用户名: 密码: 验证码:
大气和星际化学中几种重要自由基反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用量子化学计算方法对与大气化学和星际化学有关的几种重要的自由基反应机理进行了系统的理论研究。通过计算给出反应各物种的几何结构和能量,并且详细讨论了反应机理,预测了可能生成的产物及其分布,结果可为大气化学与星际化学中重要的自由基-分子反应模型的建立奠定基础,并可为实验室研究以及在星际太空中新型分子的探测提供理论依据和支持。为治理大气和环境污染提供治理依据。论文主要研究内容有:
     1、利用量子化学方法研究了原子自由基N (4S, 2D)和NO2分子反应机理。研究表明,对于生成产物(O2 + N2)通道的过渡态的能量都比反应物能量低,是一个无势垒放热反应过程,因此N(4S, 2D)与NO2反应很容易形成O2和N2。本研究可以为消除大气污染物NO2提供新思路。
     2.对N(4S)自由基和NCO(X2Π)自由基反应机理进行了理论研究。从理论上与实验研究结果进行对比,验证并提出该反应的产物通道和产物分布。本研究可为消除NCO自由基提供新的理论方法。
     3、使用从头算量子化学方法和密度泛函理论研究了氧负离子自由基与N2O分子的反应机理。并且从动力学和热力学两方面分析反应的所有可能途径,从中给出了最佳反应通道。为治理N2O对大气的污染提供理论依据。
     4.详细研究了3C2 (a3Π)与O2 (X3Σ)分子反应。研究发现所有的反应通道都需要经过初始的无势垒缔合过程。研究结果可为大气化学与星际化学中重要的自由基-分子反应模型的建立奠定基础。
Radicals are involved in many chemical processes, including organic chemistry, interstellar chemistry, combustion chemistry, atmospheric chemistry, environmental chemistry, photochemistry, and organic chemistry. Due to the short lives of the radicals and the difficulty to obtain the pure species, the experimental research for their structures and reaction features is very difficult. Therefore, more and more attentions have been focused on their theoretical researches in recent years. The theoretical investigations on the reaction mechanisms of several important radical reactions related to atmosphere chemistry and interstellar chemistry were systematically carried out. Important information of potential energy surfaces such as structures and energies of intermediate isomers and transition states, possible reaction channels, reaction mechanisms and major products are obtained. The results obtained in the present thesis may lay a strong foundation for building important radical-molecule model in atmospheric chemistry and interstellar chemistry, and provide theoretical supports and warranty for future experimental study and detection of interstellar molecules in space. The main results are summarized as follows:
     1. The reaction of atomic radical N (4S, 2D) with NO2 was explored theoretically using density functional, coupled cluster, and M?ller–Plesset perturbation theory. Both singlet and triplet electronic state potential energy surfaces are calculated at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-311+G(d) and G3B3 levels of theory. On the triplet potential energy surface of this reaction, various possible reaction pathways, including the N-adduct-O-shift and four-center ring formation-decomposition reactions, are considered. The most favorable pathway should be the atomic radical N attacking the N-atom of NO2 firstly to form the adduct 1 NN(OO), followed by one of the NO bonds breaking to give intermediate 2 NNOO, and then leading to the major products P2 (O2 + N2). As efficient routes to the reduction of NO2 to form N2 and O2 are sought, both kinetic and thermodynamic considerations support the viability of this channel. On the singlet potential energy surface of this reaction, all the involved transition states for generation of (2NO) and (O2 + N2) lie much lower than the reactants. Thus, the novel reaction N + NO2 can proceed effectively even at low temperatures and it is expected to play a role in both atmospheric and interstellar processes. On the basis of the analysis of the kinetics of all pathways through which the reactions proceed, we expect that the competitive power of reaction pathways may vary with experimental conditions for the title reaction.
     2. The reaction of N (4S) radical with NCO (X2Π) radical has been studied theoretically using density functional theory and ab initio quantum chemistry method. The triplet electronic state [N2CO] potential energy surface are calculated at the G3B3 and CCSD(T)/aug-cc-pVDZ//B3LYP/6-311++G(d,p) levels of theory. The basic reaction paths suggested that, initial N2CO formation followed by dissociation to produce N2 and CO molecules. All the energies of the transition states and isomers in the pathway RP1 (R→1→TS1-P1→P1 (N2 + CO)) are lower than that of the reactants; the rate of this pathway should be very fast. Thus, the novel reaction N + NCO can proceed effectively even at low temperatures and it is expected to play a role in both atmospheric and interstellar processes. On the basis of the analysis of the kinetics of all pathways through which the reactions proceed, we expect that the competitive power of reaction pathways may vary with experimental conditions for this reaction.
     3. The reaction of O? anion with N2O has been studied theoretically using density functional theory and ab initio quantum chemistry method. The doublet electronic state potential energy surface are calculated at the G3B3//B3LYP level of theory. Since the isomer and transition state involved in the most favorable pathway are all lower than the reactants in energy, they are expected to be fast, as is confirmed by experiment. So these reactions may be of significance in atmospheric and combustion chemistry.
     4. The reaction of 3C2 (a3Π) radical with O2 (X3Σ) molecule has been studied theoretically using ab initio Quantum Chemistry method. Both singlet and triplet potential energy surfaces are calculated at the CCSD(T)//B3LYP and G3B3 levels of theory. The singlet potential energy surface shows 5 isomers, 8 transition states, 3 products and 5 pathways, and the triplet potential energy surface displays 5 isomers, 8 transition states, 3 product and 3 pathways. The major pathway is Path RP1 (1): R→1→2→3→P1 (2CO) on the singlet potential energy surface, it is shown that the most feasible pathway should be the O-atom of O2 attacking the C-atom of the 3C2 molecule first to form the adduct 1 CCOO, followed by the O-shift to give intermediate 2 CC(OO), and then to the major products P1 (2CO). Alternatively, 1 can be directly dissociated to P1 via transition state TS1-P1. And R→36→37→38→39→310→P* (CO + 3CO)→P1 (2CO) on the triplet potential energy surface with P1 expected to be the main product. It is an O-adduct-shift mechanism. The efficient triplet OCCO dissociation pathway is a curve crossing channel through the MECP to the singlet surface, and the production is two singlet 1CO molecules. On the basis of the analysis of the kinetics of all pathways through which the reactions proceed, we expect that the competitive power of reaction pathways may vary with experimental conditions for the 3C2 (a3Π) + O2 (X3Σ) reaction. The reaction heats of formation calculated are in good agreement with that obtained experimentally. The results obtained in the present thesis may lay a strong foundation for building important radical-molecule model in atmospheric chemistry and interstellar chemistry.
引文
[1] MONTZKA S A, BUTLER J H, MAYERS R C, et al. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion [J]. Science, 1996, 272(5266): 1318-1322.
    [2] REDEKER K R, WANG N Y, LOW J C, et al. Emissions of methyl halides and methane from rice paddies [J]. Science, 2000, 290(5493): 966-969.
    [3] FAN S M, JACOB D J. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols [J]. Nature, 1992, 359(6395): 522-524.
    [4] MCELROY M B, SALAWITCH R J, WOFSY S C, et al. Reductions of antarctic ozone due to synergistic interactions of chlorine and bromine [J]. Nature, 1986, 321(6072): 759-762.
    [5] MCCONNELL J C, HENDERSON G S, BARRIE L, et al. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion [J]. Nature, 1992, 355(6356): 150-152.
    [6]刘静玲.环境污染与控制[M].化学工业出版社, 2001年: p282.
    [7]王明星.大气化学[M].气象出版社, 1999年: p467.
    [8]寒冬,寒之.臭氧层[M].中国环境科学出版, 2001年: p116.
    [9]秦大河.大气臭氧层和臭氧空洞[M].气象出版社, 2003: p187.
    [10] LIU K. Excitation functions of elementary chemical reactions: a direct link from crossed-beam dynamics to thermal kinetics? [J]. Int Reviews in Physical Chemistry, 2001, 20: 189-217.
    [11] GREEN S. Interstellar Chemistry: Exotic Molecules in Space [J]. Ann Rev Chem, 1981, 32: 103-138.
    [12] SLANGER T G, BLACK G. Photodissociative channels at 1216 ? for H2O, NH3, and CH4 [J]. J Chem Phys, 1982, 77: 2432-2437.
    [13] CRUTZEN P J, BRUHL C. Catalysis by NOx as the Main Cause of the Spring to Fall Stratospheric Ozone Decline in the Northern Hemisphere [J]. J Phys Chem A, 2001, 105: 1579-1582.
    [14] COHEN R C, WENNBERG P O, STIMPFLE R M, et al. Constraints from in situ measurements of the OH to HO2 ratio. [J]. Geophys Res Lett, 1994, 21: 2539-2542.
    [15] STIMPFLE R M, COHEN R C, BONNE G P, et al. The coupling of ClONO2, ClO, and NO2 in the lower stratosphere from in situ observations using the NASA ER-2 aircraft [J]. J Geophys Res, 1999, 104: 26705-26714.
    [16] LANZENDORF E J, HANISCO T F, STIMPFLE R M, et al. Establishing the Dependence of [HO2]/[OH] on Temperature, Halogen Loading, O3, and NOx Based on in Situ Measurements from the NASA ER-2 [J]. J Phys Chem A, 2001, 105: 1535-1542.
    [17] CRUTZEN P J, ANNU. The role of NO and NO, in the chemistry of the troposphere and stratosphere [J]. Rev Earth Planet Sei, 1979, 7: 443-472.
    [18] HAYNES B S. Reactions of ammonia and nitric oxide in the burnt gases of fuel-rich hydrocarbon-air flames [J]. Combust Flame, 1997, 28: 81-92.
    [19] HAYNES B S.The oxidation of hydrogen cyanide in fuel-rich flames [J]. Combust. Flame, 1997, 28: 113-121.
    [20] BROWNSWORD R A, HANCOCK G, HEARD D E. Kinetics of the N+NCO reaction at 298 K [J]. J Chem Soc, Faraday Trans, 1997, 93: 2473-2475.
    [21] GAO Y D, MACDONALD R G. Determination of the Rate Constants for theNCO(X2Π) + Cl(2P) and Cl(2P) + ClNCO(X1A') Reactions at 293 and 345 K [J]. J Phys Chem A, 2005, 109: 5388-5397.
    [22] WILLIAM F, COOPER J P, HERSHBERGER F. Product channel dynamics of the cyanato radical + nitric oxide reaction [J]. J Phys Chem, 1993, 97: 3283-3290.
    [23] JUANG D Y, LEE J S, WANG N S. Kinetics of the reactions of NCO with NO and NO2 [J]. Int J Chem Kinet, 1995, 27: 1111-1120.
    [24] GAO Y D, MACDONALD R G. Determination of the Rate Constant for the Radical-Radical Reaction NCO(X2Π) + CH3(X2A2") at 293 K and an Estimate of Possible Product Channels [J]. J Phys Chem A, 2006, 110: 977-989.
    [25] MACDONALD R G. Determination of the rate constant and product channels for the radical-radical reaction NCO(X 2Π) + C2H5(X 2A") at 293 K [J]. Phys Chem Chem Phys, 2007, 9: 4301-4314.
    [26] HU C G, ZHU Z Q, PEI L S, et al. Time-resolved kinetic studies on quenching of NCO (A 2Σ+) by alkanes and substituted methane molecules [J]. J Chem Phys, 2003, 118: 5408-5412.
    [27] PEI L S, HU C G, LIU Y Z, et al. Kinetic studies on reactions of NCO(X2Π) with alcohol molecules [J]. Chem Phys Lett, 2003, 381: 199-204.
    [28] WATEGAONKAR S, SETSER D W. The fluorine atom + isocyanic acid reaction system: a flow reactor source for isocyanate radical(X2Π.) and nitrogen monofluoride(X3Σ-) [J]. J Phys Chem A, 1993, 97: 10028-10034.
    [29] PARK J, HERSHBERGER J F. Kinetics of NCO + hydrocarbon reactions [J]. Chem Phys Lett, 1994, 218: 537-543.
    [30] BECHER K H, KURTENBACH R, SCHMIDT F, et al. Temperature and pressure dependence of the NCO + C2H2 reaction [J]. Chem Phys Lett, 1995, 235: 230-234.
    [31] BECHER K H, KURTENBACH R, WIESEN P. Kinetic Study of the NCO + C2H4 Reaction [J]. J Phys Chem, 1995, 99: 5986-5991.
    [32] GAYDON A G, WOLFHARD H G. Flames, Their Structure, Radiation, and Temperature [M]. Chapman & Hall: New York, 1979.
    [33] O'BRIEN S C, HEATH J R, CURL R F, et al. Photophysics of buckminsterfullerene and other carbon cluster ions [J]. J Chem Phys, 1988, 88: 220-230.
    [34] PERRY M D, RAFF L M. Theoretical Studies of Elementary Chemisorption Reactions on an Activated Diamond Ledge Surface [J]. J Phys Chem, 1994, 98: 4375-4381.
    [35] WELTNER J W, VAN ZEE R J. Carbon molecules, ions, and clusters [J]. Chem ReV, 1989, 89: 1713-1747.
    [36] KAISER R I. Experimental investigation on the formation of carbon-bearing molecules in the interstellar medium via neutral-neutral reactions [J]. Chem ReV, 2002, 102: 1309-1358.
    [37] CECCHI-PESTELLINI C, DALGARNO A. C2 absorption-line diagnostics of diffuse interstellar clouds [J]. Mon Not R Astron Soc, 2002, 331: L31-L34.
    [38] OKA T, THORBURN J A, MCCALL B J, et al. Observations of C3 in Translucent Sight Lines [J]. Astrophys J, 2003, 582: 823-829.
    [39] BAKKER E J, VAN-DISHOECK E F, WATERS L B F M, et al. Circumstellar C2, CN, and CH+ in the optical spectra of post-AGB stars [J]. Astron Astrophys, 1997, 323: 469-487.
    [40] A’HEARN M F, MILLIS R C, SCHLEICHER D O, et al. The ensemble properties of comets: Results from narrowband photometry of 85 comets, 1976-1992 [J]. Icarus, 1995, 118: 223-270.
    [41] BARONAVSKI A P, MCDONALD J R. Measurement of C2 concentrations in an oxygen-acetylene flame: An application of saturation spectroscopy [J]. JChem Phys, 1977, 66: 3300-3301.
    [42] RENNICK C J, SMITH J A, ASHFOLD M N R, et al. Cavity ring-down spectroscopy measurements of the concentrations of C2(X1Σg+) radicals in a DC arc jet reactor used for chemical vapour deposition of diamond films [J]. Chem Phys Lett, 2004, 383: 518-522.
    [43] GORDILLO-VAZQUEZ F J, ALBELLA J M. Distinct nonequilibrium plasma chemistry of C2 affecting the synthesis of nanodiamond thin films from C2H2 (1%)/H2/Ar-rich plasmas [J]. J Appl Phys, 2003, 94: 6085-6090.
    [44] MCKELLAR A, Some Topics in Molecular Astronomy [J]. J R Astron Soc Can, 1960, 54: 97-109.
    [45] BRAULT J W, DELBOUILLE L, GREVESSE N, et al. Infrared Bands of C2 in the Solar Photospheric Spectrum [J]. Astron Astrophys, 1982, 108: 201-205.
    [46] RABEAU J R, JOHN P, WILSON J I B. The role of C2 in nanocrystalline diamond growth [J]. J Appl Phys, 2004, 96: 6724-6732.
    [47] PáRAMO A, CANOSA A, LE PICARD S D, et al. An Experimental Study of the Intersystem Crossing and Reactions of C2(X1Σg+) and C2(a3Πu) with O2 and NO at Very Low Temperature (24?300 K) [J]. J Phys Chem A, 2006, 110: 3121-3122.
    [48] NICKOLAISEN S L, ROEHL C M, BLAKELEY L K, et al. Temperature Dependence of the HO2 + ClO Reaction. 1. Reaction Kinetics by Pulsed Photolysis-Ultraviolet Absorption and ab Initio Studies of the Potential Surface [J]. J Phys Chem A, 2000, 104: 308-319.
    [49] KUKUI A, BOSSOUTROT V, LAVERDET G, et al. Mechanism of the Reaction of CH3SO with NO2 in Relation to Atmospheric Oxidation of Dimethyl Sulfide: Experimental and Theoretical Study [J]. J Phys Chem A, 2000, 104: 935-946.
    [50] BOONE G D, AGYIN F, ROBICHAUD D J, et al. Rate Constants for the Reactions of Chlorine Atoms with Deuterated Methanes: Experiment and Theory [J]. J Phys Chem A, 2001, 105: 1456-1464.
    [51] HU W F, HE T J, CHEN D M, et al. Theoretical Study of the CH3NO2 Unimolecular Decomposition Potential Energy Surface [J]. J Phy Chem A, 2002, 106: 7294-7303.
    [52] DIBBLE T S. Computations on the ?-X transition of isoprene-OH-O2 peroxy radicals [J]. J ComPut Chem, 2004, 26: 836-845
    [53] IZGORODINA E I, COOTEM L, RADOM L. J Phys Chem A, Trends in R-X Bond Dissociation Energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): A Surprising Shortcoming of Density Functional Theory [J]. 2005, 109: 7558-7566.
    [54] RESENDE S M, DE ALMEIDA W B. Mechanism of the Atmospheric Reaction between the Radical CH3SCH2 and O2 [J]. J Phys Chem A, 1999, 103: 4191-4195.
    [55] BORN M OPPENHEIMER R. Zur Quantentheorie der Molekeln [J]. Ann Phys, 1927, 84: 457-484.
    [56]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社, 1982。
    [57]徐光宪,王德民.量子化学基本原理和从头算法[M].北京:科学出版社, 1985.
    [58] PARR R G, YANG W. Density-Functional Theory of Atoms and Molecules [M]. Oxford Univ Press: Oxford, 1989.
    [59] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Phys Rev, 1964, 136: B864-B871.
    [60] W KOHN, L J SHAM. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys Rev 1965, 140: A1133-1138.
    [61] SALAHUB D R, ZERNER M C. The Challenge of d and f Electrons [M]. ACS: Washington, D C, 1989.
    [62] LABANOWSKI J K, ANDZELM J M Density Functional Methods in Chemistry [M]. Springer-Verlag: New, York, 1991.
    [63] ZIEGLER T. Approximate density functional theory as a practical tool in molecular energetics and dynamics [J]. Chem Rev 1991, 91: 651-667.
    [64] BECKE A D. Density functional calculations of molecular bond energies [J]. J Chem Phys 1986, 84: 4524-4529.
    [65] BECKE A D. A new mixing of Hartree-Fock and local density-functional theories [J]. J Chem Phys, 1993, 98: 1372.
    [66] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys Rev, 1988, B 37: 785-789.
    [67] BECKE A D, Density-functional thermochemistry. III. The role of exact exchange [J]. J Chem Phys, 1993, 98: 5648-5652.
    [68] Perdew J P, Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Phys Rev B, 1986, 33: 8822-8824.
    [69] SALAHUB D R, FOURNIER R, MILYNARSKI P, et al. Density Functional Memthods in Chemistry [M]. Springer, New York, 1991.
    [70] DELLEY B. Density Functional Memthods in Chemistry [M]. Springer, New York, 1991, pp 101.
    [71] AMOS R D, MURRAY C W, HANDY N C. Structures and vibrational frequencies of FOOF and FONO using density functional theory [J]. Chem Phys Lett, 1993, 202: 489-494.
    [72] ANDZELM J, WIMMER E. Density functional Gaussian-type-orbital approach to molecular geometries, vibrations, and reaction energies [J]. JChem Phys, 1992, 96: 1280-1303.
    [73] ANDZELM J, SOSA C, EADES R A. Theoretical study of chemical reactions using density functional methods with nonlocal corrections [J]. J Phys Chem, 1993, 97: 4664-4669.
    [74] DIXON D A, CHRISTE K O. Nitrosyl hypofluorite: local density functional study of a problem case for theoretical methods [J]. J Phys Chem, 1992, 96: 1018-1021.
    [75] FIZGERALD G, ANDZELM J. Chemical applications of density functional theory: comparison to experiment, Hartree-Fock, and perturbation theory [J]. J Phys Chem, 1991, 95: 10531-10534.
    [76] FOURNIER R, DEPRISTO A E. Predicted bond energies in peroxides and disulfides by density functional methods [J]. J Chem Phys, 1992, 96: 1183.
    [77] GILL P M W, JOHNSON B G, POPLE J A. The performance of the Becke-Lee-Yang-Parr (BLYP) density functional theory with various basis sets [J]. Chem Phys Lett, 1992, 197: 499-505.
    [78] HANDY N C, MURRAY C W, AMOS R D. Study of methane, acetylene, ethene, and benzene using Kohn-Sham theory [J]. J Phys Chem, 1993, 97: 4392-4396.
    [79] HOLME T A, TRUONG T N. A test of density functional theory for dative bonding systems [J]. Chem Phys Lett, 1993, 215: 53-57.
    [80] JOHNSON B G, GILL P M W. The performance of a family of density functional methods [J]. J Chem Phys, 1993, 98: 5612-5626.
    [81] MURRAY C W, LAMING G J, HANDY N C, et al. Structure and vibrational frequencies of diazomethylene (CNN) and diazasilene (SiNN) using nonlocal density functional theory [J]. J Phys Chem, 1993, 97: 1868-1871.
    [82] MURRAY C W, LAMING G J, HANDY N C, et al. Kohn-Sham bond lengths and frequencies calculated with accurate quadrature and large basis sets [J].Chem Phys Lett, 1992, 199: 551-556.
    [83] LABANOWSKI J K, ANDZELM J W. Density Functional Memthods in Chemistry [M]. New. York: Springer Verlag, 1991.
    [84] SOSA C, ANDZELM J, ELKIN E, et al. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds [J]. J Phys Chem, 1992, 96: 6630-6636.
    [1] HEITLER W, LONDON F. Interaction Between Neutral Atoms and Homopolar H2 [J]. Z Für Phys A, 1927, 44: 455-472.
    [2] DAINTITH J. Oxford Dictionary of Chemistry [M]. New York: Oxford University Press, 2004.
    [3] HEHRE W J, RADOM L, SCHLEYER P V R, et al. Ab Initio Molecular Orbital Theory [M]. John Wiley &Sons, Inc., 1986
    [4] MCQUARRIE D A. Quantum Chemistry [M].University Science Books: Mill Vally CA 1983.
    [5]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社, 1982.
    [6]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985.
    [7] L?WDIN P O. Some current problems in theoretical chemical physics to be solved [J]. Int J Quant Chem, 1994, 51: 473-485.
    [8]唐有祺,当代化学前沿,北京:中国致公出版社, 1997.
    [9] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, Revision C02 [P]. Gaussian, Inc., Wallingford CT, 2004.
    [10] POPLE J A, SEEGER R, KRISHNAN R. Variational ConfigurationInteraction Methods and Comparison with Perturbation Theory [J]. Int J Quantum Chem Symp, 1977, 11: 149-163.
    [11] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a systematic molecular orbital theory for excited states [J]. J Phys Chem, 1992, 96: 135-149.
    [12] KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivative studies in configuration–interaction theory [J]. J Chem Phys, 1980, 72: 4654-4655.
    [13] GREENER J C. Estimating full configuration interaction limits from a Monte Carlo selection of the expansion space [J]. J Chem Phys, 1995, 103: 1821-1828.
    [14] SALTER E A, TRUCKS G W, BARTLETT R J. Analytic energy derivatives in many-body methods. I. First derivatives [J]. J Chem Phys, 1989, 90: 1752-1766.
    [15] ROGERS D. Computational Chemistry Using the PC, 3rd Edition [M]. John Wiley & Sons, 2003.
    [16] RAGHAVACHARI K, POPLE J A. Calculation of one-electron properties using limited configuration interaction techniques [J]. Int J Quantum Chem, 1981, 20: 1067-1071.
    [17] CRAMER C J. Essentials of Computational Chemistry [M]. Chichester: John Wiley & Sons, Ltd, 2002, pp 191-232
    [18] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J Chem Phys, 1987, 87: 5968.
    [19] CIOSLOWSKI J, NANAYAKKARA A. A new robust algorithm for fully automated determination of attractor interaction lines in molecules [J]. Chem Phys Lett, 1994, 219: 151-154.
    [20] SCHLEGEL H B, ROBB M A. MC SCF gradient optimization of theH2CO→H2 + CO transition structure [J]. Chem Phys Lett, 1982, 93: 43-46.
    [21] EADE R H E, ROBB M A. Direct minimization in mc scf theory the quasi-newton method [J]. Chem Phys Lett, 1981, 83: 362-368.
    [22] HEGARTY D, ROBB M A. Application of unitary group methods to configuration interaction calculations [J]. Mol Phys, 1979, 38: 1795-1812.
    [23] POPLE J A, KRISHNAN R, SCHLEGEL H B, et al. Electron correlation theories and their application to the study of simple reaction potential surfaces [J]. Int J Quantum Chem, 1978, 14: 545-560.
    [24] BARTLETT R J, PURVIS G D. Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem [J]. Int J Quantum Chem, 1978, 14: 561-581.
    [25] PURVIS G D, BARTLETT R J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples [J]. J Chem Phys, 1982, 76: 1910-1918.
    [26] SCUSERIA G E, JANSSEN C L, SCHAEFER III H F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations [J]. J Chem Phys, 1988, 89: 7382-7387.
    [27] SCUSERIA G E, SCHAEFER III H F, Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? [J]. J Chem Phys, 1989, 90: 3700-3703.
    [28] M?LLER C, PLESSET M S. Note on an Approximation Treatment for Many-Electron Systems [J]. Phys Rev, 1934, 46: 618-622.
    [29] HEAD-GORDON M, POPLE J A, FRISCH M J. MP2 energy evaluation by direct methods [J]. Chem Phys Lett, 1988, 153, 503-506.
    [30] POPLE J A, BINKLEY J S, SEEGER R. Theoretical Models Incorporating Electron Correlation [J]. Int J Quantum Chem Symp, 1976, 10: 1-19.
    [31] KRISHNAN R, POPLE J A. Approximate fourth-order perturbation theory of the electron correlation energy [J]. Int J Quantum Chem, 1978, 14: 91-100.
    [32] RAGHAVACHARI K, POPLE J A, REPLOGLE E S, et al. Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order [J]. J Phys Chem, 1990, 94: 5579-5586.
    [33] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields [J]. J Phys Chem, 1994, 98: 11623-11627.
    [34] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Phys Rev, 1964, 136: B864-871.
    [35] POPLE J A, GILL P M W, JOHNSON B G. Kohn—Sham density-functional theory within a finite basis set [J]. Chem Phys Lett, 1992, 199: 557-560.
    [36] W KOHN, L J SHAM. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys Rev 1965, 140: 1133-1138.
    [37] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J Chem Phys, 1993, 98: 5648-5652.
    [38] SLATER J C. Quantum Theory of Molecular, Solids Vol 4: The Self-Consistent Field for Molecular and Solids [M]. McGraw-Hill: New York, 1974.
    [39] SALAHUB D R, ZERNER M C. The Challenge of d and f Electrons [M]. ACS: Washington, D.C., 1989.
    [40] PARR R G, YANG W. Density-functional theory of atoms and molecules [M]. Oxford Univ Press: Oxford, 1989.
    [41] JOHNSON B G, FISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J Chem Phys, 1994, 100: 7429-7442.
    [42] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys Rev, 1988, B 37: 785-789.
    [43] DAVIDSON E R. Comment on“Comment on Dunning's correlation-consistent basis sets”[J]. Chem. Phys. Lett. 1996, 220: 514-518.
    [44] WOON D E, DUNNING T H, Jr. Gaussian basis sets for use in correlated molecular calculations III The atoms aluminum through argon [J]. J Chem Phys, 1993, 98: 1358-1371.
    [45] KENDALL R A, DUNNING T H Jr. HARRISON R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions [J]. J Chem Phys 1992, 96: 6796-6806.
    [46] DUNNING T H Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen [J]. J Chem Phys, 1989, 90: 1007-1023.
    [47] PETERSON K A, WOON D E, DUNNING T H Jr. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction [J]. J Chem Phys 1994, 100: 7410-7415.
    [48] WILSON A K, MOURIK T VAN, DUNNING T H Jr. Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon [J]. Journal of Molecular Structure (Theochem), 1997, 388: 339-349.
    [49] BORN M OPPENHEIMER R. On the quantum theory of molecules [J]. Quantum Theory of the Molecules Ann Phys, 1927, 84: 457.
    [50] POPLE J A, HEAD-GORDON M, FOX D J, et al. Gaussian-1 theory: A general procedure for prediction of molecular energies [J]. J Chem Phys, 1989, 90: 5622-5629.
    [51] CURTISS L A, RAGHAVACHARI K, TRUCKS G W, et al. Gaussian-2theory for molecular energies of first- and second-row compounds [J]. J Chem Phys, 1991, 94: 7221-7230.
    [52] CURTISS L A, RAGHAVACHARI K, POPLE J A. Gaussian-2 theory using reduced M?ller-Plesset orders [J]. J Chem Phys, 1993, 98: 1293-1298.
    [53] CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al. Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J]. J Chem Phys, 1998, 109: 7764-7776.
    [54] BABOUL A G, CURTISS L A, REDFERN P C, ET al. Gaussian-3 theory using density functional geometries and zero-point energies [J]. J Chem Phys, 1999, 110: 7650-7657.
    [55] MELIUS C F, BINKLEY J S. The 20th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1984, 575.
    [56] SIEGBAHN P E M, BLOMBERG M R A, SVENSSON M. PCI-X, a parametrized correlation method containing a single adjustable parameter X [J]. Chem Phys Lett, 1994, 223: 35-45.
    [57] FUKUI K. Variational Principles in a Chemical Reaction [J]. Int J Quantum Chem Symp, 1981, 15: 633-642.
    [58] FUKUI K. TACHIBANA A, YAMASHITA K. Toward Chemodynamics [J].Int J Quantum Chem Symp, 1981, 15: 621-632.
    [1] CRUTZEN P J, ARNOLD F. Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime‘ozone hole’[J]. Nature (London), 1986, 324:651-655.
    [2] NAKAYAMA T, TAKAHASHI K, MATSUMI Y, et al. N(4S) Formation following 193.3 nm ArF laser irradiation of NO and NO2 and its application to kinetic studies of N(4S) reactions with NO and NO2 [J]. J Phys Chem A,2005, 109: 10897-10902.
    [3] SISKIND D E, RUSCH D W. Nitric oxide in the middle to upper thermosphere [J]. J Geophys Res, 1992, 97: 3209-3212.
    [4] NELVISON C D, SOLOMON S, GARCIA R R. Model Overestimates of NOy in the Upper Stratosphere [J]. Geophys Res Lett, 1997, 24: 803-806.
    [5] GERARD J C. Thermospheric odd nitrogen [J]. Planet. Space Sci, 1992, 40: 337-353.
    [6] WENNBERG P O, ANDERSON J G, WEISENSTEIN D K. Kinetics of the reactions of ground-state nitrogen atoms (4S3/2) with NO and NO2 [J]. J Geophys Res, 1994, 99: 18839-11846.
    [7] KISTIAKOWSKY G B, VOLPI G G. Reactions of Nitrogen Atoms. I. Oxygen and Oxides of Nitrogen [J]. J Chem Phys, 1957, 27: 1141-1149.
    [8] VERBERKE G J, WINKLER C A. THE REACTIONS OF ACTIVE NITROGEN WITH NITRIC OXIDE AND NITROGEN DIOXIDE [J]. J Phys Chem, 1960, 64: 319-323.
    [9] CLYNE M A A, ONO Y. Determination of the rate constant of reaction of N(4S3/2) with NO2 using resonance fluorescence in a discharge flow system [J]. Chem Phys, 1982, 69: 381-388.
    [10] PHILLIPS L F, SCHIFF H I. Mass-Spectrometric Studies of Atomic Reactions. V. The Reaction of Nitrogen Atoms with NO2 [J]. J Chem Phys, 1965, 42: 3171-3174.
    [11] ARNOLD D W, NEUMARK D M. Study of N2O2 by photoelectron spectroscopy of N2O2- [J]. J Chem Phys, 1995, 102: 7035-7045.
    [12]WARD T R, ALEMANY P, HOFFMANN R. Adhesion of rhodium, palladium, and platinum to alumina and the reduction of nitric oxide on the resulting surfaces: a theoretical analysis [J]. J Phys Chem, 1993, 97: 7691-7699.
    [13] LIA Y, VO C K, Multireference configuration interaction studies on the ground and excited states of N2O2: The potential energy curves of N2O2 along N–N distance [J]. J Chem Phys, 2006, 125: 094303.
    [14] TOBITA M, PERERA S A, MUSIAL M, et al. Critical comparison of single-reference and multireference coupled-cluster methods: Geometry harmonic frequencies, and excitation energies of N2O2 [J]. J Chem Phys, 2003, 119: 10713-10723.
    [15] Yung Y L, DeMore W B. Photochemistry of Planetary Atmosphere [M]. Oxford University Press, New York, 1999.
    [16] R Iwafa, R A Ferrieri, and A P Wolf, Rate constant determination of the reaction of metastable atomic nitrogen (2D, 2P) with nitrogen dioxide using moderated nuclear recoil atoms [J]. J Phys Chem, 1986, 90: 6722-6726.
    [17] Nour E M, Chen L H, Strube M M, et al. Raman spectra and force constants for the nitric oxide dimer and its isotopic species [J]. J Phys Chem 1984, 88: 756-759.
    [18] LEE T J, RENDELL A P, TAYLOR P R. Comparison of the quadratic configuration interaction and coupled-cluster approaches to electron correlation including the effect of triple excitations [J]. J Phys Chem, 1990, 94: 5463-5468.
    [19] ZUO M H, LIU H L, HUANG X R, et al. A barrier-free atomic radical-molecule reaction: N (2D) + NO2 (2A1) mechanistic study [J]. Int J Quantum Chem, 2008, 108: 1309-1315.
    [20] STIRLING A, PAPAI I, MINK J, et al Density functional study of nitrogen oxides [J]. J Chem Phys, 1994, 100: 2910.
    [21] NGUYEN K A, GORDON M S, MONTGOMERY J A, et al. Structures, Bonding, and Energetics of N2O2 Isomers [J]. J Phys Chem, 1994, 98: 10072-10078.
    [22] JURSIC B S, ZDRAVKOVSKI Z. Theoretical investigation of cis- and trans-nitric oxide dimers with ab initio and density functional Gaussian-type orbital approach [J]. Int J Quantum Chem, 1995, 54: 161-166.
    [23] MCKELLAR A R W, WATSON J K G, HOWARD B J. The NO dimer: 15N isotopic infrared spectra, line-widths, and force field [J]. Mol Phys, 1995, 86: 273-286.
    [24] HA T K. Ab initio CI study of the nitric oxide dimer (N2O2) [J]. Theor Chim Acta, 1981, 58: 125-130.
    [25] CANTY J F, STONE E G, BACH S B H, et al. Matrix isolation and theoretical studies of ONNO: Assignment of a new combination band and density functional calculations [J]. Chem Phys, 1997, 216: 81-89.
    [26] SNIS A, PANAS I. N2O2, N2O2? and N2O22?: structures, energetics and N–N bonding [J]. Chem Phys, 1997, 221: 1-10.
    [27] EAST ALLAN L L. The 16 valence electronic states of nitric oxide dimer (NO)2 [J]. J Chem Phys, 1998, 109: 2185.
    [28] EAST A L L, MCKELLAR A R W, WATSON J K G. The intermolecular vibrations of the NO dimer [J]. J Chem Phys, 1998, 109: 4378-4383.
    [29] DUARTE H A, PROYNOV E, SALAHUB D R. Density functional study of the NO dimer using GGA and LAP functionals [J]. J Chem Phys, 1998, 109: 26-35.
    [30] KUKOLICH S G. Structure and quadrupole coupling measurements on the NO dimer [J]. J. Mol. Spectrosc. 1983, 98: 80-86.
    [31] KRIM L, LACOME N. The NO Dimer, 14N and 15N Isotopomers Isolated in Argon Matrix: A Near-, Mid-, and Far-Infrared Study [J]. J Phys Chem A, 1998, 102: 2289-2296.
    [32] MCKELLAR A R W, WATSON J K G. High-Resolution Laser Spectroscopy of YbCl: The A2Π-X2Σ+ Transition [J]. J Mol Spectrosc, 1999, 194: 229-234.
    [33] FERNANDEZ J M, TEJEDA G, RAMOS A, et al. Gas-Phase Raman Spectrum of NO Dimer [J]. J Mol Spectrosc, 1999, 194: 278-280.
    [34] VINCENT M A, HILLIER I H, SALSI L. The potential energy surfaces of N2O2 species: implications for selective catalytic reduction [J]. Phys Chem Chem Phys, 2000, 2: 707-714.
    [35] SAYóS R, VALERO R, ANGLADA J M, GONZALEZ M, et al. Theoretical investigation of the eight low-lying electronic states of the cis- and trans-nitric oxide dimers and its isomerization using multiconfigurational second-order perturbation theory (CASPT2) [J]. J Chem Phys, 2000, 112: 6608-6624.
    [36] PARK J K, SUN H. Relative stabilities of (NO)2 [J]. Chem Phys, 2001, 263: 61-68.
    [37] DE PETRIS G, CACACE F, TROIANI A, Discovery of two high-energy N2O2 isomers [J]. Chem Commun, 2004; 326-327.
    [38] ZIPF E C, PRASAD S S. Evidence for New Sources of NOX in the Lower Atmosphere [J]. Science, 1998, 279: 211-213.
    [39] ZIPF E C, PRASAD S S. O2·N2 photochemistry in the present and Precambrian atmosphere [J]. J Chem Phys, 2001, 115: 5703-5706.
    [40] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, revision C02 [P]. Gaussian, Inc.: Wallingford, CT, 2004.
    [41] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys Rev A, 1988, 38: 3098-3100.
    [42] BECKE A D. A new mixing of Hartree-Fock and local density-functional theories [J]. J Chem Phys, 1993, 98: 1372-1377.
    [43] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys Rev, 1988, B 37: 785-789.
    [44] SCHLEGEL H B. Potential energy curves using unrestricted M?ller-Plesset perturbation theory with spin annihilation [J]. J Chem Phys, 1986, 84: 4530-4534.
    [45] MOLLER C, PLESSET M S. Note on an Approximation Treatment for Many-Electron Systems [J]. Phys Rev, 1934, 46: 618-622.
    [46] TRAN K M, MCANOY A M, BOWIE J H. Do the interstellar molecules CCCO and CCCS rearrange when energised? [J]. Org Biomol Chem, 2004, 2: 999-1006
    [47] ZUO M H, LI J L, HUANG X R, et al. A Barrier-Free Molecular Radical-Molecule Reaction: 3C2 (a3Π) + O2 (X3Σ) [J].Theor Chem Acc, 2007, 118: 295-303.
    [48] GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates [J]. J Phys Chem, 1990, 94: 5523-5527.
    [49] BABOUL A G, CURTISS L A, REDFERN P C. Gaussian-3 theory using density functional geometries and zero-point energies [J]. J Chem Phys, 1999, 110: 7650-7657.
    [50] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction A general technique for determining electron correlation energies [J]. J Chem Phys, 1987, 87: 5968-5975.
    [51] WOON D E, DUNNING T H, Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon [J]. J Chem Phys, 1993, 98: 1358-1371.
    [52] DUNNING T H Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen [J]. J Chem Phys, 1989, 90: 1007-1023.
    [53] LEE T J, RICE J E, SCUSERIA G E, et al. Theoretical Investigations of Molecules Composed Only of Fluorine, Oxygen and Nitrogen: Determinationof the Equilibrium Structures of FOOF, (NO)2 and FNNF and the Transition State Structure for FNNF cis-trans Isomerization [J]. Theor Chim Acta, 1989, 75: 81-98.
    [54] LEE T J, TAYLOR P R. A Diagnostic for Determining the Quality of Single-Reference Electron Correlation Methods [J]. Int J Quantum Chem Symp, 1989, 23: 199-207.
    [55] GOLD E S. The Mechanism and Structure in Organic Chemistry [M]. Henry, Holt and Company, New York, 1960.
    [56] JORGENSEN W L, SALEM L. The Organic Chemist's Book of Orbitals [M]. Academic Press, New York, 1973.
    [57] HARDWICK J L, BRAND J C D. Anharmonic potential constants and the large amplitude bending vibration in nitrogen dioxide [J]. Can J Phys, 1976, 54: 80-91.
    [58] HUBER K P, HERZBERG G. Molecular Spectra and Molecular Structure, Vol IV, Constants for Diatomic Molecules [M]. Van Nostrand Reinhold, New York, 1979.
    [59] TEFFO J L, CHEDIN A. Internuclear potential and equilibrium structure of the nitrous oxide molecule from rovibrational data [J]. J Mol Spectrosc, 1989, 135: 389-409.
    [1] LISSIANSKI V V, ZAMANSKY V M, W C GARDINER, Jr. Gas-Phase Combustion Chemistry [M]. Springer-Verlag: New York, 2000, p 46.
    [2] MILLER J A, BOWMAN C T. Mechanism and modeling of nitrogen chemistry in combustion [J]. Prog Energy Combust Sci, 1989, 15: 287-338.
    [3] CHEN H T, HO J J. Theoretical Study of NCO and RCCH (R = H, CH3, F, Cl,CN) [3 + 2] Cycloaddition Reactions [J]. J Phys Chem A, 2003, 107: 7643-7649.
    [4] KINGSTON D G I, KOLPAK M X, LEFEVRE J W, et al. Biosynthesis of antibiotics of the virginiamycin family. 3. Biosynthesis of virginiamycin M1 J Am Chem Soc, 1983, 105: 5106-5110.
    [5] GAO Y D, MACDONALD R G. Determination of the Rate Constants for the NCO(X2Π) + Cl(2P) and Cl(2P) + ClNCO(X1A') Reactions at 293 and 345 K [J]. J Phys Chem A, 2005, 109: 5388-5397.
    [6] PRASAD S S, HUNTRESS W T, Jr. NCO: A Potential Interstellar Species [J]. Monthly Notice of the Royal Astronomical Society, 1978, 185:741-744.
    [7] BROWNSWORD R A, HANCOCK G, HEARD D E. Kinetics of the N+NCO reaction at 298 K [J]. J Chem Soc, Faraday Trans, 1997, 93: 2473-2475.
    [8] GAO Y D, MACDONALD R G. Determination of the Rate Constants for the NCO(X2Π) + Cl(2P) and Cl(2P) + ClNCO(X1A') Reactions at 293 and 345 K [J]. J Phys Chem A, 2005, 109: 5388-5397.
    [9] WILLIAM F, COOPER J P, HERSHBERGER F. Product channel dynamics of the cyanato radical + nitric oxide reaction [J]. J Phys Chem, 1993, 97: 3283-3290.
    [10] JUANG D Y, LEE J S, WANG N S. Kinetics of the reactions of NCO with NO and NO2 [J]. Int J Chem Kinet, 1995, 27: 1111-1120.
    [11] GAO Y D, MACDONALD R G. Determination of the Rate Constant for the Radical-Radical Reaction NCO(X2Π) + CH3(X2A2") at 293 K and an Estimate of Possible Product Channels [J]. J Phys Chem A, 2006, 110: 977-989.
    [12] MACDONALD R G. Determination of the rate constant and product channels for the radical-radical reaction NCO(X 2Π) + C2H5(X 2A") at 293 K [J]. Phys Chem Chem Phys, 2007, 9: 4301-4314.
    [13] HU C G, ZHU Z Q, PEI L S, et al. Time-resolved kinetic studies on quenching of NCO (A 2Σ+) by alkanes and substituted methane molecules [J]. J Chem Phys, 2003, 118: 5408-5412.
    [14] PEI L S, HU C G, LIU Y Z, et al. Kinetic studies on reactions of NCO(X 2Πi) with alcohol molecules [J]. Chem Phys Lett, 2003, 381: 199-204.
    [15] WATEGAONKAR S, SETSER D W. The fluorine atom + isocyanic acid reaction system: a flow reactor source for isocyanate radical(X2Π) and nitrogen monofluoride(X3Σ-) [J]. J Phys Chem A, 1993, 97: 10028-10034.
    [16] PARK J, HERSHBERGER J F. Kinetics of NCO + hydrocarbon reactions [J]. Chem Phys Lett, 1994, 218: 537-543.
    [17] BECHER K H, KURTENBACH R, SCHMIDT F, et al. Temperature and pressure dependence of the NCO + C2H2 reaction [J]. Chem Phys Lett, 1995, 235: 230-234.
    [18] PARK J, HERSHBERGER J F. Kinetics of NCO + hydrocarbon reactions [J]. Chem Phys Lett, 1994, 218: 537-543.
    [19] BECHER K H, KURTENBACH R, SCHMIDT F, et al. Temperature and pressure dependence of the NCO + C2H2 reaction [J]. Chem Phys Lett, 1995, 235: 230-234.
    [20] GAO Y, MACDONALD R G. Determination of the Rate Constant for the NCO(X2Π) + O(3P) Reaction at 292 K [J]. J Phys Chem A, 2003, 107: 4625-4635.
    [21] ZHU R S, LIN M C. The NCO + NO Reaction Revisited: Ab Initio MO/VRRKM Calculations for Total Rate Constant and Product Branching Ratios [J]. J Phys Chem A, 2000, 104: 10807-10811.
    [22] CAMPOMANES P, MENENDEZ I, SORDO T. A Theoretical Study of the 2NCO + 2OH Reaction [J]. J Phys Chem A, 2001, 105: 229-237.
    [23] LI B T, ZHANG J, WU H S, et al. Theoretical Study on the Mechanism ofthe NCO + HCNO Reaction [J]. J Phys Chem A, 2007, 111: 7211-7217.
    [24] CHEN H T, HO J J. Theoretical Study of Reaction Mechanisms for NCX (X = O, S) + C2H2 [J]. J Phys Chem A, 2003, 107: 7004-7012.
    [25] XIE H B, WANG J, ZHANG S W, et al. An ignored but most favorable channel for NCO+C2H2 reaction [J]. J Chem Phys, 2006, 125: 124317.
    [26] Tang Y Z, Sun H, Pan Y R, et al. Theoretical study of the hydrogen abstraction reaction of CH3OH with NCO [J]. Molecular Physics, 2007, 105: 967-972.
    [27] Tang Y Z, Sun H, Sun J Y, et al. Theoretical study of H-abstraction reaction of C2H5OH with NCO [J]. Chemical Physics, 2007, 337: 119-124.
    [28] GARDINER W C, Jr. Gas-Phase Combustion Chemistry [M]. Springer-Verlag, New York, 1999.
    [29] DE PETRIS G, CACACE F, CIPOLLINI R, et al. Experimental Detection of Theoretically Predicted N2CO [J]. Angew Chem Int Ed, 2005, 44: 462-465.
    [30] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, revision C02 [P]. Gaussian, Inc: Wallingford, CT, 2004.
    [31] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys Rev A, 1988, 38: 3098-3100.
    [32] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys Rev, 1988, B 37: 785-789.
    [33] GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates [J]. J Phys Chem, 1990, 94: 5523-5527.
    [34] BABOUL A G, CURTISS L A, REDFERN P C. Gaussian-3 theory using density functional geometries and zero-point energies [J]. J Chem Phys, 1999, 110: 7650-7657.
    [35] WOON D E, DUNNING T H, Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon [J]. J Chem Phys, 1993, 98: 1358-1371.
    [36] BECKE A D.RAGHAVACHARI K, TRUCKS G W, POPLE J A, et al. A fifth-order perturbation comparison of electron correlation theories [J]. Chem Phys Lett, 1989, 157: 479-483.
    [37] BARTLETT R J. Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules Annu Rev Phys Chem, 1981, 32: 359-401.
    [38] MCQUARRIE D A. Statistical Mechanics [M]. Harper & Row: New York, 1986.
    [1] VINCENT M A, HILLIER I H, SALSI L. The potential energy surfaces of N2O2 species: implications for selective catalytic reduction [J]. Phys Chem Chem Phys, 2000, 2: 707-714.
    [2] BLAGOJEVIC V, BO?OVI? A, ORLOVA G, et al. Catalytic Oxidation of H2 by N2O in the Gas Phase: O-Atom Transport with Atomic Metal Cations [J]. J Phys Chem A, 2008, 112: 10141-10146.
    [3] NGUYEN K A, GORDON M S, MONTGOMERY J A, et al. Structures, Bonding, and Energetics of N2O2 Isomers [J]. J Phys Chem, 1994, 98: 10072-10078.
    [4] LI R, CONTINETTI R E. Studies of the Excited State Dynamics of N2O2 by Dissociative Photodetachment of N2O2- [J]. J Phys Chem A, 2002, 106: 1183-1189.
    [5] GAYDON A G, WOLFHARD H G. Flames [M]. Wiley: New York, 1979.
    [6] MCEWAN M J, PHILLIPS L F. Chemistry of the Atmosphere [M]. Wiley:New York, 1975.
    [7] WAYNE R P. Chemistry of Atmospheres[M]. Oxford University Press: New York, 1985.
    [8] PAULSON J F. Negative-Ion-Neutral Reactions in N2O [J]. J Chem Phys, 1970, 52: 959-962.
    [9] MORUZZI J L, DAKIN J T. Negative-Ion-Molecule Reactions in N2O [J]. J Chem Phys, 1968, 49: 5000-5006.
    [10] BARLOW S E, BIERBAUM V M. Reactions of O?+ N2O at 300 K: The totally labeled experiments [J]. J Chem Phys, 1990, 92: 3442-3447.
    [11] MORRIS R A, VIGGIANIO A A, PAULSON J F. Branching ratios and rate constants for reactions of 16O? and 18O? with N2O and 14N15N16O [J]. J Chem Phys, 1990, 92: 3448-3452.
    [12] POSEY L A, JOHNSON M A. Pulsed photoelectron spectroscopy of negative cluster ions: Isolation of three distinguishable forms of N2O2- [J]. J Chem Phys, 1988, 88: 5383-5395.
    [13] MILLIGAN D E, JACOX M E. Matrix-Isolation Study of the Interaction of Electrons and Alkali Metal Atoms with Various Nitrogen Oxides Infrared Spectra of the Species NO?, NO2?, and N2O2? [J]. J Chem Phys, 1971, 55: 3404-3418.
    [14] JACOX M E. The vibrational spectra of molecular ions isolated in solid neon V. N2O+ and NNO2- [J]. J Chem Phys, 1990, 93: 7622-7631.
    [15] HACALOGLU J, SUZER S, ANDREWS L. Chemical ionization discharge of nitrogen oxide for matrix infrared spectroscopic study of isolated anions [J]. J Phys Chem, 1990, 94: 1759-1764.
    [16] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, revision C02 [P]. Gaussian, Inc.: Wallingford, CT, 2004.
    [17] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys Rev A, 1988, 38: 3098-3100.
    [18] BECKE A D. A new mixing of Hartree-Fock and local density-functional theories [J]. J Chem Phys, 1993, 98: 1372-1377.
    [19] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys Rev, 1988, B 37: 785-789.
    [20] SCHLEGEL H B. Potential energy curves using unrestricted M?ller-Plesset perturbation theory with spin annihilation [J]. J Chem Phys, 1986, 84: 4530-4534.
    [21] MOLLER C, PLESSET M S. Note on an Approximation Treatment for Many-Electron Systems [J]. Phys Rev, 1934, 46: 618-622.
    [22] TRAN K M, MCANOY A M, BOWIE J H. Do the interstellar molecules CCCO and CCCS rearrange when energised? [J]. Org Biomol Chem, 2004, 2: 999-10006.
    [23] ZUO M H, LI J L, HUANG X R, et al. A Barrier-Free Molecular Radical-Molecule Reaction: 3C2 (a3Π) + O2 (X3Σ) [J].Theor Chem Acc, 2007, 118: 295-303.
    [24] GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates [J]. J Phys Chem, 1990, 94: 5523-5527.
    [25] WOON D E, DUNNING T H, Jr. Gaussian basis sets for use in correlated molecular calculations III. The atoms aluminum through argon [J]. J Chem Phys, 1993, 98: 1358-1371.
    [26] DUNNING T H Jr. Gaussian basis sets for use in correlated molecular calculations I The atoms boron through neon and hydrogen [J]. J Chem Phys, 1989, 90: 1007.
    [27] BABOUL A G, CURTISS L A, REDFERN P C. Gaussian-3 theory usingdensity functional geometries and zero-point energies [J]. J Chem Phys, 1999, 110: 7650-7657.
    [28] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J Chem Phys, 1987, 87: 5968.
    [1] GAYDON A G, WOLFHARD H G. Flames, Their Structure, Radiation, and Temperature [M]. Chapman & Hall: New York, 1979.
    [2] O’BRIEN S C, HEATH J R, CURL R F, et al. Photophysics of buckminsterfullerene and other carbon cluster ions [J]. J Chem Phys, 1988, 88: 220-230.
    [3] PERRY M D, RAFF L M. Theoretical Studies of Elementary Chemisorption Reactions on an Activated Diamond Ledge Surface [J]. J Phys Chem, 1994, 98: 4375-4381.
    [4] WELTNER J W, VAN ZEE R J. Carbon molecules, ions, and clusters [J]. Chem ReV, 1989, 89: 1713-1747.
    [5] KAISER R I. Experimental investigation on the formation of carbon-bearing molecules in the interstellar medium via neutral-neutral reactions [J]. Chem ReV, 2002, 102: 1309-1358.
    [6] CECCHI-PESTELLINI C, DALGARNO A. C2 absorption-line diagnostics of diffuse interstellar clouds [J]. Mon Not R Astron Soc, 2002, 331: L31-L34.
    [7] OKA T, THORBURN J A, MCCALL B J, et al. Observations of C3 in Translucent Sight Lines [J]. Astrophys J, 2003, 582: 823-829.
    [8] BAKKER E J, VAN-DISHOECK E F, WATERS L B F M, et al. Circumstellar C2, CN, and CH+ in the optical spectra of post-AGB stars [J].Astron Astrophys, 1997, 323: 469-487.
    [9] A'HEARN M F, MILLIS R C, SCHLEICHER D O, et al. The ensemble properties of comets: Results from narrowband photometry of 85 comets, 1976-1992 [J]. Icarus, 1995, 118: 223-270.
    [10] BARONAVSKI A P, MCDONALD J R. Measurement of C2 concentrations in an oxygen-acetylene flame: An application of saturation spectroscopy [J]. J Chem Phys, 1977, 66: 3300-3301.
    [11] RENNICK C J, SMITH J A, ASHFOLD M N R, et al. Cavity ring-down spectroscopy measurements of the concentrations of C2(X1Σg+) radicals in a DC arc jet reactor used for chemical vapour deposition of diamond films [J]. Chem Phys Lett, 2004, 383: 518-522.
    [12] GORDILLO-VAZQUEZ F J, ALBELLA J M. Distinct nonequilibrium plasma chemistry of C2 affecting the synthesis of nanodiamond thin films from C2H2 (1%)/H2/Ar-rich plasmas [J]. J Appl Phys, 2003, 94: 6085-6090.
    [13] MCKELLAR A, Some Topics in Molecular Astronomy [J]. J R Astron Soc Can, 1960, 54: 97-109.
    [14] BRAULT J W, DELBOUILLE L, GREVESSE N, et al. Infrared Bands of C2 in the Solar Photospheric Spectrum [J]. Astron Astrophys, 1982, 108: 201-205.
    [15] RABEAU J R, JOHN P, WILSON J I B. The role of C2 in nanocrystalline diamond growth [J]. J Appl Phys, 2004, 96: 6724-6732.
    [16] PàRAMO A, CANOSA A, LE PICARD S D, et al. An Experimental Study of the Intersystem Crossing and Reactions of C2(X1Σg+) and C2(a3Πu) with O2 and NO at Very Low Temperature (24?300 K) [J]. J Phys Chem A, 2006, 110: 3121-3122.
    [17] WEI Z G, HUANG X R, ZHANG S W, et al. A Theoretical Study on the Potential Energy Surface of the 3C2 + NO Reaction [J]. J Phys Chem A, 2004,108: 6771-6777.
    [18] WEI Z G, HUANG X R, SUN Y B, et al. A theoretical study on the potential energy surface of the 3C2+NO2 reaction [J]. J Mol Struct (Theochem), 2004, 671: 133-140.
    [19] WANG J H , HAN K L, HE G Z, et al. Ab initio study of reaction mechanism of C2+H2S [J]. Chem Phys Lett, 2003, 368: 139-146.
    [20] BaLUCANI N, MEBEL M A, LEE Y T, et al. A Combined Crossed Molecular Beam and ab Initio Study of the Reactions C2(X1Σg+, a3Πu) + C2H4→n-C4H3(X2A') + H(2S1/2) [J]. J Phys Chem A, 2001, 105: 9813-9818.
    [21] KAISER R I, LE T N, NGUYEN T L, et al. A combined crossed molecular beam and ab initio investigation of C2 and C3 elementary reactions with unsaturated hydrocarbons-pathways to hydrogen deficient hydrocarbon radicals in combustion flames [J]. Faraday Discuss, 2002, 119: 51-66.
    [22] DING Y H, LI Z S, HUANG X R, et al. CCNN: The last kinetically stable isomer of cyanogen [J]. J Chem Phys, 2000, 113: 1745-1754.
    [23] ZHANG X, DING Y H, LI Z S, et al. Direct dynamic study on the hydrogen abstraction reaction C2(3Πu) + H2→C2H + H [J]. Chem Phys Lett, 2000, 330: 577-584.
    [24] KRUSE T, ROTH P. Kinetics of C2 Reactions during High-Temperature Pyrolysis of Acetylene [J]. J Chem Phys A, 1997, 101: 2138-2146.
    [25] KAISER R I, YAMADA M, OSAMURA Y. A Crossed Beam and ab Initio Investigation of the Reaction of Hydrogen Sulfide, H2S(X1A1), with Dicarbon Molecules, C2(X1Σg+) [J]. J Phys Chem A, 2002, 106: 4825-4832.
    [26] WANG J H, HAN K L, HE G Z, et al. Theoretical Study of the C2(1Σg+, 3Πu) + H2O Reaction Mechanism [J]. J Phys Chem A, 2003, 107: 9825-9833.
    [27]HERZBERG G. Spectra of Diatomic Molecules [M].Van Nostrand: Princeton, 1950.
    [28] BECHER K H, KURTENBACH R, SCHMIDT F, et al. Temperature and pressure dependence of the NCO + C2H2 reaction [J]. Chem Phys Lett, 1995, 235: 230-234.
    [29] REISLER H, MANGIR M, WITTIG C. The kinetics of free radicals generated by IR laser photolysis. II. Reactions of C2(X1Σ+g), C2(a3Πu), C3(X1Σ+g) and CN(X2Σ+) with O2 [J]. Chem Phys, 1980, 47: 49-58.
    [30] MANGIR M S, REISLER H, WITTIG C. The kinetics of free radicals generated by IR laser photolysis. III. Intersystem crossing between C2(X1Σg+) and C2(a3Πu) induced by collisions with oxygen [J]. J Chem Phys, 1980, 73: 829-835.
    [31] FILSETH S V, HANCOCK G, MEIER K. Quenching of C2(a3Πu) produced in an intense infrared laser field [J]. Chem Phys Lett, 1979, 61: 288-292.
    [32] FONTIJN A, FERNANDEZ A, RISTANOVIC A, et al. CO Chemiluminescence and Kinetics of the C2 + O2 Reaction [J]. J Phys Chem A, 2001, 105: 3182-3189.
    [33] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, revision C02 [P]. Gaussian, Inc.: Wallingford, CT, 2004.
    [34] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys Rev A, 1988, 38: 3098-3100.
    [35] BECKE A D. A new mixing of Hartree-Fock and local density-functional theories [J]. J Chem Phys, 1993, 98: 1372-1377.
    [36] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J Chem Phys, 1993, 98: 5648-5652.
    [38] BABOUL A G, CURTISS L A, REDFERN P C. Gaussian-3 theory using density functional geometries and zero-point energies [J]. J Chem Phys, 1999, 110: 7650-7657.
    [39] PURVIS G D, BARTLETT R J. A full coupled-cluster singles and doublesmodel: The inclusion of disconnected triples [J]. J Chem Phys, 1982, 76: 1910-1918.
    [40] WOON D E, DUNNING T H, Jr. Gaussian basis sets for use in correlated molecular calculations III the atoms aluminum through argon [J]. J Chem Phys, 1993, 98: 1358-1371.
    [41] GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates [J]. J Phys Chem, 1990, 94: 5523-5527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700