用户名: 密码: 验证码:
二阶非线性光学聚合物膜材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息时代的到来,高速光通讯,光信息处理以及光学存储等领域已取得了飞速发展,非线性光学材料在上述领域的应用前景也得到越来越多的重视。二阶非线性光学材料的研究主要集中在各种新型发色团偶极分子的合成及宏观非对称有机聚合物膜的设计与开发,有机无机杂化非线性光学膜的制备等方面,而膜中发色团分子取向排列的稳定性是最受关注的问题之一。
     本论文从新型有机聚合物非对称膜的结构设计出发,运用电场诱导组装的方法,制备出了多层,具有可光交联结构的稳定的二阶非线性光学膜材料,并将这种新颖的电场诱导组装方法扩展到有机-无机杂化二阶非线性光学膜材料上,得到的材料更加稳定,组装膜的厚度得以提高,材料因此更加接近于实用化。另外,为了解决电场诱导组装方法在基底选择上的限制,本文选择含有负电荷的聚合物旋涂在绝缘基底上作为下包层,并直接在包层上组装得到膜材料,这样得到的材料可以直接进行光电器件的制备。
     本文又采用平板极化的方法,在常温下电场极化,制备了高质量的有机-无机杂化且具有光交联结构的膜材料。此外,本文又采用简单的操作方法,制备了具有“T”型结构的简单的硅氧烷染料分子,并利用溶胶-凝胶技术制备了有机-无机杂化二阶非线性光学膜材料。
Recently, various novel and high performance second-order nonlinear optical (NLO) organic polymer materials, owing to their wide application in electro-optical (E-O) modulated devices and advantages superior to inorganic materials, have been prepared and investigated by numerous scientists. It is still considered to be a challenge for researchers to prepare novel polymer lattices with macroscopically non-centrosymmetric structure and in which chromophoric dipolar molecules arranged with orientation. We can define three general approaches to achieving noncentrosymmetric lattices of nonlinear optical chromophores: electric-field poling technique, Langmuir-Blodgett film technique and Layer-by-Lay (LBL) assembly technique. However, the insufficient temporal or mechanical instability shortcomings of NLO LB film materials made by Langmuir-Blodgett film technique restricted their potential applications. Poled polymer materials and NLO assembly film materials offer potential advantages for device application. How to improve the stability, designable and consistent orientation of the materials are the key problems of our reseach. optical sensing, and telecommunications. Simultaneity,inorganic-organic hybrid materials have been developed,the NLO chromophores are incorporated into the inorganic matrix by one or more covalent bonds. These hybrid materials capitalize on the unique properties offered by the two components to generate novel materials with desired characteristics, therefore, they are considered as promising candidate for NLO device applications and have been the subject of NLO materials research. The theory and development of these types of NLO polymer film materials have been reviewed in chapter 1.
     In this dissertation, we improved the stability of the assembled films by the silicon oxygen meshwork and the photo-cross-linked structure. Inorganic-organic hybrid second-order nonlinear optical multilayer films with photo-cross-linkable structure were fabricated by electric-field-induced layer-by-layer assembly technique. In another, using the sol-gel process and the photo-cross-linked reaction, we have fabricated the photo-cross-linked organic-inorganic hybrid poled second-order NLO films at room temperature.
     In chapter 2, we have successfully synthesized a new stable chromophore molecule 2-({4-[4-(2-carboxy-2-cyano-vinyl)-phenylazo] -z -phenyl}-methyl -amino)-ethyl acid (DRCB) with high thermal stability, which possesses two negative groups at both ends and still retains the molecular polarity after ionization. The DRCB molecule was assembled with polycationic DAR by electric field-induced Layer-by-Layer assembly technique to fabricate organic second-order NLO multilayer films. Due to the dc electric field effect in assemble processes, in addition to introducing the stable chromophore molecule and the covalently cross-linking structure in the films, the second-order NLO films fabricated in this method have large SHG response, good thermal stability and excellent chemical stability, which offer potential advantages for device application. we had demonstrated that by using the electric-field-induced LbL assembly technique, high stable photo-crosslinked second-order NLO multilayer films could be fabricated on nonconductive substrate materials, for instance using PAA as cladding layer. The PAA supported second-order NLO films are important electro-optical materials.
     In chapter 3, we have successfully synthesized a novel aromatic diazo groups linked silicon sol (ADS). Inorganic-organic hybrid second-order NLO multilayer films with photo-cross-linkable structure were fabricated with ADS and LMWC molecule by electric-field-induced layer-by-layer assembly technique. Due to introducing the silica oxygen network and the covalently cross-linking structure in the films, in addition to using dc electric field in assemble processes, the second-order NLO films fabricated in this method exhibited high SHG response, good thermal stability and excellent chemical stability. Thus, they should be good candidates for practical electro-photonic applications.
     In chapter 4, A simple diazo chromophore and“T”type structural alkoxysilane dye have been synthesized. Their structures were verified by FT-IR, UV-vis spectra and 1H-NMR. Followed by a hydrolysis and copolymerization process of the alkoxysilane withγ-glycidoxypropyl trimethoxysilane (KH560) and tetraeth- oxysilane (TEOS), high quality of inorganic-organic hybrid second-order NLO films were obtained by spin-coating. The“T”type structure of the alkoxysilane was found to be effective for improving the temporal stability of the optical nonlinearity, due to the reduction of the relaxation of the chromophore in the film materials. In another, a photo-cross-linked stable organic-inorganic hybrid second-order NLO film was fabricated by sol-gel process with ADS and DRCB. The films were poled under 50 dc voltage electric field at room temperature at the existence of solvents. After the solvents volatilized completely and upon UV irradiation under the electric field, the ionic bonds converted to stable covalent bonds in the system, the orientations of the chromophores were fixed by the photo-cross-linked structures. The order parameter of the fabricated film can retain 99 % after 17 days at room temperature. The stable organic-inorganic hybrid photo-cross-linked NLO films fabricated in this paper had large potential to be applied in electric-optic devices.
引文
[1]沈元壤.非线性光学原理[M].北京:科学出版社.,1987.
    [2] Evton D F. Nonlinear Optical Materials [M]. Science, 1991, 253: 281-288.
    [3]叶成,Zyss, J.分子非线性光学的理论与实践[M].北京:北京化学工业出版社,1996.
    [4] Prasad, P. N.; Williams, D. J. Introduction to Nonlinear Optical Effects in Molecules and Polymers [C]. John Wiley & Sons: New York, 1991.
    [5] Shen, Y. R. The Principles of Nonlinear Optics [C]. New York: Wiley, 1984.
    [6] Boyd, R. W. Nonlinear Optics [C]. New York: Academic Press, 1992.
    [7] Zyss J, Ledoux I. Nonlinear optics in multipolar media: theory and experiments [J]. Chem. Rev, 1994, 94: 77-105.
    [8] Dalton L R, Harper A W, Ghosn R, et al. Synthesis and Processing of Improved Organic Second-Order Nonlinear Optical Materials for Applications in Photonics [J]. Chem. Mater, 1995, 7: 1060-1081.
    [9]秦金贵,刘道玉.有机和金属有机非线性光学晶体材料[J].化学通报1990, 10: 23.
    [10]徐志凌,刘丽英,杨鹏,等. SiO_2-GeO_2薄膜电场极化后倍频效率与极化电压的超平方关系[J].物理学报1999, 48 (11): 2076.
    [11] Teng C C, Man H T. Simple reflection technique for measuring the electro-optic coefficient of poled polymers [J]. Appl. Phys. Lett, 1990, 56: 1734.
    [12] Maker P D, Terhune R W, Nisenoff M, et al. Effects of Dispersion and Focusing on the Production of Optical Harmonics [J]. Phys. Rev. Lett., 1962, 8: 21-22.
    [13] Jerphagnon J, Kurtz S K. Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals [J]. J. Appl. Phys., 1970, 41: 1667-1681.
    [14]沈玉全,傅全兴,邱玲,等.极化聚合物薄膜中二阶非线性系数的测定和稳定性研究[J].光学学报,1994, 14: 1-7.
    [15] Herman W N, Hayden L M. Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials [J]. J. Opt. Soc. Am. B, 1995, 12: 416-427.
    [16] Shi W, Zhang Z Y, Pan Q W, et al. Nonlinear Optical Properties and Chromophore Electrostatic Interactions for the Poly(ether ketone) Guest-Host Polymer Films [J]. Macromolecules, 2001,34: 2002-2007.
    [17] Mortazavi M A, Knoesen A, Kowel S T, et al. Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures [J]. J. Opt. Soc Am. B, 1989, 6: 733-741.
    [18] Luo J D, Qin J G, Kang H, et al. A Postfunctionalization Strategy To Develop PVK?Based Nonlinear Optical Polymers with a High Density of Chromophores and Improved Processibility [J]. Chem. Mater., 2001,13: 927-931.
    [19] Lu Z Q, Shao P, Li J, et al. Two Novel Fluorinated Poly(arylene ether)s with Pendant Chromophores for Second-Order Nonlinear Optical Application [J]. Macromolecules, 2004, 37: 7089-7096.
    [20] Pan Q W, Fang C S, Qin Z H, et al. Nonlinear optical properties and thermalstability of the poled polymer NTAB/PEK-c [J] Materials Letters, 2003, 57: 2612-2615.
    [21] Dalton, L. R. Nonlinear Optical Polymeric Materials: From Chromophore Design to Commercial Applications [J]. Advances in Polymer Science, 2002, 158: l1.
    [22] Danckwerts M, Novotny L. Optical Frequency Mixing at Coupled Gold Nanoparticles [J]. Phys. Rev. Lett, 2007, 98: 026104.
    [23] Gray T, Kim T D, Luo J D, et al. Mesoscale dynamics and cooperativity of networking dendronized nonlinear optical molecular glasses [J]. Nano Lett, 2008, 8: 754-759.
    [24] Zhang G, Qin J G, Liu T, et al. Synthesis, Characterization, and Crystal Growth of Cs2Hg3I8: A New Second-Order Nonlinear Optical Material [J]. Crystal Growth & Design, 2008, 8: 2946-2949.
    [25] Natarajan S, Chitra G P, Martin Britto Dhas S A, et al. Growth, structural, thermal and optical studies on L-glutamic acid hydrobromide - A new semiorganic NLO material [J]. Cryst. Res. Technol. 2008, 43: 713-719.
    [26] Guan W, Yang G. C, Liu C G., et al. Reversible Redox-Switchable Second-Order Optical Nonlinearity in Polyoxometalate: A Quantum Chemical Study of [PW11O39(ReN)]n? (n = 3?7) [J].Inorg. Chem. 2008, 47: 5245-5252.
    [27] Chandramohan A, Bharathikannan R, Kandhaswamy M A, et al. Synthesis, spectral, thermal and NLO properties of N,N -Dimethyl anilinium picrate [J]. Cryst. Res. Technol. 2008,43: 173 -178.
    [28] Kalaiselvi D, Kumar R M, Jayavel R,et al. Growth, optical and thermal studies of nonlinear optical L-arginine perchlorate single crystals [J]. Cryst. Res. Technol., 2007: 1-6.
    [29] Natarajan S, Chitra G. P, Martin Britto Dhas S A,et al. Growth, structural, thermal and optical studies on L-glutamic acid hydrobromide-A new semiorganic NLO material [J]. Cryst. Res. Technol., 2008: 1-7.
    [30] Bhagavannarayana G, Parthiban S, Meenakshisundaram S, et al. An Interesting Correlation between Crystalline Perfection and Second Harmonic Generation Efficiency on KCl- and Oxalic Acid-Doped ADP Crystals [J]. Crystal Growth & Design, 2008. 8: 446-451.
    [31] Balasubramanian D, Sankar R, Shankar V S, et al. Growth and characterization of semiorganic nonlinear optical rubidium bis-dl-malato borate single crystals [J]. Materials Chemistry and Physics, 2008, 107: 57–60.
    [32] Kirubavathi K, Selvaraju K, Valluvan R, et al. Studies on the growth aspects of semi-organic cadmium zinc thiourea acetate: A promising new NLO crystal [J]. Materials Letters 2008, 62: 7–10.
    [33] Vizhi R E, Kalainathan S. Growth and characterization of a new organic NLO material: 1,3 Diglycinyl thiourea [J]. Materials Letters, 2008, 62: 791–794.
    [34]刘云圻. LB膜[J].化学通报,1988, 8: 12-16.
    [35] Ashwell G J, Ashwell, Paul D,et al. Non-centrosymmetry and second-harmonic generation in Z-type Langmuir?Blodgett films [J]. Nature 1994, 368:438-440.
    [36] Ashwell G J, Jefferies G,Hamilton D G,et al. Strong second-harmonic generation from centrosymmetric dyes [J]. Nature 1995, 375:385-388.
    [37]李富友.光响应多功能材料的分子设计、合成、构效关系及其LB膜性质的研究[D].北京:北京师范大学博士学位论文,2000.
    [38] Jiang H W, Kakkar A K. An Alternative Route Based on Acid?Base Hydrolytic Chemistry to NLO Active Organic?Inorganic Hybrid Materials for Second-Order Nonlinear Optics [J]. J. Am. Chem. Soc 1999, 121: 3657-3665.
    [39] Cross G H, Peterson I R, Girling I R, et al. A comparison of second harmonic generation and electro-optic studies of Langmuir-Blodgett monolayers of new hemicyanine dyes [J]. Thin Solid Films 1988, 156: 39-52.
    [40] Neal D B. Superhydrophobic Conductive Carbon Nanotube Coatings for Steel [J]. Electro. Lett. 1986, 22: 460.
    [41] Aktipetrov O A. Using Light to Guide the Self-Sustained Motion of Active Gels [J]Sov. Phsy. JETP 1985, 62: 524.
    [42] Lesoux I. Superhydrophobic Conductive Carbon Nanotube Coatings for Steel [J]. Eur. Phys.Lett. 1987, 3: 803.
    [43] Lupo D. Using Light to Guide the Self-Sustained Motion of Active Gels [J]. J. Opt. Soc. Am. B 1988, 5 (2): 300.
    [44] Biro R P, Hill K, Landau E M, et al. A new class of stable head-to tail (Z-type) Langmuir Blodgett films. A second harmonic generation study [J]. J. Am. Chem. Soc. 1988, 110: 2672-2674.
    [45] Decher G, Tieke B, Bosshard C, et al. Optical second-harmonic generation in Langmuir–Blodgett films of 2-docosylamino-5-nitropyridine [J]. J. Chem. Soc. Chem. Commun. 1988, 14: 933-944.
    [46] Ashwell G J, Hargreaves R C, Baldwin C E, et al. Improved second-harmonic generation from Langmuir-Blodgett films of hemicyanine dyes [J]. Nature, 1992, 357: 393-395.
    [47] Merdar S R, Perry J W, Schaefer W P, et al. Synthesis of Organic Salts with Large Second-Order Optical Nonlinearities [J]. Science 1989, 245: 626-628.
    [48] Gorman C B. Anisotropic Thermal Conductivity in Cross-Linked Polybutadienes Subjected to Uniaxial Elongation [J]. Proc. Natl. Acad. Sci. U.S.A. 1993, 90: 11297.
    [49] Jen A -L K. Effect of Shell Architecture on the Static and Dynamic Properties of Polymer-Coated Particles in Solution [J]. Mater Res. Soc. Symp. Proc., 1994, 328: 413.
    [50]黄春辉,李富友,黄岩谊.光电功能超薄膜[M],北京:北京大学出版社,2001.
    [51] Penner T L, Motschmann H R,Armstrong N J,et al. Efficient phase-matched second-harmonic generation of blue light in an organic waveguide [J]. Nature 1994, 367: 49-51.
    [52] Lanzi M, Paganin L, Cesari G. Novel Polymers with Inherent Conductivity and Enhanced Second-Order NLO Activity [J]. Macromol. Chem. Phys. 2008, 209: 375–384.
    [53] Marder, S. R.; Perry, J.W. Nonlinear Optical Polymers: Discovery to Market in 10 Years [J]. Science, 1994, 263: 1706-1707.
    [54] Ahlheim M, Barzoukas M, Bedworth P V. Chromophores with Strong Heterocyclic Acceptors: A Poled Polymer with a Large Electro-Optic Coefficient [J]. Science, 1996, 271: 335-337.
    [55] Albota M, Beljorme D, Bredas J L, et al. Hubble snaps some moving machos [J]. Science, 1998, 281: 1653.
    [56] Facchetti A, Beverina L, van der Boom M E, et al. Strategies for ElectroopticFilm Fabrication. Influence of Pyrrole-Pyridine-Based Dibranched Chromophore Architecture on Covalent Self-Assembly, Thin-Film Microstructure, and Nonlinear Optical Response [J]. J. Am. Chem. Soc, 2006, 128: 2142.
    [57] Kang H, Evmenenko G, Dutta P, et al. X-Shaped Electro-optic Chromophore with Remarkably Blue-Shifted Optical Absorption. Synthesis, Characterization, Linear/Nonlinear Optical Properties, Self-Assembly, and Thin Film Microstructural Characteristics [J]. J. Am. Chem. Soc, 2006, 128: 6194.
    [58] Kang E H, Liu X K, Sun J Q. Robust Ion-Permselective Multilayer Films Prepared by Photolysis of Polyelectrolyte Multilayers Containing Photo-Cross-Linkable and Photolabile Groups [J]. Langmuir, 2006, 22: 7894.
    [59] Mazur U, Simpson G J, Robinson B H, et al. Molecular Self-Assembly of Mixed High-Beta Zwitterionic and Neutral Ground-State NLO Chromophores [J]. Chem. Mater, 2008, 20: 1778–1787.
    [60] Wu T M, Lin J J, Jeng R J. Optical Non-Linearity from Montmorillonite Intercalated with a Chromophore-Containing Dendritic Structure: A Self-Assembly Approach [J]. Macromol. Rapid Commun, 2008, 29: 587–592.
    [61] Meyers F, Marder S R, Pierce B M, et al. Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities [J]. J Am. Chem, Soc, 1994, 116: 10703-10714.
    [62] Lupo D J. Phonon-Assisted Damping of Rabi Oscillations in Semiconductor Quantum Dots [J]. J. Opt. Soc. Am. B. 1988, 5 (2): 300.
    [63] Abraham U, Graig S W, Werner K, et al. New sulfonyl-containing materials for nonlinear optics: semiempirical calculations, synthesis, and properties [J]. J. Am. Chem. Soc, 1990, 112, 7083-7090.
    [64] Zhao B, Lu W, Zhou Z, et al. The important role of the bromo group in improving the properties of organic nonlinear optical materials [J]. J. Mater. Chem, 2000, 10: 1513-1517.
    [65] Grain J, Orduna J, Ruperez J I, et al. Friction-induced uniaxial orientation of a liquid crystalline N-substituted polypyrrole [J]. Tetrahedron Lett, 1998, 39: 3577.
    [66] Gonzalez M, Martin N, Seoane C, et al. The preparation and characterisation of polymeric macrostructures (command surfaces) using electropolymerisation [J]. Tetrahedron Lett, 1999, 40: 8599.
    [67] Jen A K-Y, Rao V P, Chandrasekhar J. Polymers for Second-Order Nonlinear Optics [C]. Lindsay, G. A. and Singer, K. D. Ed., ACS Symp. Series 1995, 601: 147.
    [68] Boese R, Cammack J K, Matzger A J, et al. Photochemistry of (Fulvalene)tetracarbonyldiruthenium and Its Derivatives: Efficient Light Energy Storage Devices [J]. J. Am. Chem. Soc. 1997, 119: 6575-6773.
    [69] Gilmour S, Montgomery R A, Marder S R. Synthesis of Diarylthiobarbituric acid Chromophores with Enhanced Second-order Optical Nonlinearities and Thermal Stability [J]. Chem. Mater. 1994, 6: 1603-1604.
    [70] Rao V P, Wong K Y, Jen A -K Y. Functionalized Fused Thiophenes: A New Class of Thermally Stable and Efficient Second-Order Nonlinear Optical Chromophores [J]. Chem. Mater. 1994, 6: 2210-2212.
    [71] Shi R F, Wu M H, Yamada S, et al. Dispersion of second-order optical properties of new high thermal stability guest chromophores [J]. Appl. Phys. Lett. 1993, 63:1173.
    [72] Shi R F, Yamada S, Garito A F. Polymers for Second-order Nonlinear Optics, Lindsay, G. A. [C]. Singer,K. D. Ed., ACS Symp.Series. 1995, 601: 22.
    [73] Watanabe T, Yamamoto T, Hosomin T. A comparative study on the nonlinear optical properties of diphenyl ether and diphenyl sulfide compounds [J]. NATO ASI series, 1991, 194: 151.
    [74] Wang P, Zhu P, Wu W, et al. Atomic force microscopy investigation of the surface modification of highly oriented pyrolytic graphite by oxygen plasma [J]. Phys. Chem, 1999, 1: 3519.
    [75] Cho B, Lee S, Son K, et al. Octupolar Crystals for Nonlinear Optics: 1,3,5-Trinitro-2,4,6-tris(styryl)benzene Derivatives [J]. Chem. Mater, 2001, 13: 1438-1440.
    [76] Brunel J, Jutand A, Ledoux I, et al. A monolayer dispersion study of titania-supported copper oxide [J]. Synthetic Metals, 2001, 124: 195.
    [77] Gorman C B, Marder S R. Enhanced Vortex Damping by Eddy Currents in Superconductor-Semiconductor Hybrids [J]. Proc. Natl. Acad. Sci. USA 1993, 90: 11297.
    [78] Mignani G, Kramer A, Puccetti G, et al. A new class of silicon compounds with interesting nonlinear optical effects [J]. Organometallics, 1990, 9: 2640-2643.
    [79] Cheng L T, Tam W, Mader S R, et al. NLO-active polymers containing triazolo-thiadiazole segments [J]. J. Phys. Chem. 1991, 95: 10643.
    [80] Zhao B, Chen C Y, Zhou Z H, et al. A comparative study on the nonlinear optical properties of diphenyl ether and diphenyl sulfide compounds [J]. J. Mater. Chem. 2000, 10: 1581-1584.
    [81] Alain V, Redogiia S, Blandchard D M, et al. Synthesis and liquid crystalline properties of biphenyl esters of monothio- and dithiotrimellitimides [J]. Chem. Phys. 1999, 245: 51.
    [82] Nerenz H, Meier M, Grahn W, et al. Preparation of translucent barium titanate ceramics from sol–gel-derived transparent monolithic gels [J]. J. Chem. Soc. Perkin Trans. 1998, 2: 437.
    [83] Wang P, Zhu P, Wu W, et al. Functionalized Siloxane-Linked Polymers for Second-Order Nonlinear Optics [J]. Progressin Natural Sci, 2000, 1: 1.
    [84] Liu D, Dai C, Chen C, et al. Switchable Nonlinear Optical Metallochromophores with Pyridinium Electron Acceptor Groups[J]. Coordination Chemistry Review, 1999, 188, 23.
    [85] Luo J D, Hua J L, Qin J G, et al. Acidoswitchable NLO-phores: Benzimidazolo oxazolidines [J]. Chem. Commun, 2001, 1: 171.
    [86] Rao V P, Jen A K–Y, Wong K Y, et al. Dramatically enhanced second-order nonlinear optical susceptibilities in tricyanovinylthiophene derivatives [J]. J. Chem. Soc., Chem. Commun. 1993: 1118.
    [87] Zhang C Z, Lu C G, Zhu J, et al. Enhanced Nonlinear Optical Activity of Molecules Containing Two D?π?A Chromophores Locked Parallel to Each Other [J]. Chem. Mater. 2008, 20: 4628–4641.
    [88] Davies J A, Elangovan A, Sullivan P A, et al. Rational Enhancement of Second-Order Nonlinearity: Bis-(4-methoxyphenyl)hetero-aryl-amino Donor-Based Chromophores: Design, Synthesis, and Electrooptic Activity [J]. J. Am. Chem. Soc. 2008, 130: 10565–10575.
    [89] Hong M H, Kim M H, Cho M J, et al. Dendronized Tricyanopyrroline-Based Chromophores in Nonlinear Optical Active Host Polymer [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2008, 46: 5064–5076.
    [90] Ren J, Wang S M, Wu L F, et al. Synthesis and properties of novel Y-shaped NLO molecules containing thiazole and imidazole chromophores [J]. Dyes and Pigments, 2008, 76: 310-314.
    [91] Zhang C Z, Zhu J, Yang H, et al. Azo dyes of hexafluoroisopropylidene derivatives: Synthesis and nonlinear optical properties [J]. Dyes and Pigments, 2008, 76: 765-774.
    [92] Guo K P, Hao J M, Zhang T, et al. The synthesis and properties of novel diazo chromophores based on thiophene conjugating spacers and tricyanofuran acceptors [J]. Dyes and Pigments 2008, 77: 657-664.
    [93] Zou H L, Therien M J, Blasie J K. Structure and Dynamics of an Extended Conjugated NLO Chromophore within an Amphiphilic 4-Helix Bundle Peptide by Molecular Dynamics Simulation [J]. J. Phys. Chem. B 2008, 112: 1350-1357.
    [94] Campo J C, Wenseleers W, Goovaerts E, et al. Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering [J]. J. Phys. Chem. C, 2008, 112: 287-296.
    [95] Delgado M C R, Casado J, Herna′ndez V, et al. Electronic, Optical, and Vibrational Properties of Bridged Dithienylethylene-Based NLO Chromophores [J]. J. Phys. Chem. C 2008, 112: 3109-3120.
    [96] Pu H T, Liu L, Jiang W C, et al. Synthesis and Characterization of Styrene/Maleimide Copolymer with 4-[N-ethyl-N-(2-hydroxyethyl) amino]-40- nitroazobenzene as Side Chain [J]. Journal of Applied Polymer Science, 2008, 108: 1378-1384.
    [97] Gray T, Kim T D, Knorr D B, et al. Mesoscale Dynamics and Cooperativity of Networking Dendronized Nonlinear Optical Molecular Glasses [J]. Nano Letters, 2008, 8: 754-759.
    [98] Singer K, Sohn J, Lalama S, et al. Metal-catalyzed transformation of D-glucal to optically active furan diol [C]. Proceedings of SPIE, 1987, 704: 240-246.
    [99] Teraoka I, Jungbauer D, Reck B, et al. Stability of nonlinear optical characteristics and dielectric relaxations of poled amorphous polymers with main-chain chromophores [J]. J. Appl. Phys, 1991,69: 2568-2576.
    [100] Kitipichai P, Peruta R, Korenowski G, et al. In-situ poling and synthesis of NLO chromophore-bearing polyurethanes for second harmonic generation [J]. Journal of Polymer Science, Part A: Polymer Chemistry., 1993, 31: 1365-1375.
    [101] Tsutsumi N, Matsumoto O, Sakai W, et al. Nonlinear optical polymers with dipole moment aligned transverse to main chain [J]. Appl. Phys. Lett., 1995, 67: 2272-2274.
    [102] Barry S E, Soave D S. Poling of polymeric thin films at ambient temperatures for second-harmonic generation [J]. Appl. Phys. Lett., 1991,58: 1134-1136.
    [103] Sekkat Z, Wood J, Aust E, et al. Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain [J]. J. Opt. Soc. Am. B, 1996, 13: 1713-1724.
    [104] Charm F, Kajzar F, Nunzi J, et al. Light-induced second-harmonic generation inazo-dye polymers [J]. Opt. Lett., 1993, 18: 941-943.
    [105] Verbiet T, Clays K, Samyn C, et al. Investigations of the Hyperpolarizability in Organic Molecules from Dipolar to Octopolar Systems [J]. J. Am. Chem. Soc. 1994, 116: 9320-9323.
    [106] Stahelin M, Walsh C, Burland D, et al. Orientational decay in poled second-order nonlinear optical guest-host polymers: Temperature dependence and effects of poling geometry [J]. J. Appl. Phys. 1993, 73 (12): 8471.
    [107] Hampsch H L, Yang J, Wong G K, et al. Organogelators for making porous sol–gel derived silica at two different length scales [J]. Polym. Commun, 1989, 30: 40.
    [108] Wu J, Binkley E, Kenney J, et al. Highly thermally stable electro-optic response in poled guest-host polyimide systems cured at 360°C [J]. J . Appl. Phys. 1991, 69 (10): 7366.
    [109] Wu J W, Valley J F, Ermer E S, et al. Chemical imidization for enhanced thermal stability of poled electro-optic response in polyimide guest-host systems [J]. Appl. Phys. Lett, 1991, 59 (18): 2213.
    [110] Valley J F, Wu J W, Ermer M, et al. Thermoplasticity and parallel-plate poling of electro-optic polyimide host thin films [J]. Appl. Phys. Lett, 1992. 60 (2): 160.
    [111] Ermer S, Valley J F, Lytel R, et al. DCM-polyimide system for triple-stack poled polymer electro-optic devices [J]. Appl. Phys. Lett. 1992, 61 (19): 2272.
    [112] Jen A K-Y, Wong K Y, Rao V P, et al. The effects of mechanical activation in synthesizing ultrafine barium ferrite powders from co-precipitated precursors [J] Mater. Res. SOC. Symp. Proc, 1994, 328: 413.
    [113] Meinhardt M B, Cahill P A, Seager C H, et al. Wet-chemical approach for the halogenation of hydrogenated boron-doped diamond electrodes [J] Mater. Res. SOC. Symp. Proc, 1994, 328: 467.
    [114] Kenney J T, Binkley E S, Jen A K-Y, et al. Polyaniline hollow fibres for organic solvent nanofiltration [J]. Mater.Res. SOC. Symp. Proc. 1994, 328: 511.
    [115] Fujimoto H H, Das S, Valley J F, et al. Direct coupling of alcohols with alkenylsilanes catalyzed by indium trichloride or bismuth tribromideElectronic supplementary [J]. Mater. Res. SOC. Symp. Proc. 1994, 328: 553.
    [116] Wu J W, Valley J F, Stiller M, et al. Functionalized Siloxane-Linked Polymers for Second-Order Nonlinear Optics [J]. Proc. SPIE 1991, 1560: 196.
    [117] Cahill P A, Seager C H, Meinhardt M B, et al. Switchable Nonlinear Optical Metallochromophores with Pyridinium Electron Acceptor Groups [J]. Proc. SPIE 1993, 2025: 48.
    [118] Ye C, Marks T J, Yang J, et al. Synthesis of molecular arrays with nonlinear optical properties second-harmonic generation by covalently functionlized glassy polymers [J]. Macromolecules 1987, 20: 2322-2325.
    [119] Hann R A, Bloor D. Organic Materials for Non-Linear Optics III [C]. Royal Society of Chemistry: London 1992.
    [120] Katz H E, Singer K D, Sohn J E, et al. Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules [J]. J. Am. Chem. Soc. 1987, 109: 6561-6563.
    [121] Burland D M, Miller R D, Walsh C A. Second-order nonlinearity in poled-polymer systems [J]. Chem. Rev, 1994, 94: 31-75.
    [122] Drost K J, Jen A K-Y, Rao V P, et al. Functionalized Siloxane-Linked Polymersfor Second-Order Nonlinear Optics [J]. Mater. Res. Soc. Symp. Proc. 1994, 328: 517.
    [123] Lin J T, Hubbard M A, Marks T J, et al. Poled polymeric nonlinear optical materials. Exceptional second harmonic generation temporal stability of a chromophore-functionalized polyimide [J]. Chem. Mater, 1992, 4: 1148-1150.
    [124] Becker M W, Sapochak L S, Ghosen S R, et al. Large and Stable Nonlinear Optical Effects Observed for a Polyimide Covalently Incorporating a Nonlinear Optical Chromophore [J]. Chem. Mater, 1994, 6: 104-106.
    [125] Jen A K-Y, Drost K J, Cai Y, et al. Heteroaromatic Chromophore Functionalized Epoxy-Based Nonlinear Optical Polymers [J]. Chem. Commun. 1994, 965.
    [126] Chen X B, Zhang J J, Zhang H B, et al. Preparation and nonlinear optical studies of a novel thermal stable polymer containing azo chromophores in the side chain [J]. Dyes and Pigments, 2008, 77: 223-228.
    [127] Pretre P, Kaatz P, Bohren A., et al. Modified Polyimide Side-Chain Polymers for Electrooptics [J]. Macromolecules 1994, 27: 5476-5486.
    [128] Chao T Y, Chang H L, Su W C, et al. Nonlinear optical polyimide/montmorillonite nanocomposites consisting of azobenzene dyes [J]. Dyes and Pigments, 2008, 77: 515-524.
    [129] Fusco S, Centore R, Riccio P, et al. NLO-active polymers containing triazolo-thiadiazole segments [J]. Polymer, 2008, 49: 186-191.
    [130] Liao Y, Bhattacharjee S, Firestone K A, etal. Antiparallel-Aligned Neutral-Ground-State and Zwitterionic Chromophores as a Nonlinear Optical Material [J]. J. Am. Chem. Soc. 2006, 128: 6847-6853.
    [131] Mitchell M, Mulvaney J, Hall H K, et al. Enhanced Third-Order Nonlinear Optical Properties in Dendrimer?Metal Nanocomposites [J]. Polym. Bull. 1992, 28: 381.
    [132] Fuso F, Padias A B, Hall H K. Poly[(ι-hydroxyalkyl)thio-α- cyanocinnamates. Linear polyesters with NLO-phores in the main chain [J]. Macromolecules 1991, 24: 1710-1713.
    [133] Katz H E, Schilling M L, Fang T, et al. Head-to-tail dipolar chromophore assemblies: synthesis and enhanced electric field-induced orientation of oligomers larger than dimer [J]. Macromolecules 1991, 24: 1201-1204.
    [134] Lindsay G A, Stenger-Smith, J D, Henry R A, et al. Main-chain accordion polymers for nonlinear optics [J]. Macromolecules 1992, 25: 6075-6077.
    [135] Xu C Z, Wu B, Dalton L R, et al. New random main-chain, second-order nonlinear optical polymers [J]. Macromolecules 1992, 25: 6716-6718.
    [136] Kelderman E, Verboom W, Engbersen J F J, et al. Nitrocalix arenes as Molecules for Second-Order Nonlinear Optics [J]. Angew. Chem., Intl. Ed. Engl. 1992, 31: 1075-1077.
    [137] Cui Y Y, Chen L J, Qian G D, et al. Epoxy-Based Nonlinear Optical Polymers from Post Azo Coupling Reaction [J]. Journal of Non-Crystalline Solids, 2008, 354: 1211-1215.
    [138] Hubbard M A, Marks T J, Yang J, et al. Poled polymeric nonlinear optical materials. Enhanced second harmonic generation stability of crosslinkable matrix/chromophore ensembles [J]. Chem. Mater. 1989, 1: 167-169.
    [139] Park J, Marks T J, Yang J, et al. Chromophore-functionalized polymer thin film nonlinear optical materials. Effects of in situ crosslinking on second harmonicgeneration temporal characteristics [J]. Chem. Mater, 1990, 2: 229-231.
    [140] Jin Y, Carr S H, Marks T J, et al. Poled, chromophore-functionalized polymeric nonlinear optical materials. Probing second harmonic generation temporal characteristics via site-selective crosslinking/hydrogen bonding [J]. Chem. Mater. 1992, 4: 963-965.
    [141] Hubbard M A, Marks T J, Lin W P, et al. Poled polymeric nonlinear optical materials. Enhanced second harmonic generation temporal stability of epoxy-based matrixes containing a difunctional chromophoric comonomer [J]. Chem. Mater. 1992, 4: 965-968.
    [142] Eich, M.; Bjorklund, G. C.; Yoon. D. Y. Poled amorphous polymers for second-order nonlinear optics [J]. Polym. Adv. Technol. 1990, 1: 189-198.
    [143] Jungbauer, D.; Reck, B.: Twieg, R, et al. Highly efficient and stable nonlinear optical polymers via chemical cross-linking under electric field [J]. Appl. Phys. Lett. 1990, 56 (26): 2610.
    [144] Chen M, Yu L P, Dalton L R, et al. New polymers with large and stable second-order nonlinear optical effects [J]. Macromolecules 1991, 24: 5421-5428.
    [145] Chen M, Dalton L R, Yu L P, et al. Thermosetting polyurethanes with stable and large second-order optical nonlinearity [J]. Macromolecules 1992, 25: 4032-4035.
    [146] Shi Y, Steier W H, Chen M, et al. Thermosetting nonlinear optical polymer: Polyurethane with disperse red 19 side groups [J]. Appl. Phys. Lett. 1992, 60 (21): 2577.
    [147] Boogers J A F, Klaase P T A, Wlieger J J D, et al. Crosslinked polymer materials for nonlinear optics. 2. Polyurethanes bearing azobenzene dyes [J]. Macromolecules 1994. 27: 205-209.
    [148] Yu L P, Chan W K, Bao Z N. Synthesis and characterization of a thermally curable second-order nonlinear optical polymer [J]. Macromolecules 1992, 25: 5609-5612.
    [149] Yu L P, Chan W K, Dikshit S, et al. Thermally curable second-order nonlinear-optical polymer [J]. Appl. Phys. Lett. 1992, 60 (14): 1655.
    [150] Lin J T, Hubbard M A, Marks T J, et al. Poled polymeric nonlinear optical materials. Exceptional second harmonic generation temporal stability of a chromophore-functionalized polyimide [J]. Chem. Mater. 1992, 4: 1148-1150.
    [151] Prouti`ere S, Ferruti P, Ugo R, et al. The ethynyl groups in the polymer backbone can undergo thermal intramolecular or intermolecular reactions [J]. Materials Science and Engineering B,2008,147: 293–297.
    [152] Matsuda H, Okada S, Minami N, et al. In Nonlinear Optics: Fundamentals, Materials and Devices [C]. Miyata, S., Ed.; Elsevier Science Publishers: Holland, 1992; 195.
    [153] Mandal R B, Jeng J, Kumar J, et al. Synthesis and Characterization of New Truxenones for Nonlinear Optical Applications [J]. Chem. Rapid Commun. 1991, 12: 607.
    [154] Zhu X, Chen Y M, Li L, et al. Electronic, Optical, and Vibrational Properties of Bridged Dithienylethylene-Based NLO Chromophores [J]. Opt. Commun. 1992. 88: 77.
    [155] Levy D, Esquivias L. Investigation of Polymers and Marine-Derived DNA in Optoelectronics [J]. Adv. Mater. 1995, 7: 120.
    [156] Ikushima A J, Fujiwara T, Saito K. Enhanced Third-Order Nonlinear OpticalProperties in Dendrimer?Metal Nanocomposites [J]. Jpn. J. Appl. Phys. 2000, 88: 1201.
    [157] Chaumel F, Jiang H W, Kakkar A. Sol-Gel Materials for Second-Order Nonlinear Optics [J]. Chem. Mater. 2001, 13: 3389-3395.
    [158]钱国栋,王民权.若干无机/有机复合光功能材料及相关器件研究进展[J].硅酸盐学报,2001,29: 596-601.
    [159]陈运法,金联明,张国昌,等.溶胶-凝胶法制备无机-有机杂化材料Ⅰ.无机-有机杂化材料的分类及制备方法[J].功能材料,1999,30: 449-455.
    [160] Bi W, Louvain N, Mercier N, et al. A Switchable NLO Organic-Inorganic Compound Based on Conformationally Chiral Disulfide Molecules and Bi(III)I5 Iodobismuthate Networks Jerome Luc, Ileana Rau, Fran?ois Kajzar, and Bouchta Sahraoui, [J]. Adv. Mater. 2008, 20: 1013–1017.
    [161] Chaumel F, Jiang H W, Kakkar A. Sol?Gel Materials for Second-Order Nonlinear Optics [J]. Chem. Mater., 2001,13: 3389-3395.
    [162] Lebeau B, Sanchez C. Sol-gel derived hybrid inorganic-organic nanocomposites for optics [J]. Current Opinion in Solid State & Materials Science , 1999, 4: 11-23.
    [163] Sanchez C, Lebeau B, Chaput F, et al. Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites [J]. Adv. Mater., 2003, 15: 1969-1994.
    [164] Jeng R J, Hung W Y, Chen C P, et al. Organic/Inorganic NLO materials based on reactive polyimides and a bulky alkoxysilane dye via sol/Gel process [J]. Polym. Adv. Technol., 2003, 14: 66-75.
    [165] Kuo W J, Zou J H, Hsiue G H, et al. All Organic NLO Sol-Gel Material Containing a One-Dimensional Carbazole Chromophore [J]. Macromol. Chem. Phys., 2001,202: 1782-1790.
    [166] Zou J H, Zhao Y B, Shi W F, et al. Preparation and characters of hyperbranched polyester-based organic-inorganic hybrid material compared with linear polyester [J]. Polym. Adv. Technol., 2005, 16: 55-60.
    [167] Ji S X, Li Z, Zhou X S, et al. Silica-based hybrid nonlinear optical chromophore-trapping film prepared by sol-gel polymerization [J]. Polym. Adv. Technol., 2003, 14: 254-259.
    [168] Goudket H, Canva M, Levy Y, et al. Temperature dependence of second-order nonlinear relaxation of a poled chromophore-doped sol–gel material [J]. J. Appl. Phys., 2001,90: 6044-6047.
    [169] Sun P H, Hsu T F. Thermal stability of NLO sol-gel networks with reactive chromophores [J]. Polymer, 1998, 39: 1453-1459.
    [170] Reyes-Esqueda J, Darracq B, Garcia-Macedo J, et al. Effect of chromophore–chromophore electrostatic interactions in the NLO response of functionalized organic–inorganic sol–gel materials [J]. Opt. Commun., 2001,198: 207-215.
    [171] Riehl D, Chaput F, Levy Y, et al. Second-order optical nonlinearities of azo chromophores covalently attached to a sol-gel matrix [J]. Chem. Phys. Lett., 1995, 245: 36-40.
    [172] Cui Y J, Qian G D, Chen L J, et al. Synthesis and nonlinear optical properties of a series of azo chromophore functionalized alkoxysilanes [J]. Dyes and Pigments, 2008, 77: 217-222.
    [173] Choi D H, Lim S J, Jahng W S, et al. Organically modified sol-gel materials for second-order nonlinear optics [J]. Thin Solid Films, 1996, 287: 220-224.
    [174] Choi D H, Park J H, Rhee T H, et al. Improved Temporal Stability of the Second-Order Nonlinear Optical Effect in a Sol?Gel Matrix Bearing an Active Chromophore [J]. Chem. Mater., 1998, 10: 705-709.
    [175] Lebeau B, Brasselet S, Zyss J, et al. Design, Characterization, and Processing of Hybrid Organic?Inorganic Coatings with Very High Second-Order Optical Nonlinearities [J]. Chem. Mater., 1997, 9: 1012-1020.
    [176] Li D, Jiang Y D, Wu Z M, et al. Fabrication of self- assembled polyaniline films by doping-induced deposition [J]. Thin Solid Films, 2000, 360: 24.
    [177] Kim H K, Kang S J, Choi S K, et al. Highly Efficient Organic/Inorganic Hybrid Nonlinear Optic Materials via Sol?Gel Process: Synthesis, Optical Properties, and Photobleaching for Channel Waveguides [J]. Chem. Mater., 1999, 11: 779-788.
    [178] Jiang H W, Kakkar A K. An Alternative Route Based on Acid?Base Hydrolytic Chemistry to NLO Active Organic?Inorganic Hybrid Materials for Second-Order Nonlinear Optics [J]. J. Am. Chem. Soc., 1999, 121: 3657-3665.
    [179] Jeng R J, Chen Y M, Jain A K, et al. Stable second-order nonlinear optical polyimide/inorganic composite [J]. Chem. Mater., 1992, 4: 1141-1144.
    [180] Lin H L, Chao T Y, Shih Y F, et al. Stable second-order nonlinear optical poly(amide-imide)/inorganic materials via simultaneous sequential self-repetitive reaction and sol-gel process [J]. Polym. Adv. Technol. 2008; 19: 984–992.
    [181] Qiu F X, Da Z L, Yang D Y, et al. The synthesis and electro-optic properties of polyimide/silica hybrids containing the benzothiazole chromophore [J]. Dyes and Pigments, 2008, 77: 564-569.
    [182] Lin H L, Chao T-Y, Shih Y-F, et al. Stable second-order nonlinear optical poly(amide-imide)/inorganic materials via simultaneous sequential self-repetitive reaction and sol-gel process [J]. Polym. Adv. Technol. 2008, 19: 984-992.
    [183] Jeng R J, Chen Y M, Jain A K, et al. Second order optical nonlinearity on a modified sol-gel system at 100.degree.C [J]. Chem. Mater., 1992, 4: 972-975.
    [184] Kuo W J, Chang M C, Juang T Y, et al. Stable second-order nonlinear optical poly(amide-imide)/inorganic materials via simultaneous sequential self-repetitive reaction and sol-gel process [J]. Polym. Adv. Technol., 2005, 16: 515-523.
    [185] Hsiue G H, Lee R H, Jeng R J. All sol–gel organic–inorganic nonlinear optical materials based on melamines and an alkoxysilane dye [J]. Polymer, 1999, 40: 6417-6428.
    [186] Yoon C B, Shim H K. New second-order nonlinear optical (NLO) epoxy polymer treated by sol-gel processing [J]. Macromol. Chem. Phys., 1998, 199: 2433-2437.
    [187] Zhang H X, Lu D, Fallahi M. Active organic–inorganic sol gel with high thermal stability for nonlinear optical applications [J]. Appl. Phys. Lett., 2004, 84: 1064-1066.
    [188] Iler R K. Multilayers of colloidal particles. [J]. J. Colloid Interface Sci., 1966, 21: 569.
    [189] Decher G., Hong J–D. Build up of ultrathin multilayer films by a self-assembly process. 1. consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces [J]. Makromol Chem., Macromol Symp. 1991, 46: 321.
    [190] Decher G, Hong J -D, Schmitt J. Build up of ultrathin multilayer film by a self assembly process. III. consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces [J]. Thin Solid Films, 1992, 210/211: 831.
    [191] Zhang X, Gao M L, Kong X X, et al. Build-up of a new type of ultrathin .film of porpyrin and phthalocyanine based on cationic anionic electrostatic attraction. [J]. Chem. Commun,1994 :1055.
    [192] Schmitt J, Decher G., Dressick W J, et al. Metal nanoparticle/ polymer superlattice films: fabrication and control of layer structure [J]. Adv Mater,1997, 9: 61.
    [193] Kong W, Zhang X, Gao M L, et al. A new kind of immobilized enzyme multilayer based on cationic and anionic interaction [J]. Macromol. Rapid Commun.,1994, 15: 405.
    [194] Jiang S G., Liu M H. A chiral switch based on dye- intercalated layer-by-layer assembled DNA film [J]. Chem. Mater,2004, 16: 3985.
    [195] Lvov Y, Haas H, Decher G., et al. Successive deposition of alternate layers of polyelectrolytes and a charged virus [J]. Langmuir, 1994, 10: 4232.
    [196] Lvov Y, Ariga K, Ichinose I, et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption [J]. J. Am. Chem. Soc.,1995, 117: 6117.
    [197] Cho J, Char K, Hong J -D, et al. Fabricationg of Highly Ordered Multilayer Films Using a Spin Self-Assembly Method [J]. Adv Mater,2001, 13: 1076.
    [198] Schlenoff J B, Dubas S T, Farhat T. Sprayed Polyelectrolyte Multilayers [J]. Langmuir, 2000, 16: 9968.
    [199] Izquierdo A, Ono S S, Voegel J -C, et al. Dipping versus Spraying: Exploring the Deposition Conditions for Speeding Up Layer-by-Layer Assembly [J]. Langmuir, 2005, 21: 7558.
    [200] Ono S S, Decher G.. Preparation of Ultrathin Self-Standing Polyelectrolyte Multilayer Membranes at Physiological Conditions Using pH-Responsive Film Segments as Sacrificial Layers [J]. Nano Lett,2006, 6: 592.
    [201] Yu D, Gharavi A, Yu L P. Novel Aromatic Polyimides for Nonlinear Optics [J]. J. Am. Chem. Soc. 1995, 117: 11680-11686.
    [202] Peng Z H, Yu L P. Second-Order Nonlinear Optical Polyimide with High-Temperature Stability [J]. Macromolecules 1994,27: 2638-2640.
    [203] Chen T A, Jen K–Y, Cai Y M. Two-Step Synthesis of Side-Chain Aromatic Polyimides for Second-Order Nonlinear Optics [J]. Macromolecules 1996,29: 535-539.
    [204] Woo H Y, Shim H–K, Lee K-S, et al. An Alternate Synthetic Approach for Soluble Nonlinear Optical Polyimides [J]. Chem.Mater.1999, 11: 218-226.
    [205] Saadeh H, Yu D, Wangand L M, et al. Three functionalized second-order nonlinear optical polyimides [J]. J. Mater. Chem 1999, 9: 1865-1873.
    [206] Jeng R J, Cheng C, Chen C P. Synthesis and properties of segmented block copolymers based on mixtures of poly(ethylene oxide) and poly(tetramethylene oxide) segments [J]. Polymer 2003, 44: 143-155.
    [207] Self-assembly of single-walled carbon nanotube based on diazoresin Cheng H, Tuo X L, Wang G J, et al. Switchable Nonlinear Optical Metallochromophores with Pyridinium Electron Acceptor Groups [J]. Macromol Chem Physic, 2001,202 (18): 3530.
    [208] Wu L F, Tuo X L, Cheng H, Wang, X. G. et al. Synthesis, Photoresponsive Behavior, and Self-Assembly of Poly(acrylic acid)-Based Azo Polyelectrolytes [J]. Macromolecules 2001 34 (23): 8005-8013.
    [209] Sun J Q, Wang Z Q, Sun Y P, et al. Covalently attached multilayer assemblies of diazo-resins and porphyrins [J]. Chem. Comm. 1999 (8): 693.
    [210] Heflin J R, Guzy M T, Neyman P J, et al. Efficient, Thermally Stable, Second Order Nonlinear Optical Response in Organic Hybrid Covalent/Ionic Self-Assembled Films [J]. Langmuir 2006, 22: 5723-5727.
    [211] Fasce D P, Williams R J J, Mateˇjka L, et al. Photoluminescence of Bridged Silsesquioxanes Containing Urea or Urethane Groups with Nanostructures Generated by the Competition between the Rates of Self-Assembly of Organic Domains and the Inorganic Polycondensation [J]. Macromolecules 2006, 39: 3794-3801.
    [212] Wang Y, Wang X J, Guo Y, et al. Electric-Field-Induced Layer-by-Layer Fabrication of Second-Order Nonlinear Optical Films with High Thermal Stability [J]. Langmuir 2004, 20: 8952-8954.
    [213] Iler R K. Band-to-Band Visible-Light Photon Excitation and Photoactivity Induced by Homogeneous Nitrogen Doping in Layered Titanates [J]. J. Colloid Interface Sci. 1966, 21: 569.
    [214] Decher G., Hong J D. Vertical Single-Walled Carbon Nanotube Arrays via Block Copolymer Lithography [J]. Makromol. Chem., Macromol. Symp. 1991, 46: 321.
    [215] Decher G., Hong J D. Vertical Single-Walled Carbon Nanotube Arrays via Block Copolymer Lithography [J]. Ber. Bunsenges. Phys. Chem, 1991, 95: 1430.
    [216] Decher G., Hong J D, Schmitt J. Carbon Colloids Prepared by Hydrothermal Carbonization as Efficient Fuel for Indirect Carbon Fuel Cells [J]. Thin Solid Films 1992, 210/211: 831.
    [217] Decher G., Schmitt J. New Layered Mixed Metal Phosphonates for High Dielectric?Polymer Composite Materials [J]. Progr. Colloid Polym. Sci. 1992, 89: 160.
    [218] Bertrand P, Jonas A, Laschewsky A, et al. Inward Cationic Diffusion and Formation of Silica-Rich Surface Nanolayer of Glass [J]. Macromol. Rapid Commun. 2000, 21: 319.
    [219] Hammond P T, Curr O, et al. Hydrophobic Effects in the Critical Destabilization and Release Dynamics of Degradable Multilayer Films [J]. J Colloid Interface Sci. 2000, 4: 430.
    [220] Kong W, Wang L P, Gao M L, et al. Immobilized bilayer glucose isomerase in porous trimethylamine polystyrene based on molecular deposition [J]. J. Chem. Soc. Chem. Commun.,1994: 1297.
    [221] Caruso F, Caruso R A, Mohwald H, et al. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science, 1998, 282: 1111.
    [222] Clark S L, Hammond P T, et al. Engineering the Microfabrication of Layer-by-Layer Thin Films", Adv. Mater,1998, 10: 1515.
    [223] Jaffar S, Nam K T, Khademhosseini A, et al. Layer-by-layer surface modification and patterned electrostatic deposition of quantum dots", [J]Nano Lett.,2004, 4: 1421.
    [224] Guo Y G, Wan L J, Bai C L. Gold/titanic core/sheath nanowires prepared bylayer-by-layer assembly [J]. J. Phys. Chem. B, 2003, 107: 5441.
    [225] Carrillo A, Swartz J A, Gamba J M, et al. Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles [J]. Nano Lett.,2003, 3: 1437.
    [226] Huo F W, Xu H P, Zhang L, et al. Hydrogen-bonding based multilayer assemblies by self deposition of dendrimer [J]. Chem. Commun.,2003: 874.
    [227] Stockton W B, Rubner M F, et al. Molecular-level processing of conjugated polymers. 4. layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions [J]. Macromolecules, 1997, 30: 2717.
    [228] Wang L Y, Wang Z Q, Zhang X, et al. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding [J]. Macromol. Rapid Commun.,1997, 18: 509.
    [229] Hao E C, Lian T Q, et al. Layer-by-layer assembly of CdSe nanoparticles based on hydrogen bonding [J]. Langmuir, 2000, 16: 7879.
    [230] Qin S H, Qin D Q, Ford W T, et al. Grafting of poly(4-vinylpyridine) to single-walled carbon nanotubes and assembly of multilayer films [J]. Macromolecules, 2004, 37: 9963.
    [231] Fu Y, Chen H, Qiu D L, et al. Multilayer assemblies of poly(4- vinylpyridine) and poly(acrylic acid) bearing photoisomeric spironaphthoxazine via hydrogen bonding [J]. Langmuir, 2002, 18: 4989.
    [232] Wang L Y, Fu Y, Wang Z Q, et al. Multilayer assemblies of poly(4-vinylpyridine) bearing an osmium complex and poly(acrylic acid) via hydrogen bonding [J]. Macromol. Chem. Phys.,1999, 200: 1523.
    [233] Sukhishvili S A, Granick S, et al. Layered, erasable, ultrathin polymer films [J]. J. Am. Chem. Soc,2000, 122: 9550.
    [234] Quinn J F, Caruso F, et al. Thermoresponsive nanoassemblies: layer- by-layer assembly of hydrophilic-hydrophobic alternating copolymers [J]. Macromolecules, 2005, 38: 3414.
    [235] Zhang Y J,. Yang S G, Guan Y, et al. Fabrication of stable hollow capsules by covalent layer-by-layer self assembly [J]. Macromolecules, 2003, 36: 4238.
    [236] Yang S G, Zhang Y J, Yuan G C, et al. Porous and nonporous nanocapsules by H-bonding self assembly [J]. Macromolecules, 2004, 37: 10059.
    [237] Kozlovskaya V, 0k S, Sousa A, et al. Hydrogen-bonded polymer capsules formed by layer-by-layer self-assembly [J]. Macromolecules, 2003, 36: 8590.
    [238] Kozlovskaya V, Yakovlew S, Libera M, et al. Surface priming and the self assembly of hydrogen-bonded multilayer capsules and films [J]. Macromolecules, 2005, 38: 4828.
    [239] Lee D, Rubner M F, Cohen R E, et al. Formation of nanoparticle-loaded microcapsules based on hydrogen-bonded multilayers [J]. Chem. Mater.,2005, 17: 1099.
    [240] Li D, Jiang Y D, Wu Z M, et al. Fabrication of self assembled polyaniline films by doping-induced deposition [J]. Thin Solid Films, 2000, 360: 24-28.
    [241] Sun J Q, Wang Z Q, Wu L X, et al. Investigation of the covalently attached multilayer architecture based on diazo-resins and poly(4-styrene sulfonate) [J]. Macromol. Chem. Phys,2001, 202: 967.
    [242] Sun J Q, Wu T, Sun Y P, et al. Fabrication of a covalently attached multilayer via photolysis of layer-by-layer self-assembled film containing diazo-resins [J]. Chem. Commun. 1998: 1853.
    [243] Sun J Q, Wang Z Q, Sun Y P, et al. Covalently attached multilayer assemblies of diazo-resins [J]. Chem. Commun. 1999: 693.
    [244] Chen J Y, Cao W X, et al. Fabrication of a covalently attached self assembly multilayer film via H-bonding attraction and subsequent UV irradiation [J]. Chem. Commun.,1999: 1711.
    [245] Wang J F, Chen J Y, Jia X R, et al. Self assembly ultrathin films based on dendrimers [J]. Chem. Commun.,2000: 511.
    [246] Fu Y, Xu H, Bai S L, et al. Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film [J]. Macromol. Rapid Commun. 2002, 23: 256.
    [247] Hou X L, Wu L X, Sun L, et al. Covalent attachment of deoxyribonucleic acid (DNA) to diazo-resin (DAR) in self assembled multilayer films [J]. Polym. Bull.,2002, 47: 445.
    [248] Park M–K, Deng S, Advincula R C. Sustained release control via photo-cross-linking of polyelectrolyte layer-by-layer hollow capsules [J]. Langmuir, 2005, 21: 5272.
    [249] Shi F, Dong B, Qiu D L, et al. Layer-by-layer self-assembly of reactive polyelectrolytes for robust multilayer patterning [J]. Adv. Mater,2002, 14: 805.
    [250] Li D Q, Ratner M A, Marks T J, et al. Chromophoric self-assembled multilayers. Organic superlattice approaches to thin-film nonlinear optical materials [J]. J. Am. Chem. Soc. 1990, 112: 7389-7390.
    [251] Li D Q, Swanson B I, Robinson J M, et al. Porphyrin based self-assembled monolayer thin films: synthesis and characterization [J]. J. Am. Chem. Soc. 1993, 115: 6975-6980
    [252] Li D Q, Buscher C T, Swanson B I. Synthesis, Characterization, and Properties of Covalently Bound, Self-Assembled Porphyrin Multilayer Thin Films [J]. Chem. Mater. 1994, 6: 803-810.
    [253] Van der Boom M E, Richter A G., Malinsky J E, et al. Single Reactor Route to Polar Superlattices. Layer-by-Layer Self-Assembly of Large-Response Molecular Electrooptic Materials by Protection?Deprotection [J]. Chem.Mater. 2001,13: 15-17.
    [254] Zhu P W, Kang H, Facchetti A, et al. Vapor Phase Self-Assembly of Electrooptic Thin Films via Triple Hydrogen Bonds [J]. J. Am. Chem. Soc. 2003,125: 11496-11497.
    [255] Lin W B, Lee T L, Marks T J. et al. Atomic Resolution X-ray Standing Wave Microstructural Characterization of NLO-Active Self-Assembled Chromophoric Superlattices [J]. J.Am.Chem.Soc.1997,119: 2205-2211.
    [256] Facchetti A, Abbotto A, Marks T J, et al. Layer-by-Layer Self-Assembled Pyrrole-Based Donor?Acceptor Chromophores as Electro-Optic Materials [J]. Chem.Mater. 2003, 15: 1064-1072.
    [257] Roscoe S B, Kakkar A K, Marks T J, et al. Self-Assembled Chromophoric NLO-Active Monolayers. X-ray Reflectivity and Second-Harmonic Generation as Complementary Probes of Building Block?Film Microstructure Relationships [J]. Langmuir 1996, 12: 4218-4223.
    [258] Roberts M J, Lindsay G A, Herman W N, et al. Thermally Stable Nonlinear Optical Films by Alternating Polyelectrolyte Deposition on Hydrophobic Substrates [J]. J.Am.Chem.Soc. 1998,120: 11202-11203.
    [259] Flory W C, Mehrens S M, Blanchard G J. Structural Contributions to Second-Order Optical Nonlinearities in Oriented Interfacial Multilayers [J]. J.Am.Chem.Soc. 2000, 122: 7976-7985.
    [260] Neff G A, Helfrich M R, Clifton M C, et al. Layer-by-Layer Growth of Acentric Multilayers of Zr and Azobenzene Bis(phosphonate): Structure, Composition, and Second-Order Nonlinear Optical Properties [J]. Chem.Mater. 2000, 12: 2363-2371.
    [261] Dong X, Bai H, Tuo X L, et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes [J]. Acta. Polym. Sin. 2004, (1): 54.
    [262] Yu Z B, Yang Z, He Y N, et al. Wang, et al. Synthesis and structures of neutral and cationic -diketiminatoaluminium methyls [J]. Acta. Polym. Sin. 2004, (3): 345.
    [263] Wang H P, He Y N, Tuo X L, et al. Sequentially Adsorbed Electrostatic Multilayers of Branched Side-Chain Polyelectrolytes Bearing Donor?Acceptor Type Azo Chromophores [J]. Macromolecules 2004, 37: 135-146.
    [264] Li Z, Qin J G, Li S J, et al. Polyphophazene Containing Indole-Based Dual Chromophores: Synthesis and Nonlinear Optical Characterization [J]. Macromolecules 2002, 35: 9232-9235.
    [265] Li Z, Qin J G, Deng X, et al. Catalytic asymmetric reaction of lithium ester enolates with imines [J]. J. Polym. Sci. Part A: Polym.Chem. 2001, 39: 3428.
    [266] Tang H, Luo J D, Qin J G, et al. Epoxidation of alkenes using dioxygen in the presence of an alcohol catalyzed by N-hydroxyphthalimide and hexafluoroacetone without any metal catalyst [J]. Macromol. Rapid Commun.2000, 21: 1125.
    [267] Luo J D, Qin J G, Ye C, et al. A Postfunctionalization Strategy To Develop PVK?Based Nonlinear Optical Polymers with a High Density of Chromophores and Improved Processibility [J]. Chem. Mater. 2001, 13: 927-931.
    [268] Qin A J, Yang Z, Bai F L, et al. Adsorptive separation of methylalumoxane by mesoporous molecular sieve MCM-41 [J]. Journal of Polymer Science Part A: Polymer Chemistry 2003, 41: 2846.
    [269] Ji S X, Li Z, Zhou X. S, et al. Ir-catalysed allylic substitution: mechanistic aspects and asymmetric synthesis with phosphorus amidites as ligands [J]. Polymers for Advanced Technologies 2003, 14: 254.
    [270] Yang Z, Li S J, Ye C. Fatigue resistant properties of photochromic dithienylethenes: by-product formation [J] Journal of Polymer Science Part A: Polymer Chemistry 2002, 40: 4297.
    [271] Wu W, Wang D, Wang P, et al. The influence of pressure and temperature on the crystal structure of acetone [J]. Journal of Applied Polymer Science 2000, 77: 2939.
    [272] Wu W, Wang D, Wang P, et al. Medicinal chemistry with fullerenes and fullerene derivatives [J]. Journal of Polymer Science Part A: Polymer Chemistry 2000, 37: 3598.
    [273] Sui Y, Wang D, Yin J. Nanosized zeolite crystals—convenient control of crystal size distribution by confined space synthesis [J] Materials Letters 2002, 52: 53.
    [274] Lu J X, Yin J. A novel screening method for combinatorial chemistry for low
    affinity interactions [J]. Journal of Polymer Science:Part A:Polymer Chemistry 2003, 41: 303.
    [275] Zhong A Y. A Lewis acid dependent asymmetric Diels–Alder process in the cyclization of new chiral acrylamides with dienes [J]. Journal of Applied Polymer Science 2002, 85: 638.
    [276] Zhu P W, Kang H, Facchetti A, et al. Vapor Phase Self-Assembly of Electrooptic Thin Films via Triple Hydrogen Bonds [J]. J. Am. Chem. Soc. 2003, 125: 11496-11497.
    [277] Advincula R C, Fells E, Park M K. Molecularly Ordered Low Molecular Weight Azobenzene Dyes and Polycation Alternate Multilayer Films: Aggregation, Layer Order, and Photoalignment [J]. Chem. Mater. 2001, 13: 2870-2878.
    [278] Li D Q, Ratner M A, Marks T J, et al. Chromophoric self-assembled multilayers. Organic superlattice approaches to thin-film nonlinear optical materials [J]. J. Am. Chem. Soc. 1990, 112: 7389-7390.
    [279] Katz H E, Scheller G., Putvinski T, et al. Polar Orientation of Dyes in Robust Multilayers by Zirconium Phosphate- Phosphonate Interlayers [J]. Science 1991, 254: 1485-1487.
    [280] Katz H E, Wilson W L, Scheller G.. Chromophore Structure, Second Harmonic Generation, and Orientational Order in Zirconium Phosphonate/Phosphate Self-Assembled Multilayers [J]. J. Am. Chem. Soc. 1994, 116: 6636-6640.
    [281] Lin W B, Lin W P, Wong G K, et al. Supramolecular Approaches to Second-Order Nonlinear Optical Materials. Self-Assembly and Microstructural Characterization of Intrinsically Acentric [(Aminophenyl)azo]pyridinium Superlattices [J]. J. Am. Chem. Soc. 1996, 118: 8034-8042.
    [282] Flory W C, Mehrens S M, Blanchard G J. Structural Contributions to Second-Order Optical Nonlinearities in Oriented Interfacial Multilayers [J]. J. Am. Chem. Soc. 2000, 122: 7976-7985.
    [283] Roberts M J, Lindsay G A, Herman W N, et al. Thermally Stable Nonlinear Optical Films by Alternating Polyelectrolyte Deposition on Hydrophobic Substrates [J]. J. Am. Chem. Soc. 1998, 120: 11202-11203.
    [284] Ishow E, Bella?che C, Bouteiller L, et al. Versatile Synthesis of Small NLO-Active Molecules Forming Amorphous Materials with Spontaneous Second-Order NLO Response [J]. J. Am. Chem. Soc. 2003, 125: 15744-15745.
    [285] Van Cott K E, Guzy M, Neyman P, et al. Layer-By-Layer Deposition and Ordering of Low-Molecular-Weight Dye Molecules for Second-Order Nonlinear Optics [J]. Angew. Chem. Int. Ed. 2002, 41: 3236-3238.
    [286] Cao S G., Zhao C, Cao W X. Synthesis of diazoresin and its photocrosslinking reaction [J]. Polym. Int. 1998, 45: 142-146.
    [287]王耀,新型二阶非线性光学聚合物膜材料的设计、制备与性能研究[D].长春:吉林大学博士学位论文,2005.
    [288] Tirelli N, Altomare A, Solaro R, et al. The influence of pressure and temperature on the crystal structure of acetone [J]. J. prakt. Chem. 1998, 340: 122.
    [289] Tirelli N, Suter U W, Altomare A, et al. Structure?Activity Relationship of New Nonlinear Optical Organic Materials Based on Push?Pull Azo Dyes. 3.Guest-Host Systems [J]. Macromolecules 1998, 31: 2152-2159.
    [290] Schilling M L, Katz H E. Synthetic approaches to head-to-tail linked azo dyes for nonlinear optical applications [J]. Chem. Mater. 1989, 1: 668-673.
    [291] Lu C H, Wu N Z, Wei F, et al. Fabrication and Characterization of Stable Ultrathin Film Micropatterns Containing CdS Nanoparticles [J]. Adv. Funct. Mater. 2003, 13: 548-552.
    [292] Cao T B, Yang S M, Yang Y L, et al. Photoelectric Conversion Property of Covalent-Attached Multilayer Self-Assembled Films Fabricated from Diazoresin and Fullerol [J]. Langmuir 2001, 17: 6034-6036.
    [293] Lu C H, Wei F, Wu N Z, et al. Au Nanoparticle Micropatterns Prepared from Self-Assembled Films [J]. Langmuir 2004, 20: 974-977.
    [294] Cao T B, Wei F, Yang Y L, et al. Microtribologic Properties of a Covalently Attached Nanostructured Self-Assembly Film Fabricated from Fullerene Carboxylic Acid and Diazoresin [J]. Langmuir 2002, 18: 5186-5189.
    [295] Wang J F, Jia X R, Zhong H, et al. Self-Assembled Multilayer Films Based on Dendrimers with Covalent Interlayer Linkage [J]. Chem. Mater. 2002, 14, 2854-2858.
    [296] Sun J Q, Wang Z Q, Sun Y P, et al. Covalently attached multilayer assemblies of diazo-resins and porphyrins [J]. Chem. Comm., 1999 (8) :693.
    [297] Sun J Q, Wu T, Sun Y P, et al. Fabrication of a covalently attached multilayer via photolysis of layer-by-layer self-assembled films containing diazo-resins [J]. Chem. Comm., 1998 (17): 1853.
    [298] Li B, Cao T B, Cao W X, et al. Self-assembly of single-walled carbon nanotube based on diazoresin [J]. Synthetic Metals, 2002, 132: 5.
    [299] Nunzi F, Fantacci S, Angelis F D, et al. Theoretical Investigations of the Effects of J-Aggregation on the Linear and Nonlinear Optical Properties of E-4-(4-Dimethylaminostyryl)-1-methylpyridinium [DAMS+] [J]. J. Phys. Chem. C, 2008, 112: 1213-1226.
    [300]王文军.有机功能材料超薄膜(LB)非线性光学特性研究[D].上海:复旦大学博士学位论文,2001.
    [301] Park S K, Park S, Ju J J, et al. Fluorinated Styrene- and Carbazole-Based Cladding Polymer Layers for EO and NLO Polymer Devices [J]. Macromol. Chem. Phys. 2008, 209: 290–297.
    [302] H. Yabu, M. Tanaka, K. Ijiro, M. Shimonura, Langmuir. 19 (2003) 6297.
    [303] Perry J M, Moad A J, Begue N J, et al. Electronic and Vibrational Second-Order Nonlinear Optical Properties of Protein Secondary Structural Motifs [J]. J. Phys. Chem. B 2005, 109: 20009-20026.
    [304] Cui Y J, Qian G D, Chen L J, et al. Hybrid Nonlinear Optical Materials Containing Imidazole Chromophore through the Sol-Gel Process [J]. Macromol. Rapid Commun. 2007, 28, 2019–2023.
    [305]史伟,房昌水,徐志凌,等.聚合物薄膜中生色团分子间的相互作用对其宏观二阶非线性的影响[J].物理学报, 2000, 49: 904-910.
    [306] Li Z A, Zeng Q, Yu G, et al. New Azo Chromophore-Containing Conjugated Polymers: Facile Synthesis by Using Click Chemistry and Enhanced Nonlinear Optical Properties Through the Introduction of Suitable Isolation Groups [J]. Macromol. Rapid Commun. 2008, 29: 136–141.
    [307]黄剑锋.溶胶-凝胶原理与技术[M] .北京:化学工业出版社.,1995.
    [308] Page R H, Jurich M C, Willson C G,et al. Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films [J]. J. Opt. Soc. Am. B. 1990, 7: 1239—1244.
    [309] Cui Y J, Qian G D, Chen L J, et al. Enhanced Thermal Stability of Dipole Alignment in Inorganic-Organic Hybrid Films Containing Benzothiazole Chromophore [J]. J. Phys. Chem. B 2006, 110: 4105-4110.
    [310] Choi D H, Lim S J, Jahng W S,et al. Organically modified sol-gel materials for second-order nonlinear optics [J]. Thin Solid Films. 1996, 287: 220—224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700