用户名: 密码: 验证码:
化学酶方法制备超支化聚合物及其自组装行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用酶促聚合方法和原子转移自由基聚合方法相结合来制备功能型超支化聚合物材料并对其结构和性质进行了研究。首先利用2,2二羟甲基丁酸催化己内酯开环聚合得到不同支化度的超支化聚酯,对其结构进行表征。利用POM详细研究了不同支化度超支化聚酯的结晶行为,用DSC研究了超支化聚酯的非等温结晶动力学。其次结合己内酯的酶促开环聚合反应和苯乙烯/甲基丙烯酸甲酯/甲基丙烯酸环氧丙酯的原子转移自由基聚合方法,通过α-溴代丙酰溴取代BHB的端羟基氢,得到了适合原子转移自由基聚合(ATRP)的多官能度超支化大分子引发剂。通过该引发剂引发的ATRP反应成功得到了一系列超支化聚合物:超支化共聚酯/聚苯乙烯、超支化共聚酯/聚甲基丙烯酸甲酯和超支化共聚酯/聚甲基丙烯酸环氧丙酯。利用AFM、SEM、TEM等多种监测方法详细研究了聚合物的自组装行为。这种新颖的超支化聚合物目前未见报道,并且在电化学、光学、磁学、催化、生物和传感器等多个领域存在着广阔的应用前景。
Generally, dendrimers have a three-dimension structure, of which the molecule displays the character of symmetry and tightness, as well as the special physical and chemical character. Thereby, much attention is paid to the synthesis and application of dendrimers. However, the hyperbranched aliphatic polyesters synthesized by enzymatic ring-opening technique have a shortage of low molecular weight, which couldn’t present the characteristic of polyester. Hence, enzymatic ring-opening polymerization and chemistry technique were combined to synthesize hyperbranched copolymers with functional groups in the study.
     Enzyme is a kind of protein that produced by living cells and with the character of catalyze and living/control. It is often used as biologic catalyst. Enzymatic catalyzed polymerization is a kind of reaction that catalyzed by enzyme. So far, the control of reaction condition and the optimization and selection of enzyme still need to be investigated in the further study. However, as a new polymerization technique, enzymatic catalyzed polymerization provides a new and friendly-condition way for the synthesis of macromolecule. It can be widely used in medicine, environmental protection and national defence. Sunny Skaria et al used Novozyme435-catalyzed ring-opening (ROP) polymerization of BHB (2,2-bis(hydroxymethyl) butyric acid at 85℃in an oil bath .They obtained different DB of hyperbranched aliphatic polyesters.
     As a living/controlled method of polymerization, ATRP is attractive for its characteristics of low polydispersity and controlled molecular weight. ATRP is applied to the most of (meth) acrylate and styrene monomers because of its gentle reaction condition. Therefore it is suitable for designing and synthesizing the functional materials. So we use ATRP and enzymatic ring-opening polymerization technique together to synthesize the functional materials with special characteristics.
     Based on the above reasons, we combined enzymaticpolymerization and ATRP to synthesize several new functional hyperbranched polymers.
     In Chapter two,the hyperbranched aliphatic polyester P(ε-CL)was synthesiszed by means of Novozyme435-catalyzed ring-opening (ROP) polymerization of BHB (2,2-bis(hydroxymethyl) butyric acid. Analyses by 1H NMR、13C NMR、WAXD、DSC、POM、IR. In the DSC curves, with increasing the length of PCL, the crystallization and melting temperature of PCL block increased significantly. The isothermal melt-crystallization at 25 oC of hyperbranched polymers was observed by POM. The growth rate of the hyperbranched polymers spherulites decreased sharply with decreasing the length of PCL.
     In chapter three, The chains ended with hydroxyl of P(ε-CL)were modified by the esterification ofα-bromopropionyl bromide to obtain hyperbrancheds difunctional macroinitiator, which was used in the ATRP of St. CuCl/HMTETA was used as the catalyst system in the reaction of ATRP to acquire the hyperbranched copolymers polystyrene-block-poly (2,2-bis(hydroxymethyl) butyric acid). The PSt structure determined by 1H、GPC. The self-assembly of the hyperbranched polymers into aggregation micelles in aqueous media was determined by Spectrofluorometer、SEM、TEM、AFM、DLS、XRD, AFM. The hyperbranched polymers have lots of promising applications in advanced biotechnology, such as DNA separation, targeted drug delivery, enzyme immobilization, and immunological assay.
     In chapter four, a novel method for the synthesis of hyperbranched PMMA and PGMA were developed by combining ROP and ATRP. Both polymers structure were determined by 1H and GPC. The critical association concentrations (CAC) were determined by pyrene monomer fluorescence probe technology. The self-assembly of the hyperbranched polymers were determined by SEM、TEM、AFM、DLS. Hyperbranched polymers have shown to exhibite the different properties from those of the linear analogues, such as low viscosity, high solubility. And the hyperbranched polymers have a multiplicity of using range from adhesive improvers and viscosity modifiers to applications in coating, rheology controlagents pharmaceuticals, and so on.
引文
[1]BUHLEIER E, WEHNER W, VOGTLE F. Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies[J]. Synthesis, 1978, 2, 155-158.
    [2]TOMALIA D A, BAKER H, DEWALD J, et al. A New Class of Polymers Starburst-dendritic Macro molecules[J]. Polym, 1985,17(5): 117-132.
    [3]TOMALIA D A, BAKER H, DEWALD J, et al. Dendritic macromolecules: Synthesie of starburst dendrimers[J]. Macromolecules,1986, 19, 2466-2468.
    [4]TOMALIA D A, NAYLOR A M, GODDARD III W A. Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter[J]. Angewandte Chemie International Edition English, 1990, 29, 138-175.
    [5]BOSMAN A W, JANSSEN H M, MEIJER E W. About dendrimers: Structure, physical properties, and applications[J]. Chem. Rev, 1999, 99, 1665-1688.
    [6]FISCHER M, VOGTLE F. Dendrimers: From design to application - A progress report[J]. Angewandte Chemie International Edition, 1999, 38, 885-905.
    [7]DYKES G M. Dendrimers: A review of their appeal and applications[J]. Chem. Technol. Biotechnol, 2001, 76, 903-918.
    [8]KLAJNERT B, BRYSZEWSKA M. Dendrimers: Properties and applications[J]. Acta Biochim, Pol, 2001, 48, 199-208.
    [9]TOMALIA D A, FRECHET J M J, Discovery of dendrimers and dendritic polymers: A brief historical perspective[J]. J. Polym. Sci, Part A: Polym. Chem., 2002, 40, 2719-2728.
    [10]FRECHET J M J, Dendrimers and supramolecular chemistry[J]. Proc. Natl. Acad. Sci. U. S. A, 2002, 99, 4782-4787.
    [11]FRECHET J M J. Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology[J]. J. Polym. Sci., Part A: Polym. Chem, 2003, 41, 3713-3725.
    [12]FLORY P J, Molecular size distribution in three-dimensional polymers. VI. branched polymer containing A-R-Bf-1-type units[J]. J. Am. Chem. Soc, 1952, 74, 2718-2723.
    [13]HAWKER C J, LEE R, FRECHET J M J. One-step synthesis of hyperbrancheddendritic polyesters[J]. J. Am. Chem. Soc,1991, 113, 4583-4588.
    [14]UHRICH K E, HAWKER C J, FRECHET J M J. et al. One-pot synthesis of hyperbranched polyethers[J]. Macromolecules, 1992, 25, 4583-4587.
    [15]KIM Y H, WEBSTER O W. Hyperbranched polyphenylenes[J]. Macromolecules, 1992, 25, 5561-5572.
    [16]KIM Y H. Hyperbranchecs polymers 10 years after[J]. J. Polym. Sci., Part A: Polym. Chem,1998, 36, 1685-1698.
    [17]KIM Y H, WEBSTER O. Hyperbranched polymers (Reprinted from star and hyperbranched polymers, pg 201-238, 1999)[J]. Macromol. Sci.-Polym. Rev, 2002, C42, 55-89.
    [18]TURNER S R, WALTER F, VOIT B I, et al. Hyperbranched aromatic polyesters with carboxylic acid terminal groups[J]. Macromolecules, 1994, 27, 1611-1616.
    [19]MALMSTROM E, HULT A. Hyperbranched polymers: A review[J].Macromol. Sci.-Rev. Macromol. Chem. Phys., 1997, C37, 555-579.
    [20]SHI W F, HUANG H. Progress in hyperbranched polymers[J]. Chem. J. Chin. Univ.-Chin., 1997, 18, 1398-1405.
    [21]HULT A, JOHANSSON M, MALMSTROM E. Branched polymers II: Hyperbranched polymers[J]. Adv. Polym. Sci., 1999, 143, 1-34.
    [22]INOUE K. Functional dendrimers hyperbranched and star polymers[J]. Prog. Polym. Sci., 2000, 25, 453-571.
    [23]JIKEI M, KAKIMOTO M A. Hyperbranched polymers: A promising new class of materials[J]. Prog. Polym. Sci., 2001, 26, 1233-1285.
    [24]GAO C, YAN D Y. Hyperbranched polymers: From synthesis to applications[J]. Prog. Polym. Sci., 2004, 29, 183-275.
    [25]VOIT B. New developments in hyperbranched polymers[J]. Polym. Sci., Part A: Polym. Chem., 2000, 38, 2505-2525.
    [26]VOIT B I. Hyperbranched polymers: A chance and a challenge[J]. C. R. Chim., 2003, 6, 821-832.
    [27]VOIT B. Hyperbranched polymers - All problems solved after 15 years of research[J].Polym. Sci., Part A: Polym. Chem, 2005, 43, 2679-2699.
    [28]MORI H, MULLER A H E. Dendrimers V: Functional and hyperbranched building blocks, photophysical properties, applications in materials and life sciences (Hyperbranched (meth)acrylates in solution, melt, and grafted from surfaces)[J]. Top. Curr. Chem, 2003, 228, 1-37.
    [29]KIENLE R H, HOVEY A G. The polyhydric alcohol-polybasic acid reaction. I Glycerol-phthalic anhydride[J]. Journal of the American Chemical Society,1929,51(2):509-519
    [30]KIENLE R H, HOVEY A G. The polyhydric alcohol-polybasic acid reactions.Ⅲ.Further studies of glycerol-phthalic anhydride reaction[J]. Journal of the American Chemical Society, 1939,61(9):2258-2268
    [31]KIENLE R H, HOVEY A G. The polyhydric alcohol-polybasic acid reactions.Ⅳ.Glyceryl phthalate from phthalic acid[J]. Journal of the American Chemical Society, 1939, 61(9): 2268-2271
    [32]ODIAN G. Principles of polymerization[J], Wiley, 1991,125-132
    [33]FLORY P J. Molecular Size Distribution in Three-Dimensional Polymers . I. Gelation [J]. Journal of the American Chemical Society, 1941, 63(11): 3083-3090。
    [34]FLORY P J. Molecular size distribution in three dimensional polymers.Ⅱ.Trifunctional branching units [J]. Journal of the American Chemical Society, 1941, 63(11): 3091-3096
    [35]FLORY P J. Molecular size distribution in three dimensional polymers.Ⅲ. Tetrafunctional branching units [J]. Journal of the American Chemical Society, 1941, 63(11): 3096-3100.
    [36]FLORY P J. The structure of dibenzylidene dulcitol(1,3:4,6-Dibenzylidene-dulcitol) [J], Journal of the American Chemical Society, 1941, 64(1): 132-136.
    [37]FLORY P J, REHNER J. Statistical mechanics of cross-linked polymer networksⅠ.Rubberlike elasticity [J], Journal of Chemical Physics,1943, 11(11): 512-520. 38.Flory P.J.,J.Phys.Chem,(1949),17,303-310
    [39]KRICHELDORF H R, ZANG Q Z, SCHWARX G. New polymer syntheses.6.Linear and branched poly(3-hydroxy-benzoates) [J], Polymer, 1982, 23(12): 1821-1829.
    [40]KIM Y H, WEBSTER O W. Hyperbranched polyphenylenes[J]. Polymer Preprint, 1988, 29(2): 310-311。
    [41]KIM Y H, WEBSTER O W. Water soluble hyperbranched polyphenylene:“a unimolecular micelle”[J]. Journal of the American Chemical Society, 1990, 112(11): 4592-4593.
    [42]KIM Y H, WEBSETR O W. Hyperbranched polyphenylenes [J]. Poylmer Preprints, 1988, 29(2):3 10-311
    [43]KULKARNI A S, MAT ENGN. Investigating the molecular architecture of hyperbranched polymers [J]. Macromolecular rapid communications , 2007, 28 (12) : 1312-1316
    [44]UHRCIH K E, HAWKER C J, FRECHET J M J. One-pot synthesis of hyperbranched polyesters [J]. Macromoelcuels, 1992, 25: 4583-4587.
    [45]KOU H G, ASIF A, SHI W F, et al. A novel hyperbranched polyester acrylate used for microfabrications[J]. Polymers for Advanced Technologeis, 2004, 15(4): 192-196.
    [46]Belncowe A, DavidsonL ,Hayes W .Eur PolymJ , 2003, 39: 1955-1963
    [47] WANG K L, JIKEI M, KAKIMOTO M. Synthesis of soluble branched polyimides derived from an ABB monomer [J]. Journal of Polymer Science Part A: Poylmer Chemistry, 2004, 42(13): 3200-3211.
    [48]HONG L, CUI Y, WANG X, et al.Synthesis of a novel one-pot approach of hyperbranched polyurethanes and their properties [J]. Journal of Polymer Science Part A: Poylmer Chemistry, 2002 , 40 (3): 344-350.
    [49]FOSSUM E, TAN L. Geometrical influence of ABn monomer structure on the thermal properties of linear-hyperbranched ether–ketone copolymers prepared via an AB+ABn route [J]. Polymer, 2005, 46(23): 9686-9693
    [50]Fossum E, Hmimelberg P .J Poylm Sc i ,Par tA : Polym Chem i ,2005, 43: 3178~31871
    [51]BOTLON D H, WOOELY K L. Hyperbranched Aryl Polycarbonates Derived from A2B Monomers vs. AB2 Monomers [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(7): 823-835.
    [52]SI Q F, WANG X, FAN X D, et al. Synthesis and characterization of ultraviolet-curable hyperbranched poly(siloxysilane)s [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002 , 43(9):1883-1894
    [53]BAEK J B, SIMKO S R, TAN L S. Synthesis and chain-end modification of a novel hyperbranched polymer containing alternating quinoxaline and benzoxazole repeat units [J].Macormolecules, 2006 , 39(23):7959-7966
    [54]LI Z X, LIU J H, YANG S Y. et al. Synthesis and characterization of novel hyperbranched polybenzimidazoles based on an AB2 monomer containing four amino groups and one carboxylic group [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44 ,(19):5729-57391
    [55]CHE P, HE Y, WANG X. Hyperbranched Azo-Polymers Synthesized by Azo-Coupling Reaction of an AB2 Monomer and Postpolymerization Modification[J].Macormoelcuels , 2005 , 38(21):8657-86631
    [56]RADKE W, LITVINENKO G, MULLER A H E. Effect of Core-forming Molecules on MolecularWeight Distribution and Degree of Branching in the Synthesis of Hyperbranched Polymers. Macromolecules 1998, 31, 239.
    [57]Yamanaka, K.; Jikei, M.; Kakimoto, M. Preparation of Hyperbranched Aromatic Polyimide without Linear Units by End Capping Reaction [J]. Macromolecules, 2001, 34: 3910.
    [58] SUZUKI M, LI A, SAEQUSA T. Multibranching polymerization: palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched [J]. Macromolecules, 1992, 25: 7071-7072.
    [59]SUNDER A, HANSELMANN R, FREY H, et al. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization[J]. Macromolecules, 1999, 32 : 4240-4246.
    [60]FRECHET J M J, HENMI M, GITSOV I, et al. Self- condensing vinyl polymerization: An approach to dendritic materials [J].Science, 1995, 269(5227): 1080-1083.
    [61]FRECHET J M J, LEDUC M R, WEIMER M. Weimer M et al.Living free radical polymerizatio n and dendritic polymers[J]. Am Chem Soc Div Polym Chem Prepr,1997,38(1):756-757
    [62]JIANG X L, ZHONG Y I, YANG Y, et al. Hyperbranched Copolymers of p-(Chloromethyl) styrene and N-Cyclohexylmaleimide Synthesized by ATRP [J]. J Appl Polym Sci, 2000, 78(11): 1992-1997
    [63]GAUTHIER M, TIEHAGWA L, DOWNEY J, et al. Arborescent Graft Copolymers: Highly Branched Macromolecules with a Core-Shell Morphology [J]. Macromolecules, 1996, 29: 519-527.
    [64]Wang F, Roovers J, Toporowski P. [J]. Macmmol Rep, 1995,A32(5&6): 951-958
    [65]LI X, LU X, LIN Y, et al. Synthesis and characterization of hyperbranchedpoly(ester-amide)s from commercially available dicarboxylic acids and multihydroxyl primary amines [J]. Macromolecules , 2006 , 39: 7889-8991
    [66]WANG D, ZHENG Z, HONG C, et al. Michael addition polymerizations of difunctional amines (AA) and triacrylamides (B3) [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(21): 6226-6242.
    [67]YAN D, GAO C. Hyperbranched Polymers Made from A(2) and BB’(2) Type Monomers. 1. Polyaddition of 1-(2-aminoethyl)piperazine to Divinyl Sulfone[J]. Macromolecules, 2000, 33: 7693.
    [68]GAO C, YAN D. Synthesis of Hyperbranched Polymers from Commercially Available A(2)and BB’(2) Type Monomers [J]. Chemical Communications, 2001, 107: 1567-1573.
    [69]MORGENROTH F, MULLEN K. Dendritic and Hyperbranched Polyphenylenes via a Simple Diels-Alder Route [J]. Tegrahedron 1997, 53: 15349-15366.
    [70]HOBSON L J, FEAST W J. KENWRIGHT A M. Poly(amidoamine) Hyperbranched Polymers[J]. Abstr.Pap. Am. Chem. 1997, 214, 258.
    [71]HOBSON L J, KENWRIGHT A M, FEAST W J. A Simple‘One Pot’Route to the Hyperbranched Analogues of Tomalia's Poly(amidoamine) Dendrimers [J]. Chem. Commun. 1997, 19, 1877.
    [72]MILLER T M, NEENAN T X, KWOCK E W, et al. Dendritic Analogs of Engineering Plastics: a General One-step Synthesis of Dendritic Polyaryl Ether [J]. J. Am. Chem. Soc.1993; 115:356.
    [73] Chu FK, Hawker CJ, Polym. Bull. 1993, 30: 265-272
    [74]MANSFIELD M L. Dendron segregation in model dendrimers [J], Polymer, 1994. 35: 1827-1830.
    [75]FRECHET J M J. Presented at the 35th IUPAC Int Symp on macromolecules, Akron, Ohio, 1994
    [76]施文芳,黄宏,超支化聚合物研究进展[J],高等学校化学学报,1997,18,1398-1405
    [77]VIRGIL PERCEC, MASAYA KAWASUMI. Synthesis and Characterization of A Thermotropic Nematic Liquid Crystalline Dendrimeric Polymer [J]. Macromolecules, 1992, 25(15): 3843-3850.
    [78]MALMSTROEM E, JOHANSSON M, HULT A. Hyperbranched Aliphatic Polysters [J]. Macromolecules, 1995, 28(5): 1698-1703.
    [79]VAN HEST J C M. Doctoral thesis, TU Eindhoven, Faculty of Chemical Engineering and Chemistry. The Netherlands.1996
    [80]KIM Y H, WEBSTER O W. Synthesis and charaterization of hyperbranchedpolyurethanes prepared from blocked isocycanatemonomers by step-growthpolymerization [J]. Macromolecules , 1993 , 26 : 4809 - 4813.
    [81]ZHANG L F, EISENBERG A. Multiple morphologies of \"crew-cut\" aggregates ofpolystyrene-b-poly(acrylic acid) block copolymers [J]. Science, 1995, 268, 1728-1731.
    [82]ZHANG L F, EISENBERG A. Morphogenic effect of added ions on crew-cut aggregates ofpolystyrene-b-poly(acrylic acid) block copolymers in solutions[J]. Macromolecules, 1996, 29: 8805-8815.
    [83]Shen, H. W., Zhang, L. F., and Eisenberg, A. Thermodynamics of crew-cut micelle formationof polystyrene-b-poly(acrylic acid) diblock copolymers in DMF/H2O mixtures [J]. The Journal of Physical Chemistry B, 1997, 101:4697-4708.
    [84]YU Y S, ZHANG L F, EISENBERG A. Multiple morphologies of crew cut aggregates of polybutadiene-b-poly(acrylic acid) diblocks with low T-g cores. Langmuir, 1997, 13: 2578-2581.
    [85]ZHANG L F, SHEN H W, EISENBERG A. Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly(acrylic acid) copolymers in solutions [J]. Macromolecules, 1997, 30, 1001-1011.
    [86]ZHANG L F, EISENBERG A. Structures of ''crew-cut'' aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers. Macromol. Symp., 1997, 113, 221-232.
    [87]BRONICH T K, CHERRY T, VINOGRADOV S V. et al.Self-assembly in mixtures of poly(ethylene oxide)-graft-poly(ethyleneimine) and alkyl sulfates [J]. Langmuir, 1998, 14, 6101-6106.
    [88]YU G E, EISENBERG A. Multiple morphologies formed from an amphiphilic ABC triblock copolymer in solution[J]. Macromolecules, 1998, 31, 5546-5549.
    [89]YU Y S, ZHANG L F, EISENBERG A, Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers [J]. Macromolecules, 1998, 31, 1144-1154.
    [90]LI S, CLARKE C J, EISENBERG A, et al. Langmuir films of polystyrene-b-poly(alkyl acrylate) diblock copolymers [J]. Thin Solid Films, 1999, 354, 136-141.
    [91]BURKE S, SHEN H W, EISENBERG A. Multiple vesicular morphologies from block copolymers in solution. Macromol. Symp., 2001, 175, 273-283.
    [92]DISCHER D E, EISENBER A. Polymer vesicles. Science, 2002, 297, 967-973.
    [93]SOO P L, EISENBERG A. Preparation of block copolymer vesicles in solution [J]. J. Polym. Sci., Part B: Polym. Phys., 2004, 42, 923-938.
    [94]LIU X Y, WU J, KIM J S, et al. Self-assembly of mixtures of block copolymers of polystyrene-b-acrylic acid) with random copolymers of polystyrene-co-methacrylic acid) [J]. Langmuir, 2006, 22, 419-424.
    [95]PERCEC V, GLODDE M, BERA T K. et al. Self-organization of supramolecular helical dendrimers into complex electronic materials [J]. Nature, 2002, 419, 384-387.
    [96]JEPPESEN J O,PERKINS J, BECHER J, et al. Self-assembly of an amphiphilic [2]rotaxane incorporating a tetrathiafulvalene unit. Org. Lett., 2000, 2, 3547-3550.
    [97]ELIZAROV A M, CHANG T, CHIU S H, et al. Self-assembly of dendrimers by slippage. Org. Lett., 2002, 4, 3565-3568.
    [98]JANG S S, JANG Y H, KIM Y H, et al. Molecular dynamics simulation of amphiphilic bistable [2]rotaxane Langmuir monolayers at the air/water interface. J. Am. Chem. Soc., 2005, 127, 14804-14816.
    [99]MENDES P M, FLOOD A H, STODDART J F. Nanoelectronic devices from self-organized molecular switches. Appl. Phys. A-Mater. Sci. Process., 2005, 80, 1197-1209.
    [100]SUAREZ M, LEHN J M, ZIMMERMAN S C, et al. Supramolecular liquid crystals. self-assembly of a trimeric supramolecular disk and its self-organization into a columnar discotic mesophase. J. Am. Chem. Soc., 1998, 120, 9526-9532.
    [101]ZHAO H Y, GONG J, JIANG M, et al. A new approach to self-assembly of polymer blends in solution. Polymer, 1999, 40, 4521-4525.
    [102]YUAN X F, ZHAO H Y, JIANG M, et al. The self-assembly of polymer blends in selective solvents. Acta Chim. Sin., 2000, 58, 118-121.
    [103]DUAN H W, CHEN D Y, JIANG M. et al. Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent. J. Am. Chem. Soc., 2001, 123, 12097-12098.
    [104]JIANG M, DUAN H W, CHEN D Y. Macromolecular assembly: From irregular aggregates to regular nanostructures. Macromol. Symp., 2003, 195, 165-170.
    [105]MU F, NING F L, JIANG M, et al. Giant vesicles based on self-assembly of a polymeric complex containing a rodlike oligomer. Langmuir, 2003, 19, 9994-9996.
    [106]GU C F, CHEN D Y, JIANG M. Short-life core-shell structured nanoaggregates formed by the self-assembly of PEO-b-PAA/ETC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide) and their stabilization. Macromolecules, 2004, 37, 1666-1669.
    [107]BO Z S, ZHANG X, YANG M L, et al. The self-assembled dendritic supramolecular complex based on electrostatic attraction [J]. Chemical Journal of Chinese Universities, 1997, 18: 326-328.
    [108]ZHANG X, LI H B, ZHAO B, et al. Ordered self-organizing films of an amphiphilic polymer by slow evaporation of organic solvents [J]. Macromolecules, 1997, 30: 1633-1636.
    [109]CHI L F, LI H B, ZHANG X. et al.Atomic force microscopic (AFM) study on a self-organizing polymer film [J]. Polymer Bulltin, 1998, 41: 695-699.
    [110]ZHANG X, SHEN J C. Self-assembled ultrathin films: From layered nanoarchitectures to functional assemblies [J]. Advanced Materials, 1999, 11: 1139-1143.
    [111]XIONG H M, QIN L D, SUN J Z, et al. Synthesis and self-assemblyof rod-coil diblock molecules of oligophenylenevinylene-poly(ethylene oxide) [J]. Chemistry Letters, 2000, 586-587.
    [112]LI H B, LIU Q T, QIN L D, et al. Self-assembling structures and thin-film microscopic morphologies of amphiphilicrod-coil block oligomers [J]. Journal of Colloid and Interface Science, 2005, 289: 488-497.
    [113]ZHANG X, CHEN K, XIE K, et al. Self-assembly of monodisperse polymermicrospheres from PPQ-b-PEG rod-coil block copolymers in selective solvents [J]. Science in China - Series B: Chemistry, 2005, 48: 42-48.
    [114]YAN D Y, ZHOU Y F, HOU J. Supramolecular self-assembly of macroscopic tubes [J]. Science, 2004, 303: 65-67.
    [115]ZHOU Y F, YAN D Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes [J]. Angewandte Chemie International Edition, 2004, 43: 4896-4899.
    [116]JIA Z F, ZHOU Y F, YAN D Y. Amphiphilic star-block copolymers based on a hyperbranched core: Synthesis and supramolecular self-assembly [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43: 6534-6544.
    [117]MAI Y Y, ZHOU Y F, YAN D Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether[J]. Macromolecules, 2005, 38, 8679-8686.
    [118]ZHOU Y F, YAN D Y. Real-time membrane fission of giant polymer vesicles[J]. Angew. Chem., Int. Ed., 2005, 44, 3223-3226.
    [119]TIAN H Y, DENG C, LIN H, et al.Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: Synthesis and micelle characterization[J]. Biomaterials, 2005, 26, 4209-4217.
    [120]Zaks, A.; Klibanov, A. M. Science 1984, 224, 1249.
    [121]KLIBANOV A M. Enzymes that work in organic solvent[J].Chemtech. 1986, 16, 354-359.
    [122]KLIBANOV A M. Enzymatic catalysis in anhydrous organic solvents[J]. Trends Biochem. Sci. 1989, 14, 141-144.
    [123]GUPTA M N. Enzyme Function in Organic Solvents [J]. Eur. J. Biochem. 1992, 203(1/2): 25-32.
    [124]DORDICK J S. Enzymatic Catalysis in Monophasic Organic Solvents [J]. Enzyme Microb.Technol. 1989, 11: 194-211.
    [125]WESCOTT C R, KLIBANOV A M. Redox regulation of maize NADP-malic enzyme by thiol-disulfide interchange: effect of reduced thioredoxin on activity[J].Biochim Biophys Acta. 1994 May 18;1206(1):10-6.
    [126]FABER K, FRACNSSEN M C R. Prospects for the increased application of biocatalysts in organic transformations[J] Tibtech. 1993, 11, 461-470.
    [127]DORDICK J T. Enzymatic and chemoenzymatic approaches to polymer synthesis[J]. Tibtech. 1992, 10, 287-293.
    [128]MARGOLIN A L. Enzymes in the synthesis of chiral drugs[J].Enzyme Microb Technol,1993,15(4):266-280
    [129]KILBANOV A M, RUBIO E. Effect of the solvent on enzyme regioselectivity[J]. J Am Chem Soc., 1991, 113, 695-696
    [130]KLIBANOV A M, TAWAKI S. Chemoselectivity of enzymes in anhydrous media is strongly solvent dependentBiocatalysis., 1993, 8, 3-19
    [131] Klibanov,A. M., Chinsky, N., Chemoselective Enzymatic Monoacylation of Bifunctional CompoundsJ Am Chem Soc., 1989, 111, 386-388
    [132]VOLKIN D B, KLIBANOV A M. in Protein Function: A Practical Approach(Creighton, T. E., ed.) Oxford University Press, Oxford, (1989) pp. 1-24.
    [133]VOLKIN D B, MIDDAUGH C R. The effect of temperature on protein structure, in Stability of Protein Pharmaceuticals Stability of Protein Pharmaceuticals[J]. Part A., 1992, PP 215-247
    [134]VOLKIN D B, SANYAL G, BURKE C J. et al. Preformulation Studies as an Essential Guide for Formulation Development and Manufacture of Protein Pharmaceuticals[J]. Pharm. Biotech, Vol. 1-4, 1-46.
    [135] Fersht,A., Enzyme Seructure and Mechanirm, New York, 1985
    [136] GAERTNER H, PUIGSERVER A.. Kinetics and specificity of serine proteases in peptide synthesis catalyzed in organic solvents. Eur. J. Biochem. 1989,181:207-213.
    [137]WESCOTT C R, KLIBANOV A M. Solvent variation inverts substrate specificity of an enzyme[J]. J Am Chem Soc., 1993, 115, 1629-1631
    [138]RUSSELL A J, KLIBANOV A M. Inhibitor-induced enzyme activation in organic solvents[J]. J Biol Chem., 1988, 263, 11624-11626
    [139]HALLING P J.《Biotechnology and Bioengineering》.Biotechnol Bioeng., 1990, 35, 691-696
    [140]VALIVETY R H, JOHNSTON G A, et al.Solvent effects on biocatalysis in organic systems: equilibrium position and rates of lipase catalyzed esterification[J].1991, 38, 1137-1143
    [141]RYU K, DORDICK J S. Free Energy Relationships of Substrate and Solvent Hydrophobicities on Enzymatic Catalysis in Organic Media[J]. J Am Chem Soc., 1989, 111, 8026-8027
    [142]RYU K, DORDICK J S. How do organic solvents affect peroxidase structure and function[J] Biochemistry, 1992, 31, 2588-2598
    [143]BURKE P A, GRIFFIN R G, KLIBANOV A M. Solid-state Nuclear magnetic Resonance Investigation of Solvent Dependence of Tyrosyl Ring Motion in an Enzyme[J]. Biotechnology and Bioengineering 1993; 42:87–94.
    [144]ALEXANDER M, KLIBANOV. review article Improving enzymes by using them in organic solvents[J],Nature , 2001,409:241-246
    [145]MACDONALD R T, PULAPURA S, SVIRKIN Y, et al. Enzyme catalyzedε-caprolactone ring-opening polymerization[J]. Macromolecules 1995; 28: 73-78
    [146]MEI Y, KUMAR A, GROSS R A. Probing water–temperature relationships forlipase catalyzed lactone ring-opening polymerization[J]. Macromolecules 2002; 35: 5444-5448.
    [147]CORDOVA A, IVERSEN T, HULT K. Lipase catalyzed formation of macrocycles by ring-opening polymerization ofε-caprolactone[J]. Polymer 1998; 39: 6519-6524.
    [148]LOEKER F C, DUXBURY C J, KUMAR R, et al. Enzyme-catalyzed ring-opening polymerization ofε-caprolactone in supercritical carbon dioxide. Macromolecules2004; 37: 2450-2453.
    [149]WANG J S, MATYJAZEWSKI K.“Living”/ controlled radical polymerization transition-metal-catelyzed atom transfer radical polymerization in the presence of a conventional radical initiator[J]. Macromolecule, 1995,28: 7572-7575.
    [150]KATO M, KAMIGAITO M, SAWAMOTO T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(II)/MethylaluminumBis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization[J], Macromolecules, 1995, 28, 1721-1723.
    [151] COESSENS V, PINTAUER T, MATYJASZEWSKI K. Functional polymers by atom transfer radical polymerization[J], Prog. Polym. Sci., 2001, 26, 337-377..
    [152]WANG J S, MATYJASZEWSKI K. Controlled/“living”radical polymerization. halogen atom transfer radical polymerization promoted by Cu(I)/Cu(II) redox process[J], Macromolecules, 1995, 28, 7901-7910.
    [153] PERCEC V, BARBOIU B.“living”radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl[J], Macromolecules, 1995, 28, 7970-7972
    [154]王晓松,罗宁,应圣康,功能高分子学报,1998, 1, 1.
    [155]潘才元等,全国高分子学术论文报告会论文集,1997, 1, a236.
    [156]HADDLETON D M, KUKULJ D, DUNCALF D J, et al. Low-temperature living“radical”polymerization (atom transfer polymerization)of methyl methacrylate mediated by copper(I) N-alkyl-2-pyridylmethanimine complexes[J], Macromolecules, 1998, 31, 5201-520
    [1]SCHULTZ J M. Polymer Crystallization, London: Oxford University Press, 61-64, 2001[C].
    [2]何曼君,陈维孝,董西侠,等.高分子物理[M].上海:复旦大学出版社,1999:42-48
    [3]罗艳红,姜勇,雷玉国,等.原子力显微镜研究高聚物结晶的最新进展[J].科学通报, 2002 , 47 : 1121-1125.
    [4]CHAN C M, LI L, NG K, et al. Surface studies of polyethers with well-defined segmental length [J]. Macromolecular Symposia[J], 2000,159: 113-121.
    [5]LI L, NG K M, CHAN C M, et al. Surface Studies of the Rearrangement of End Groups of a Polymer by ToF-SIMS and AFM [J]. Macromolecules, 2000,33(15): 5588-5592.
    [6] LI L, CHAN C M, YEUNG K L, et al. Direct Observation of Growth of Lamellae and Spherulites of a Semicrystalline Polymer by AFM[J]. Macromolecules, 2001, 34(2): 316-325.
    [7]LI L, CHAN C M, LI J X, et al. A Direct Observation of the Formation of Nuclei and the Development of Lamellae in Polymer Spherulites[J]. Macromolecules 1999, 32(24): 8240-8242.
    [8]FLOUNDS G, REITER G, LAMBERT O, et al. Structure and Dynamics of StructureFormation in Model Triarm Star Block Copolymers of Polystyrene, Poly(ethyleneoxide), and Poly(ε-caprolactone)[J]. Macromolecules 1998, 31: 7279-7290.
    [9]SUN J R, HONG Z K, YANG L X, et al. Crystallization and Ring-Banded Spherulite Morphology of poly(ethylene oxide)- Poly(e-caprolactone) Diblock Copolymer[J], Polymer, 2004, 45:5969-5977.
    [10]MAREAU V H, PRUDHOMME R E. In-Situ Hot Stage Atomic Force MicroscopyStudy of Poly(ε-caprolactone) Crystal Growth in Ultrathin Films[J]. Macromolecules 2005, 38: 398-408
    [11]Ozawa, T. Kinetics of Non-isothermal crystallization [J]. Polymer, 1971, 12: 150-158.
    [12]Fava, R. A. Methods of experimental physics polymer Part B: Crystal structure and morphology [M]. Academic Press Inc. New York: 1980.
    [13]Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC [J]. Polymer, 1978, 19: 1142-1144.
    [14]莫志深。一种研究聚合物非等温结晶动力学的方法[J].高分子学报, 2008,7:656-661。
    [15]Liu, S.; Yu, Y.; Cui, Y. et al. Isothernal and non-isothermal crystallization kinetics of nylon-11 [J]. Journal of Applied Polymer Science, 1998, 70: 2371-2380.
    [16]Zhao, Q.; Mo, Z. Melting crystallization behavior of nylon 66 [J]. Chinese Journal of Polymer Science, 2001, 19: 237-246.
    [17]Zhang, Q.; Zhang, Z.; Zhang, H. et al. Isothermal and non-isothermal crystallization kinetics of nylon-46 [J]. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40: 1784-2002.
    [18]Liu, M.; Zhao, Q.; Wang, Y. et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212 [J]. Polymer, 2003, 44: 2537-2545.
    [19]Kissinger, H. E. Variation of peak temperature with heating rete in different thermal analysis [J]. Journal of Research National Bureau Standards, 1956, 57: 217-221.
    [1]ADELHORST K,BJORKLING F, GODTFREDSEN S E, et al. Enzyme Catalysed Preparation of 6-O-Acylglucopyranosides [J].Synthesis,1990, 112-115.
    [2]NAMEKAWA S,SUDA S, UYAMA H, et al. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects [J]. International Journal of Biological Macromolecules, 1999, 25: 145.
    [3]OKUMARA S, IWAI M, TOMINAGA Y, et al. Synthesis of ester oligomer by aspergillus niger lipase [J]. Agricultural Biology and Chemistry, 1984,48(11): 2805-2808.
    [4]ANDRESEN O, KIRK O. In Carbohydrate Bioengineering,Petersen, S.B., Svensson,B., Pedersen, S., Eds., Elsevier:Elsinore, Denmark, 1995, p 343.
    [5]MACDONALD R T, PULAPURA S K, SVIRKIN Y, et al. Enzyme-Catalyzed .epsilon.-Caprolactone Ring-Opening Polymerization [J]. Macromolecules, 1995, 28(1): 73-78.
    [6]SHIBATANI S Shibatani, S., Kitagawa, M., Tokiwa, Y., Biotechnol Lett., 1997,19, 511.
    [7]KITAGAWA M, TOKIWA Y. Carbohydr Lett., 1997, 2: 893-899. [8)]TOKIWA Y, KITAGAWA M, FAN H, et al., Synthesis of vinyl arabinose ester catalyzed by protease from Streptomyces sp [J]. Biotechnology Letters, 1999, 13: 173-175.
    [9]Bisht, K. S., Waterson, A. C.,Gross, R. A., Glycolipid containing polyacrylate and polyacrylamide copolymers Proceedings of the Chemical Society : Polymeric Materials: Science and Engineering., 1998, 78,246-247.
    [10]ASMER H J, LANG S, WAGNER F, et al. Microbial production, structure elucidation and bioconversion of sophorose lipids [J]. Journal of the American Oil Chemists’Society, 1988, 65: 1460-1466.
    [11]PATIL D R, DORDICK J S, RETHWISCH D G. Chemoenzymatic synthesis of novel sucrose-containing polymers [J]. Macromolecules.1991, 24(11): 3462-3463.
    [12]Pavel, K., Ritter, H., In Enzymes in Polymer Synthesis, Gross,R. A., Kaplan, D. L., Swift, G., Eds., American ChemicalSociety: Washington, DC, 1996, p 200
    [13]PAVEL K, RITTER H. Radical polymerization of different 11-meth-acryloylaminoundecanoic acid esters and oligoesters esterified by lipases [J].Makromolekulare Chemie, 1991, 192, 1941-1949.
    [14]Imada, Y., Kajikawa, Y., Taniguchi, M., Masuda, T., Kobunshi, R.,Chem Abstr., 19
    [15]Won, C. Y., Chu, C. C., Lee, J. D., Synthesis and characterization of biodegradable poly(L-aspartic acid-co-PEG) [J]. Journal of Polymer Science Part A: Polymer Chemistry 1998, 36(16), 2949-2959
    [16]Won, C. Y., Chu, C. C., Lee, J. D., Novel biodegradable copolymers containing pendant amine functional groups based on aspartic acid and poly(ethylene glycol) [J]. Polymer, 1998, 39(25), 6677-6681
    [17]Meada, Y., Sakai, K., Nakayama, A., Arvanitoyannis, I., Kawashi, N.,Hayasshi, K., Yamamoto, N. Synthesis and biodegradation of copolyesterether of copoly(succinic anhydride/ethylene oxide) with polyether, J Appl Polym Sci., 1998, 68(13),2095-2106
    [18]Kartvelishivili, T., Tsitlanadze, G., Edilashvili, L., Japaridza, N.,Katsarava, R., Amino acid based bioanalogous polymers. Novel regular poly(ester urethane)s and poly(ester urea)s based on bis(L-phenylalanine) , -alkylene diesters (p 1921-1932) [J]. Macromolecular Chemistry and Physics, 1997, 198(6), 1921-1932
    [19]Dupret, I., David, C., Cpolpaert, M., Loitz, J. M., WauVen, C. V., Biodegradation of poly(ester-urethane)s by a pure strain of micro-organisms Macromolecular Chemistry and Physics, 1999, 200(11), 2508-2518.
    [20]Svirkin, Y. Y., Xu, J., Gross, R. A., Kaplan, D. L., Swift, G., Enzyme-Catalyzed Stereoelective Ring-Opening Polymerization ofα-Methyl-β-propiolactone [J]. Macromolecules, 1996, 29, 4591-4597.
    [21]Kobayashi, S., Kashiwa, K., Kawasaki, T., Shoda, S., Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst [J]. Journal of the American Chemical Society, 1991, 113, 3079-3084.
    [22]Martin, B. D., Ampofo, S. A., Linhardt, R. J., Dordick, J. S., Biocatalytic synthesis of sugar-containing polyacrylate-based hydrogels [J]. Macromolecules., 1992, 25, 7081-7085.
    [23]Kumar A, Gross R A. Candida antartica Lipase B Catalyzed Polycaprolactone Synthesis: Effects of Organic Media and Temperature [J]. Biomacromolecules, 2000, 1(1): 133-138.
    [24]Berkane, C., Mezoul, G., Latot, T., Brigodiot, M., Marechal. E., Lipase-Catalyzed Polyester Synthesis in Organic Medium. Study of Ring?Chain Equilibrium [J].Macromolecules, 1997, 30, 7729
    [25]Skaria S, Smet M, Frey H. Enzyme-Catalyzed Synthesis of HyperbranchedAliphatic Polyesters [J]. Macromolecular Rapid Communications, 2002, 23:292-296
    [26] Jing jiang,, Hongwei Liu, Youliang Zhao, Chuanfu Chen, Fu Xi. Synthesis of Dendronized, Chiral Conjugated Polymers with Appendant Frechet-Type Dendrons, Journal of Polymer Science Part A: Polymer Chemisty, 2002, 40, 1167-1172
    [27]华曼,薛乔,陈明清,刘晓亚,杨成.以原子转移自由基聚合法合成两亲性嵌段共聚物.江南大学学报.2004,3(1).79-82, 89.
    [28]M.R. Leduc, C. J. Hawker, J. M. J. Frechet. Dendritic Initiators for“Living”Radical Polymerizations: A Versatike Approach to the Synthesis of Dendritic-Linear Block Copolymers [J], Journal of American Chemical Society, 1996,118(45), 11111-11118
    [29]N. Higashi, T. Koga, M. Niwa. Dendrimers with Attached Helical Peptides [J], Advanced Matericals, 2000, 12(18),1373-1375.
    [30]赵优良,习复.树枝状分子引发苯乙烯的原子转移自由基聚合,弹性体,2001,11(3),20-23
    [31] Otsuka H, Nagasaki Y, Kataoka K. Self-assembly of poly(ethyleneglycol)-based block copolymers for biomedical applications. Current Opinion inColloid & Interface Science, 2001, 6: 3-10
    [32] Zhang L; Mei M. Self-Assembly of Polyaniline-From Nanotubes to Hollow Microspheres. Advanced Functional Materials, 2003, 13(10), 815-820
    [33]Kwon, G. S., Okano, T., Polymeric micelles as new drug carriers [J]. Advanced Drug Delivery Reviews, 1996, 21(2), 107-116
    [1]JULIO ALVAREZ, TONG REN, ANGEL E, et al. Kaifer. Radox Potential Section in a New Class of Dendrimers Containing Multiple Ferrocene Centers[J]. Organometallics, 2001, 20(16):3543-3549.
    [2]K NATARAJAN JAYAKUMAR, PANDI BHARATHI, S. THAYUMANAVAN .Dendrimers Based on a Three-Dimensionally Disposed AB4 Monomer[J]. Organic Letters 2004,6(15),2547-2550
    [3] TOMALIA D A, BAKER H, DEWALD J, et al. A New Class of Polymers: Starburst-Dendritic Macromolecules[J], Polymer Journal, 1985,17(1):117-132
    [4]STUMBE JEAN-FRANCOIS, BRUCHMAN BERND,. Hyperbranched Polyesters Based on Adipic Acid and Glycerol[J], Macromolecular Rapid Communications,2004,25(9):921-924
    [5]MASSEY JASON A, WINNIK MITCHELL A, MANNERS IAN, et al. Fabrication of Oriented Nanoscopic Ceramic Lines from Cylindrical Micelles of an Organometallic Polyferrocene Block Copolymer[J]. Journal of American Chemical Society, 2001,123(13):3147-3148.
    [6]GAO Y, JEANNE M. Shreeve. Main Chain 1,1-Ferrocene-Containing Polyelectrolytes Exhibiting Thermotropic Liquid-Crystalline and Fluorescent Properties[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2005,43(5):974-983.
    [7]KULBABA K, MACLACHLAN MARK J, EVANS CHRISTOPHER E B, et al. Organometallic Gels: Characterization and Eletrochemical Studies of Swellable, Ternally Crosslinked Poly(ferrocenylsilane)s[J]. Macromolecular Chemical Physics,2001,202,1768-1775.
    [8]YANG Y L , XIE Z W , WU C, et al. Novel Synthesis and Characterization of Side-Chain Ferrocene=Containing Polymers[J]. Macromolecules,2002,35,3426-3432.
    [9]PLENIO H, ABERLE C. Coupled Molecular Switches: A Redox-Responsive Ligand and the Redox-Switched Complexation of Metal Ions[J]. Chemistry-A European Journal,2001, 7, 4438-4446.
    [10]DANIEL M C, RUIZ J, Didier Astruc. Supramolecular H-Bonded Assemblies of Redox-Active Metallodendrimers and Postive and Unusal Dendritic Effects on the Recognition of H2PO4-[J]. Journal of American Chemical Society,2003,125,1150-1151.
    [11]DANIEL M C, BA F, RUIZ J, Didier Astruc. Assemblies of Redox-Active Metallodendrimers Using Hydrogen Bonding for the Electrochemical Recognition of the H2PO4 -and Adenosine-triphosphate(ATP2-) Anions[J]. Inorganic Chemistry, 2004,43,8649-8657.
    [12]DANIEL M C, RUIZ J, NLATE S, et al. Didier Astruc. Nanoscopic Assemblies between Supramolecular Redox Active Metallodendrimers and Gold Nanoparticles: Synthesis, Characterization, and Selective Recognition of H2PO4 -,H2SO4-,and Adenosine-5`-triphosphate(ATP2-) Anions[J]. Journal of American Chemical Society,2003, 125,2617-2628.
    [13]BEER P D, DAVIS J J, Daniel A. Drillsma-Milgrom, Fridrich Szemes. Anion recognition and redox sensing amplification by self-assembled monolayers of 1,1`-bis(alkyl-N-amido)ferrocene[J]. Chemical Communications,2002, 1716-1717.
    [14]ZHI Y G, DONG C Y, HAN J, et al. The Synthesis and Application of Chiral Catalyst of Ferrocene Polyamid[J]. Chemical Research Application.2000, 12,410-415(Chinese).
    [15]YAN D Y, ZHOU Y F, HOU J. Spramolecular self-assembly of macroscopic tubes[J]. Science, 2004,303,65-67.
    [16] ZHU X Y, CHEN L, YAN D Y, et al. Supramolecular Self-Assembly of Inclusion Complexes of a Multiarm Hyperbranched Polyether with Cyclodextrins[J]. Langmuir, 2004,20,484-490.
    [17]邱藤,唐黎明,庚新林,等.端基结构对超支化聚合物静电吸附自组装行为的影响.高等学校化学学报,2004, 25(5): 971-974.
    [18]邱藤,唐黎明,庚新林,等.端羟基芳脂型超支化聚酯自组装性能的研究.高等学校化学学报,2002, 23(1): 155-157.
    [19]王康成,黄卫,高超,等.由苯-1, 2, 4-三羧酸-1, 2-酐和二乙醇胺合成结构非对称超支化聚(酰胺一酯),高分子学报,2003,5, 637-641
    [20]VARMA I. K, ALBERTSSON A, RAJKHOWA R, et al. Enzyme catalyzed synthesis of polyesters[J]. Prog. Polym. Sci. 2005, 30(10): 949-981.
    [21]NAMEKAWA S, SUDA S, UYAMA H, et al. Biol Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects[J]. Macromolecules. 1999, 25(1-3): 145-151.
    [22]OKUMARA S, IWAI M, TOMINAGA Y, et al. Synthesis of Ester Oligomer byAspergillus niger Lipase[J] Agric. Biol. Chem. 1984, 48(Ⅱ):2805.
    [23]KOBAYASHI S, UYAMA H, KIMURA S.Enzymatic polymerization[J]. Chem. Rev. 2001, 101, 3793-3818.
    [24]GROSS R A. KUMAR A, KALRA B. Polymer synthesis by in vitro enzyme cat alysis[J]. Chem. Rev. 2001, 101(7) 2097-2124.
    [25]MACDONALD R T, PULAPURA S K, SVIRKIN Y Y. Enzyme catalyzedε-capro- lactone ring-opening polymerization[J]. Macromolecules,1995, 28(1), 73-78.
    [26]SHIBATANI S, KITAGAWA M, TOKIWA Y. Enzymatic synthesis of vinyl sugar ester in dimethylformamide[J]. Biotechnol. Lett. 1997, 19:511-514.
    [27]KITAGAWA M, TOKIWA Y. Enzymatic synthesis of polymerizable sugar ester and its chemical polymerization[J]. Carbohydr. Lett. 1997, 2, 343-348
    [28] TOKIWA Y, KITAGAWA M, HONG F, et al. Synthesis of vinyl arabinose ester catalyzed by protease from Streptomyces sp[J]. Biotechnol. Tech. 1999, 13:173-176.
    [29]Bisht, K. S.; Waterson, A. C.; Gross, R. A. PMSE 1998, 97, 246.
    [30]ASMER H J, LANG S, WAGNER F, et al. Microbial production, structure elucidation and bioconversion of sophorose lipids[J]. J. Am. Oil Chem. Soc. 1988, 65:1460-1466.
    [31]PATIL D R, DORDICK J S, RETHWISCH D G. Chemoenzymatic Synthesis of Novel Sucrose-. Containing Polymers[J]. Macromolecules ,1991, 24, 3462-3463.
    [32]Pavel, K.; Ritter, H. In Enzymes in Polymer Synthesis, Gross, R. A.; Kaplan, D. L.; Swift, G.; Eds. American Chemical Society: Washington, DC, 1996, p 200.
    [33]PAVEL K, RITTER H. Enzymes in polymer chemistry. 5. Radical polymerization of different 11-methacryloyl- aminoundecanoic acide esters and oligoesters esterified by lipases[J]. Makromol. Chem. 1991, 192, 1941-1949.
    [34]BISHT K S, DENG F, GROSS R A. et al. Ethyl glucoside as a multifunctional initiator for enzyme-catalyzed regioselective lactone ring-opening polymerization[J]. JACS. 1998, 120, 1363-1367
    [35]MAHAPATRO A, KUMAR A, KALRA B,et al. Solvent-Free Adipic Acid/1,8-Octanediol Condensation Polymerizations Catalyzed by Candida antartica Lipase B[J]. Macromolecules 2004, 37(1): 35-40.
    [36]WALLACE and MORROW, 1989. WALLACE J S and C J J. MorrowBiocatalytic synthesis of polymers. II. Preparation of -AA-BB-x polyesters byporcine pancreatic lipase catalyzed transesterification in anhydrous, low polarity organic solvents[J]. Polym. Sci. Part A: Polym. Chem. 1989, 27, 3271-3284.
    [37] KNANI D, GUTMAN A L, KOHN D H. Enzymatic polyesterificationin organic media. Enzyme-catalyzed synthesis of linear polye-sters[J] J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 1221-1232.
    [38]KNANI D, KOHN D H. Enzymatic polyesterification in organicmedia II. Enzyme catalyzed synthesis of lateral substituted aliphatic polyesters and copolyesters.Polym[J]. Sci. Part A: Polym. Chem. 1993, 31: 2887-2897.
    [39]OHAGAN D, ZAIDI N A. Enzyme catalysed condensation polymerisation (ECCP): The polymerization of 11-hydroxyundecanoic acid with lipase from candida-cylindrecea[J].Polymer 1994, 35, 3576-3578.
    [40]HE F, LI S, VERT M, et al. Enzyme-catalyzed polymerization and degradation of copolymers prepared from epsilon-caprolactone and poly(ethylene glycol)[J]. Polymer 2003, 44, 5145-5151.
    [41]PANOBA A A, KAPLAN D L. Mechanistic limitations in the synthesis of polyesters by lipase-catalyzed ring-opening polymerization[J]. Biotechnology and bioengineering 2003, 84, 103-113.
    [42]UYAMA H, KOBAYASHI S. Enzyme-catalyzed polymerization to functional polymers[J]. Journal of molecular Catalysis B: Enzymatic 2002, 19,20, 117-127.
    [43]SKARIA S, SMET M, FREY H. Enzyme-catalyzed synthesis of hyperbranched aliphatic polyesters [J] Macromol. Rapid Commun. 2002, 23(4): 292-296
    [44]CANAMERO P F, FUENTE J L, MADRUGA E L, et al. Atom transfer radical polymerization of glycidyl methacrylate: a functional monomer[J], M. Macromol. Chem. Phys. 2004, 205, 2221-222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700