Z.B. Mai, X.Y. Zou, P.X. Cai, J.Y. Mo. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Analytical Biochemistry. 2007, 363(1): 143~150.
    28 M.H. Yang, J.H. Jiang, Y.H. Yang, X.H. Chen, G.L. Shen, R.Q. Yu. Carbon Nanotube/Cobalt Hexacyanoferrate Nanoparticle-Biopolymer System for the Fabrication of Biosensors. Biosensors and Bioelectronics. 2006, 21(10): 1791~1797.
    29 G.Y. Gao, D.J. Guo, C. Wang, H.L. Li. Electrocrystallized Ag Nanoparticle on Functional Multi-Walled Carbon Nanotube Surfaces for Hydrazine Oxidation. Electrochemistry Communications. 2007, 9(7): 1582~1586.
    30 G.Y. Gao, D.J. Guo, H.L. Li. Electrocatalytic Oxidation of Formaldehyde on Palladium Nanoparticles Supported on Multi-Walled Carbon Nanotubes. Journal of Power Sources. 2006, 162(2): 1094~1098.
    31 M.N. Zhang, L.Su, L.Q. Mao. Surfactant functionalization of carbon nanotubes (CNTSs) for layer-by-layer assembling of CNTS multi-layer films and fabrication of gold nanoparticle/CNTS nanohybrid. Carbon. 2006, 44(2): 276~283.
    32 B. Kim, W.M. Sigmund. Functionalized Multiwall Carbon Nanotube/Gold Nanoparticle Composites. Langmuir. 2004, 20(19): 8239~8242.
    33 Y. Liu, S. Wu, H.X. Ju, L. Xu. Amperometric Glucose Biosensing of Gold Nanoparticles and Carbon Nanotube Multilayer Membranes. Electroanalysis. 2007, 19(9): 986~992.
    34 J. Manso, M.L. Mena, P. Yánez-Sedeno, J. Pingarrón. Electrochemical biosensors based on colloidal gold–carbon nanotubes composite electrodes. Journal of Electroanalytical Chemistry. 2007, 603(1): 1~7.
    35 S.H. Lim, J. Wei, J.Y. Lin. Electrochemical genosensing properties of gold nanoparticle–carbon nanotube hybrid. Chemical Physics Letters. 2004, 400(4-6): 578~582.
    36 A.J. Bard, L.R. Faulkner. Electrochemical Methods-Fundamentals and Applications. Wiley, New York 2000.
    1 M.G. Almeida, C.M. Silveir, J.J.G. Moura. Biosensing Nitrite Using the System Nitrite Redutase/Nafion/Methyl Viologen-A Voltammetric Study. Biosensors and Bioelectronics. 2007, 22(11): 2485~2492.
    2 P. Nagaraja, M.S.H. Kumar, K.S. Rangappa, A.S. Suresh. A Rapid Spectrophotometric Determination of Nitrite in Polluted Water. Asian Journal of Chemistry. 1999, 11(2): 509~514.
    3 R. A. Al-Okab, A. A. Syed. Novel Reactions for Simple and Sensitive Spectrophotometric Determination of Nitrite. Talanta. 2007, 72(4): 1239~1247.
    4 P. Niedzielski, I. Kurzyca, J. Siepak. A New Tool for Inorganic Nitrogen Speciation Study: Simultaneous Determination of Ammonium Ion Nitrite and Nitrate by Ion Chromatography with Post-Column Ammonium Derivatization by Nessler Reagent and Diode-Array Detection in Rain Water Samples. Analytica Chimica Acta. 2006, 577 (2): 220~224.
    5 A. Salimi, R. Hallaj, H. Mamkhezri, S.M.T. Hosaini. Electrochemical Properties and Electrocatalytic Activity of FAD Immobilized onto Cobalt Oxide Nanoparticles: Application to Nitrite Detection. Journal of Electroanalytical Chemistry. 2008, 619–620: 31~38.
    6 X. W. Chen, W. Fang, Z. L. Chen. An Electropolymerized Nile Blue Sensing Film-Based Nitrite Sensor and Application in Food Analysis. Analytica Chimica Acta. 2008, 623(2): 213~220.
    7 L. P. Lu, S. Q. Wang, T. F. Kang, W. W. Xu. Synergetic Effect of Pd–Fe Nanoclusters: Electrocatalysis of Nitrite Ooxidation. Microchim Acta. 2008, 162(1-2): 81~85.
    8 Z. H. Wen, T. F. Kang. Determination of Nitrite using Sensors Based on Nickel Phthalocyanine Polymer Modified Electrodes. Talanta. 2004, 62(2): 351~355.
    9 A. L. Sousa, W. J. R. Santos, R. C. S. Luz, F. S. Damos, L. T. Kubota, A. A. Tanaka, S. M. C. N. Tanaka. Amperometric Sensor for Nitrite Based on Copper Tetrasulphonated Phthalocyanine Immobilized with Poly-l-Lysine Film. Talanta. 2008, 75(2): 333~338.
    10 A. Y. Chamsi, A. G. Fogg. Oxidative Flow-Injection Amperometric Determination of Nitrite at an Electrochemically Pre-treated Glassy-Carbon Electrode. Analyst. 1988, 113(11): 1723~1727.
    11 G. Y. Zhao, C. L. Xu, H. L. Li. Pt-Ru Nanowire Arrayed Electrodes for Nitrite Detection. Materials Letters. 2008, 62(10-11): 1663~1665.
    12 R. Geng, G. H. Zhao, M. C. Liu, M. F. Li. A Sandwich Structured SiO2/Cytochrome c/SiO2 on a Boron-Doped Diamond Film Electrode as an Electrochemical Nitrite Biosensor. Biomaterials. 2008, 29(18): 2794~2801.
    13 J. Li, X. Q. Lin. Electrocatalytic Reduction of Nitrite at Polypyrrole Nanowire–Platinum Nanocluster Modified Glassy Carbon Electrode. Microchemical Journal. 2007, 87(1): 41~46.
    14胡晓歌,王铁,程文龙,汪尔康,董绍俊.金属纳米线的合成与组装.分析化学. 2004, 32(9): 1240~1245.
    15 Y. Liu, S. Wu, H. X. Ju, L. Xu. Amperometric Glucose Biosensing of Gold Nanoparticles and Carbon Nanotube Multilayer Membranes. Electroanalysis. 2007, 19(9): 986~992.
    16 J. Manso, M. L. Mena, P. Yá?ez-Sede?o, J. Pingarrón. Electrochemical Biosensors Based on Colloidal Gold–Carbon Nanotubes Composite Electrodes. Journal ElectroanalyticalChemistry. 2007, 603(1): 1~7.
    17 S.H. Lim, J. Wei, J.Y. Lin. Electrochemical Genosensing Properties of Gold Nanoparticle–Carbon Nanotube Hybrid. Chemical Physics Letters. 2004, 400(4-6): 578~582.
    18 O. Shulga, J. R. Kirchhoff. An Acetylcholinesterase Enzyme Electrode Stabilized by an Electrodeposited Gold Nanoparticle Layer. Electrochemistry Communication. 2007, 9(5): 935~940.
    19 O. Domínguez-Renedo, L. Ruiz-Espelt, N. García-Astorgano, M. J. Arcos-Martínez. Electrochemical Determination of Chromium (VI) using Metallic Nanoparticle-Modified Carbon Screen-Printed Electrodes. Talanta. 2008, 76(4): 854~858.
    20 J. T. Sheu, C. C. Chen, P. C. Huang, M. L. Hsu. Selective Deposition of Gold Nanoparticles on SiO2/Si Nanowire. Microelectronic Engineering. 2005, 78–79(Sp. Iss. SI): 294~299.
    21 B. K. Jena, C. R. Raj. Highly Sensitive and Selective Electrochemical Detection of Sub-ppb Level Chromium (VI) using Nano-Sized Gold Particle.Talanta. 2008, 76(1): 161~165.
    22 A. Sivanesan, P. Kannan, S. Abraham John. Electrocatalytic Oxidation of Ascorbic Acid using a Single Layer of Gold Nanoparticles Immobilized on 1, 6-hexanedithiol Modified Gold Electrode. Electrochimica Acta. 2007, 52(28): 8118~8124.
    23 L. Agui, J. Manso, P. Yanez-Sedeno, J. M. Pingarron. Amperometric Biosensor for Hypoxanthine Based on Immobilized Xanthine Oxidase on Nanocrystal Gold–Carbon Paste Electrodes. Sensors and Actuators. B. 2006, 113(1): 272~280.
    24 E. V. Milsom, J. Novak, M. Oyama, F. Marken. Electrocatalytic Oxidation of Nitric Oxide at TiO2–Au Nanocomposite Film Electrodes. Electrochemistry Communications. 2007, 9(3): 436~442.
    25 X. Huang, Y. X. Li, Y. L. Chen, L Wang. Electrochemical Determination of Nitrite and Iodate by Use of Gold Nanoparticles/Poly(3-Methylthiophene) Composites Coated Glassy Carbon Electrode. Sensors and Actuators. B. 2008, 134(2): 780~786.
    26 F. Xiao, Z. R. Mo, F. Q. Zhao, B. Z. Zeng, Ultrasonic-Electrodeposition of Gold–Platinum Alloy Nanoparticles on Multi-Walled Carbon Nanotubes–Ionic Liquid Composite Film and Their Electrocatalysis Towards the Oxidation of Nitrite. Electrochemistry Communications. 2008, 10(11): 1740~1743.
    27 G. Maduraiveeran, R. Ramaraj. A Facile Electrochemical Sensor Designed From Gold Nanoparticles Embedded in Three-Dimensional Sol–Gel Network for Concurrent Detection of Toxic Chemicals. Electrochemistry Communications. 2007, 9(8): 2051~2055.
    28 K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan. Preparation and Characterization of Au Colloid Monolayers. Analytic Chemistry. 1995, 67(4): 735~743.
    29 M. A. Rahman, M. S. Won, P. H. Wei., Y. B. Shim. Electrochemical Detection of ClO3-, BrO3-, and IO3- at a Phosphomolybdic Acid Linked 3-Aminopropyl- Trimethoxysilane Modified Electrode. Electroanalysis. 2006, 18(10): 993~1000.
    30 L. Wang, E. K. Wang. A Novel Hydrogen Peroxide Sensor Based on Horseradish Peroxidase Immobilized on Colloidal Au Modified ITO Electrode. Electrochemistry Communications. 2004, 6(2): 225~229.
    31 J.F. Liu., L.G. Zhang, N. Gu, Q.Y. Hong, J.Y. Ren, Y.P. Wu, P.S. Mao, D.Y. Chen, Z.H. Lu. Micro-Patterning of 3-Aminopropyltrimethoxysilane Self-Assembled Monolayers with Colloidal Gold. Supramolecular Science. 1998, 5(5-6): 705~708.
    32中华人民共和国国家标准.水质亚硝酸盐氮的测定(分光光度法). UDC 614.777: 543. 42. GB7493~87.
    1何颖,张涛,康天放.蔬菜中有机磷农药残留的分光光度法快速检测.环境化学. 2005, 24(6): 711~713.
    2王忠东,闫铁,王宝辉.土壤中有机农药荧光检测研究.光谱学与光谱分析. 2009, 29(2): 479~482.
    3 A. Cappiello, G. Famiglini, P. Palma, F.Mangani. Trace Level Determination of Organophosphorus Pesticides in Water with I New Direct-Electron Ionization LC/MS Interface. Analytical Chemistry. 2002, 74(14): 3547~3554.
    4 S. Lacorte, D. Barcelo. Determination of Parts Per Trillion Levels of Organophosphorus Pesticides in Groundwater by Automated On-Line Liquid-Solid Extraction Followed by Liquid Chromatography/atmospheric Pressure Chemical Ionization Mass Spectrometry using Positive and Negative Ion Modes of Operation. Analytical Chemistry. 1996, 68(15): 2464~2470.
    5 J. M. Zen, J. J. Jou, A. S. Kumar. A Sensitive Voltammetric Method for the Determination of Parathion Insecticide. Analytica Chimica Acta. 1999, 396(1): 39~44.
    6 G. D. Liu, Y. H. Lin Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry. 2005, 77(18): 5894~5901.
    7 C. Y. Li, C. F. Wang, Y. Ma, W. Bao, S. H. Hu. A Novel Amperometric Sensor and Chromatographic Detector for Determination of Parathion. Analytical Bioanalytical Chemistry. 2005, 381(5): 1049~1055.
    8 E. V. Gogol, G. A. Evtugyn, J. L. Marty, H.C. Budnikov , V.G. Winter. Amperometric Biosensors Based on Nafion Coated Screen-Printed Electrodes for the Determination of Cholinesterase Inhibitors. Talanta. 2000, 53(2): 379~389.
    9 Y.H. Qu, H. Min, Y.Y. Wei, F. Xiao, G.Y. Shi,X.H. Li, L.T. Jin. Au–TiO2/Chit Modified Sensor for Electrochemical Detection of Trace Organophosphates Insecticides. Talanta. 2008, 76 (4): 758~762.
    10 A. Mulchandani, P. Mulchandani, W. Chen. Amperometric Thick-Film Strip Electrodes for Monitoring Organophosphate Nerve Agents Based on Immobilized Organophosphorus Hydrolase. Analytical Chemistry. 1999, 71(11) : 2246~2249.
    11 M. J. Schoning, R.Krause, K. Block, M. Musahmeh, A. Mulchandani, J. Wang. A Dual Amperometric/Potentiometric FIA-Based Biosensor for the Distinctive Detection of Organophosphorus Pesticides. Sensors and Actuators B. 2003, 95(1-3): 291~296.
    12 R. P. Deo, J. Wang, I. Block, A. Mulchandani, K. A. Joshi, M. Trojanowicz, F. Scholz, W. Chen, Y. H. Lin. Determination of Organophosphate Pesticides at a Carbon Nanotube/Organophosphorus Hydrolase Electrochemical Biosensor. Analytica Chimica Acta. 2005, 530(2): 185~189.
    13 Lin Y H, Lu F, Wang J. Disposable Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Agents. Electroanalysis. 2004, 16(1-2): 145~149.
    14高慧丽,康天放,王小庆,鲁理平.溶胶-凝胶法固定乙酰胆碱酯酶生物传感器测定有机磷农药.环境化学. 2005, 24(6): 707~710.
    15康天放,刘润,鲁理平,程水源.再生丝素固定乙酰胆碱酯酶生物传感器.应用化学.2006, 23(10): 1099~1103.
    16 N. Y. Liu, X. P. Cai, Y. Lei, Q. Zhang, M. B. Chan-Park, C.M. Li, W. Chen, A. Mulchandani. Single-Walled Carbon Nanotube Based Real-Time Organophosphate Detector. Electroanalysis. 2007, 19(5): 616~619.
    17 K. A. Joshi, J. Tang, R. Haddon,J. Wang, W. Chen, A. Mulchandani. A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode. Electroanalysis. 2005, 17(1): 54~58.
    18李春涯,王长发,王成行,胡胜水.分子印迹电化学传感器的研究进展.分析科学学报. 2006, 22(5): 605~610.
    19 S. Marx, A. Zaltzman, I. Turyan. Parathion Sensor Based on Molecularly Imprinted Sol-Gel Films. Analytical Chemistry. 2004, 76(1): 120~126.
    20 C. Y. Li, C. F. Wang, B. Guan, Y. Y. Zhang, S. S. Hu. Electrochemical Sensor for the Determination of Parathion Based on p-tert-Butylcalix[6]arene- 1,4-crown-4 Sol–Gel Film and Its Characterization by Electrochemical Methods. Sensors and Actuators B. 2005, 107(1): 411~417.
    21 C. Y. Li, C. F. Wang, C. H. Wang, S. S. Hu. Construction of a Aovel Molecularly Imprinted Sensor for the Determination of O,O-dimethyl-(2,4-dichlorophenoxyacetoxyl) (3′-nitrophenyl)methinephosphonate. Analytica Chimica Acta. 2005, 545(2): 122~128.
    22 C. Y. Li, C. F. Wang, C. H. Wang, S. S. Hu. Development of a Parathion Sensor Based on Molecularly Imprinted Nano-TiO2 Self-Assembled Film Electrode. Sensors and Actuators B. 2006, 117(1): 166~171.
    23 X.Y. Liu, C. Y. Li, C. F. Wang , T. Li, S. S.Hu. The Preparation of Molecularly Imprinted Poly(o-phenylenediamine) Membranes for the Specific O,O-Dimethyl-Alpha-Hydroxylphenyl Phosphonate Sensor and its Characterization by AC Impedance and Cyclic Voltammetry. Journal of Applied Polymer Science. 2006, 101(4): 2222~2227.
    24曹丙庆,潘勇,赵建军,黄启斌.对-叔丁基杯[4]芳烃衍生物自组装分子在声表面波传感器中检测有机磷.应用化学. 2008, 25(10): 1176~1180.
    25申中兰,杨俊,朱晓兰,高芸,苏庆德.甲胺磷分子印迹聚合物的结合机理及其分子识别特性的光谱学研究.光谱学与光谱分析. 2009, 29(1): 78~81.
    26 I. Carelli, I.Chiarotto, A.Curulli, G. Palleschi. Electropolymerization of Hydroxybenzene and Aminobenzene Isomers on Platinum Electrodes to Assemble Interference-Free Electrochemical Biosensors. Electrochimica Acta. 1996, 41(11-12): 1793~1800.
    27 H. P. Liao, Z. H. Zhang, H. Li, L.H. Nie, S.Z. Yao Preparation of the Molecularly Imprinted Polymers-Based Capacitive Sensor Specific for Tegafur and Its Characterization by Electrochemical Impedance and Piezoelectric Quartz Crystal Microbalance. Electrochimca Acta. 2004, 49(24): 4101~4107.
    28 Z. L. Cheng, E. Wang, X. R. Yang. Capacitive Detection of Glucose using Molecularly Imprinted Polymers. Biosensors and Bioelectronics. 2001, 16(3): 179~185.
    29 H. H. Weetall, K. R. Rogers. Preparation and Characterization of Molecularly Imprinted Electropolymerized Carbon Electrodes. Talanta. 2004, 62(2): 329~335.
    30 L. I. Andersson, C. F. Mandenius, K. Mosbach. Studies on Guest Selective Molecular Recognition on an Octadecyl Silylated Silicon Surface using Ellipsometry. Tetrahedron Letters. 1988, 29(42): 5437~5440.
    31李红,梁汝萍.基于纳米自组装技术的功能化溶胶-凝胶过氧化氢生物传感器.分析试验室. 2009, 28(1): 5~8.
    32牛凌梅,王娜,李念兵,康维钧. 2,3-二巯基乙二酸自组装膜修饰电极测定对苯二酚.分析试验室. 2009, 28(1): 17~20.
    33刘志航,宦双燕,沈国励,俞汝勤.以分子印迹电聚合膜为仿生受体检测辛可宁.高等学校化学学报. 2005, 26(6): 1049~1051.
    1 G.C. Brown. NO Says Yes to Mitochondria. Science. 2003, 299(5608): 834~838.
    2 J.J. Burmeister, F. Pomerleau, M. Palmer, B.K. Day, P. Huettl, G.A.Gerhardt. Improved Ceramic-Based Multisite Microelectrode for Rapid Measurements of L-glutamate in the CNS. Journal of Neuroscience Methods. 2002, 119(2): 163~171.
    3 Z. Daniol, D.E. Koshland. The Molecule of the Year. Science. 1992, 258(5090): 1861~1861.
    4 F.A. Carvalho, J. Martins-Silva, C. Saldanha. Amperometric Measurements of Nitric Oxide in Erythrocytes. Biosensors Bioelectronics. 2004, 20(3): 505~508.
    5 P.M. Bauer, D. Fulton, Y.C. Boo, G.P. Sorescu, B.E. Kemp, H. Jo, W.C. Sessa. Compensatory Phosphorylation and Protein–Protein Interactions Revealed by Loss of Function and Gain of Function Mutants of Multiple-Serine Phosphorylation Sites in Endothelial Nitric-Oxide Synthase. Journal of Biological Chemistry. 2003, 278(17): 14841~14849.
    6 S. Dikalov, B. Fink. ESR Techniques for the Detection of Nitric Oxide in Vivo and in Tissues. Methods in Enzymology. 2005, 396 : 597~610.
    7 G. Milczarek. Spontaneous Formation of an Electroactive Co-Polymeric Film Derived from Nordihydroguaiaretic Acid and 4,4’-Diaminobibenzyl. Electrochemistry Communication. 2007, 9(7): 1761~1765.
    8 X.Chen, H.Y. Long, W.L. Wu, Z.S. Yang.Direct Electrochemical Behavior of Cytochrome c on Sodium Dodecyl Sulfate Modified Electrode and its Application to Nitric Oxide Biosensor. Thin Solid Films. 2009, 517(8): 2787~2791.
    9 J.F. Silva, S. Griveau, C. Richard, J.H. Zagal, F. Bedioui. Glassy Carbon Electrodes Modified with Single Walled Carbon Nanotubes and Cobalt Phthalocyanine and Nickel Tetrasulfonated Phthalocyanine: Highly Stable New Hybrids with Enhanced Electrocatalytic Performances. Electrochemistry Communications. 2007, 9(7): 1629~1634.
    10 F.Y. Du, W.H. Huang, Y.X. Shi, Z.L. Wang, J.K. Cheng. Real-Time Monitoring of NO Release from Single Cells using Carbon Fiber Microdisk Electrodes Modified with Single-Walled Carbon Nanotubes. Biosensors and Bioelectronics. 2008, 24(3): 415421.
    11 D.Y. Zheng, C.G. Hu, Y.F. Peng, W.Q. Yue, S.S. Hu. Noncovalently Functionalized Water-Soluble Multiwall-Nanotubes through Azocarmine B and Their Application in Nnitric Oxide Sensor. Electrochemistry Communications. 2008, 10(1): 90~94.
    12 J.M. Gong, L.Y.Wang, K. Zhao, D.D. Song, L.Z. Zhang. Bifunctional Sensor of Nitric Oxide and Oxygen Based on Hematite Nanotubes Embedded in Chitosan Matrix. Electrochemistry Communications. 2008, 10(9): 1222~1225.
    13 W.W. Tu, J.P. Lei, H.X. Ju. Noncovalent Nanoassembly of Porphyrin on Single-Walled Carbon Nanotubes for Electrocatalytic Reduction of Nitric Oxide and Oxygen. Electrochemistry Communications. 2008, 10(5): 766~769.
    14 E.V. Milsom, J. Novak, M. Oyama, F. Marken. Electrocatalytic Oxidation of Nitric Oxide at TiO2–Au Nanocomposite Film Electrodes. Electrochemistry Communications. 2007, 9(3): 436~442.
    15 Y.Z. Wang, S.S. Hu. Nitric Oxide Sensor Based on Poly (p-phenylenevinylene) Derivative Modified Electrode and its Application in Rat Heart. Bioelectrochemistry. 2009, 74(2): 301~305.
    16 A. Palaniappan, S. Moochhala, F. E.H. Tay, N. C.L. Phua, X.D. Su. Selective and Enhanced Nitric Oxide Detection using Hemoprotein/Silica Hybrids. Sensors and Actuators B: Chemical. 2008, 133(1): 241~243.
    17 Z.M. Guo, J.Chen, H. Liu, C.S. Cha. Direct Electrochemistry of Hemoglobin and Myoglobin at Didodecyldimethylammonium Bromide-Modified Powder Microelectrode and Aapplication for Electrochemical Detection of Nitric Oxide. Analytica Chimica Acta. 2008, 607(1): 30~36.
    18 T.-F. Kang, G.-L. Shen, R.-Q. Yu. Permselectivity of Neurotransmitters at Overoxidized Polypyrrole-Film-Coated Glassy Carbon Electrodes. Talanta. 1996, 43(11): 2007~2013.
    19 K.C. Ho, J.Y. Liao, C.C. Yang. A Kinetic Study for Electrooxidation of NO Gas at a Pt/Membrane Electrode-Application to Amperometric NO Sensor. Sensors and Actuators B:Chemical. 2005, 108 (1-2): 820~827.
    20 T.-F. Kang, G.-L. Shen, R.-Q. Yu. Voltammetric Behaviour of Dopamine at Nichel Phthalocyanine Polymer Modified Electrodes and Analytical Applications. Analytica Chimica Acta. 1997, 354(1-3): 343~349.
    21 M.J. Janik, B.B. Bardin, R.J. Davis, M. Neurock. A Quantum Chemical Study of the Decomposition of Keggin-Structured Heteropolyacids. Journal of Physical Chemistry B. 2006, 110(9) 20486–20490.
    22 A. Molnar, C. Keresszegi, B. Torok. Heteropoly Acids Immobilized into a Silica Matrix: Characterization and Catalytic Applications. Applied Catalysis A: General. 1999, 189(2): 217~224.
    23 I.K. Song, M.S Kaba, M.A. Barteau. Nanoscale Investigation of Mixed Arrays of Keggin-Type and Wells-Dawson-Type Heteropolyacids (HPAs) by Scanning Tunneling Microscopy (STM). Langmuir. 2002, 18(6): 2358~2362.
    24 R.S. Drago, J.A. Dias, T.O. Maier. An Acidity Scale for Bronsted Acids Including H3PW12O40. Journal of the American Chemical Society. 1997, 119(33): 7702~7710.
    25 B.B. Bardin, S.V. Bordawekar, M. Neurock, R.J. Davis. Acidity of Keggin-Type Heteropolycompounds Evaluated by Catalytic Probe Reactions, Sorption Microcalorimetry, and Density Functional Quantum Chemical Calculations. Journal of Physical Chemistry B. 1998, 102(52): 10817~10825.
    26 M. Yamada, I. Honma. Heteropolyacid-Encapsulated Self-Assembled Materials for Anhydrous Proton-Conducting Electrolytes. Journal of Physical Chemistry B. 2006, 110(41): 20486~20490.
    27 I. Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, S. Nomura. Proton Conducting Electrolyte Membranes Synthesized through Amphiphilic Organic/Inorganic Hybrid Macromolecules. Electrochemistry. 2002, 70(12): 920~923.
    28 G. Bidan, E.M. Genies, M. Lapkowski. Modification of Polyaniline Films with Heteropolyanions: Electrcatalytic Reduction of Oxygen and Protons. Journal of the Chemical Society. Chemical Comumunications. 1988, (8): 533~535.
    29 G. Bidan, E.M. Genies, M. Lapkowski. One-Step Electrochemical Immobilization of Keggin-Type Heteropolyanions in Poly(3-Methylthiophene) Film at an Electrode Surface: Electrochemical and Electrocatalytic Properties. Synthetic Metals. 1989, 31(3): 327~334.
    30 W.L. Xu, C.P. Liu, W. Xing, T.H. Lu. A Novel Hybrid Based on Carbon Nanotubes and Heteropolyanions as Effective Catalyst for Hydrogen Evolution. ElectrochemistryCommunications. 2007, 9(1): 180~184.
    31 P. Wang, Y.F. Li. Electrochemical and Electrocatalytic Properties of Polypyrrole Film Doped with Heteropolyanions. Journal of Electroanalytical Chemistry. 1996, 408(1-2): 77~81.
    32 M. A. Rahman, M.S. Won, P.H. Wei, Y.B. Shim. Electrochemical Detection of ClO3-, BrO3-, and IO3- at a Phosphomolybdic Acid Linked 3-Aminopropyl-Trimethoxysilane Modified Electrode. Electroanalysis. 2006, 18(10): 993~1000.
    33 Q.Y Tang, X.X. Luo, R.M. Wen. Construction of a Heteropolyanion-Containing Polypyrrole/Carbon Nanotube Modified Electrode and Its Electrocatalytic Property. Analytical Letters. 2005, 38(9): 1445~1456.
    34 E. Dempsey, A. Kennedy, N. Fay, T. McCormac. Investigations into Heteropolyanions as Electrocatalysts for the Oxidation of Adrenaline. Electroanalysis. 2003, 15(23-24): 1835~1842.
    35 S.Y Zhai, J.Y. Liu, J.G. Jiang, S.J. Dong. Multilayer Assemblies Consisting of Tri-Vanadium-Substituted Heteropolyanions and Its Electrocatalytic Properties. Electroanalysis. 2003, 15(14): 1165~1170.
    36 P. Wang, X.P. Wang, X.Y, Jing, G.Y. Zhu. Sol–Gel-Derived, Polishable, 1:12-Phosphomolybdic Acid-Modified Ceramic-Carbon Electrode and Its Electrocatalytic Oxidation of Ascorbic Acid. Analytica Chimica Acta. 2000, 424(1): 51~56.
    37 C. Sun, J. Zhang. Fabrication and Electrochemical Behavior of Multilayer Films Containing 1:12 Phosphomolybdic Anions and Their Electrocatalytic Oxidation of Ascorbic Acid. Electrochimica Acta. 1998, 43(8): 943~950.
    38 B. Keita, K. Essadi, L. Nadjo, R. Contant, Y. Justum. Oxidation Kinetics of NADH by Heteropolyanions. Journal of Electroanalytical Chemistry. 1996, 404(2): 271~279.
    39 K. Essadi, B. Keita, L. Nadjo. Oxidation of NADH by Oxometalates. Journal of Electroanalytical Chemistry. 1994, 367(1-2): 275~278.
    40 A.H. Liu, E. Wang. Amperometric Detection of Catecholamines with Liquid Chromatography at a Polypyrrole-Phosphomolybdic Anion-Modified Electrode. Analytica Chimica Acta. 1994, 296(2): 171~180.
    41 X. j. Zhang, L. Cardosa, M. Broderick, H. Fein, I. R. Davis. Determination of nitric oxide using modified electrode. Electroanalysis. 2000, 12(1): 6~11.
    42奚旦立,孙裕生,刘秀英.环境监测(修订版).高等教育出版社. 1995: 185.
    43 K. Essadi, B. Keita, L. Nadjo, Oxidation of NADH by Oxometalates. Journal of Electroanalytical Chemistry. 1994, 367(1-2): 275~278.
    44 M. Sadakane, E. Steckhan. Electrochemical Properties of Polyoxometalates as Electrocatalysts. Chemical Reviews. 1998, 98(1): 219~237.
    45 G. Bidan, E.M. Genies, M. Lapkowski. Polypyrrole and Poly(N-methylpyrrole) Film Doped with Keggin-Type Hheteropolyanions: Preparation and Properties. Journal of Electroanalytical Chemistry. 1988, 251(2): 279~306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700