用户名: 密码: 验证码:
强化介孔分子筛酸中心及水热稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于合成具有强酸位的介孔分子筛及提高介孔分子筛的水热稳定性。
     第一章为绪论,主要介绍介孔分子筛的合成机理,模板剂类型,介孔分子筛类型,及介孔分子筛应用等方面的信息;第二章是实验试剂及各种测试仪器型号及测试条件;在第三章中,以沸石MCM-22前驱物为原料,合成了相对于常规介孔分子筛MCM-41具有更强酸性的介孔分子筛MM-22,并将其应用到苯酚叔丁基化反应中,结果表明,MM-22表现了比Al-MCM-41,ZSM-5,MCM-22更好的催化性能;在第四章中,以沸石MCM-22为起始原料,通过碱处理打破沸石结构得到沸石次级结构单元,然后介孔化得到了具有强酸性的介孔分子筛M-MCM-22,测试结果表明,M-MCM-22具有规则的六方介孔结构,沸石MCM-22中的铝状态在M-MCM-22中得到延续;在第五章中,使用与第四章相同的方法对沸石MCM-49和MCM-56进行处理,得到了强酸性的介孔分子筛M-MCM-49和M-MCM-56;第六章中,我们以新颖的方法提高了介孔分子筛的水热稳定性:碳填充后高温处理。将此方法应用到介孔材料KIT-6上,使得材料的水热稳定性得到了大幅度提高。以小孔径的介孔分子筛MCM-41和MCM-48为起始材料,通过碳填充后高温处理的方法得到了具有高水热稳定性的超微孔材料。
According to the IUPAC, porous materials can be classified into three types by pore size: microprous materials are characterized by pore sizes of < 2 nm, mesoporous materials are characterized by pore size in the range of 2–50 nm, and the pore size > 50 nm can vest in macroporous materials. The microporous materials have been widely used in many fields such as adsorption and separation, ion-exchange, and industrial catalysis, because of their unique pore structures and characters. However, microporous materials can only be applied in the area related to small molecules; it can not effectively deal with large molecules due to the limitation of the pore size. Therefore, investigating porous materials with larger pores becomes very necessary.
     Mesoporous materials have large surface area, uniform pore channels, high thermal stability and ability to be recycled, and thus they are widely used as catalysts or catalyst supports for many catalytic reactions. Since the discovery of M41S molecular sieves, varied kinds of mesoporous materials have been synthesized. Because conventional mesoporous aluminosilicates commonly possess weak acidity and poor hydrothermal stability due to amorphous pore walls, their catalytic applications are limited. Therefore, the preparation of new mesoporous aluminosilicates with strong acidity and high hydrothermal stability becomes very important. Based on this background, this paper carries out research of improving acidity and hydrothermal stability of mesoporous materials.
     The acid strength of zeolites materials is higher than conventional mesoporous aluminosilicates. According to literatures, making the secondary structure units of zeolites into the framework can enhance the acid strength of mesoporous materials. In the third chapter, using zeolite MCM-22 precursor as silica and aluminium sources, through two-step crystallization procedure in the presence of cetyltrimethylammonium bromide (CTAB), a KIT-1-like structural mesoporous aluminosilicate (denoted as MM-22) has been synthesized under basic conditions. The characterized results show that MM-22 is pure mesoporous phase, and constructed of secondary structure units of zeolite MCM-22. Compared with classic Al-MCM-41 and ZSM-5, MM-22 has stronger acidity and higher hydrothermal stability. In the alkylation reaction of phenol with tert-butanol, MM-22 shows higher catalytic activity than Al-MCM-41, MCM-22 and ZSM-5.
     In addition, destroying the crystal structure of zeolites also can obtain the secondary structure units of zeolites. All of the MCM-22 zeolite family is samdwich structure. Their crystal structure can be destroyed easily in the alkaline solution, producing large numbers of secondary structure units. In the chapter four, zeolite MCM-22 is treated by sodium hydroxide solution firstly, then cetyltrimethylammonium bromide (CTAB) is combined as mesoporous template to synthesize mesoporous material denoted as M-MCM-22 with enhanced acidity. Analytic results show that M-MCM-22 has ordered hexagonal p6mm mesostructure and its framework contains the secondary structure of zeolites MCM-22, which makes the acid sites of M-MCM-22 stronger in comparison with conventional Al-MCM-41. 27Al MAS NMR study confirms that aluminum in M-MCM-22 is exclusively in tetrahedral coordination. The catalytic performance of M-MCM-22 is tested in alkylation of phenol with tert-butanol and M-MCM-22 shows highly steady catalytic properties. The highest conversion of phenol can be achieved at 418 K, while the highest selectivity to 2, 4-di-TBP is obtained at 398 K. It is found that high temperature is advantageous to form 4-TBP, whereas low weight hourly space velocity (WHSV/h-1) is helpful for both conversion of phenol and selectivity to 2,4-DTBP. It is also shown that high ratio of tert-butanol/phenol is beneficial for obtaining high conversion of phenol and selectivity to 2,4-di-TBP.
     In chapter five, by treating zeolite MCM-56 and MCM-49 with a sodium hydroxide solution for obtaining secondary structure units of zeolite as silicon and aluminum sources, using cetyltrimethylammonium bromide (CTAB) as template and adjusting the pH value to neutral, mesoporous aluminosilicat with hexagonal structure denoted as MM-56 and MM-49 are synthesized. Compared with conventional mesoporous aluminosilicates materials, MM-56 and MM-49 have enhanced acid sites and show higher catalytic activity for the alkylation of phenol with tert-butanol.
     Less Si–OH groups can reduce mesoporous structure damage conducted by hydrolysis in hot water, thus the hydrothermal stability can be enhanced. It is well known that high temperature can make the number of Si–OH groups decreased, and the hydrothermal stability can be correspondingly reinforced. However under the high temperature condition, the mesoporous structure is easily destroyed. In chapter six, super-microporous materials with enhanced hydrothermal stability are synthesized by a novel method. We make sucrose dip into the pore of pure silica MCM-41 and MCM-48 to keep the pore structure firstly. Afterwards, by treating the materials at high temperature under nitrogen condition and then removing the carbon filled in pore channel, super-microporous silica with high hydrothermal stability denoted as MCM-41-T and MCM-48-T were obtained. Up to now, less attention has been developed to the synthesis of materials in the super-microporous (pore size 1–2 nm) range. The materials in this pore size range are very important since they may bridge the gap between microporous zeolites and mesoporous materials. Such materials exhibit the potential of size and shape selectivity for those organic molecules which are too large to access into the pores of microporous zeolites and zeolite-like materials. Analytic results show that after treatment by high temperature, the pore sizes of MCM-41 and MCM-48 decrease from mesoporous area to super-microporous range. MCM-41-T and MCM-48-T have high Q4/Q3 ratio and enhanced hydrothermal stability. Refluxed in boiled water for 96 h, the pore structure still remains. Making the furfural dip into the pore of mesoporous aluminosilicates and then treating at high temperature do not induce aluminium out from the mesoporous framework, and therefore the Bronsted acid sites only slightly decreases. We also apply this method to synthesize lager pore size mesoporous materials KIT-6 and it is found that hydrothermal stability of the material is considerably enhanced after high temperature treatment.
引文
[1] DiRenzo F, Cambon H, Dutartre R, A 28-year-old synthesis of micelle-templated mesoporous silica. Micropor. Mater., 1997, 10: 283-286.
    [2] Yanagisawa T, Shimizu T, et al. The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials. Bull. Chem. Soc. Jpn., 1990, 63: 988-992.
    [3] nagaki S, Fukushima Y, Kuroda K, Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate. J. Chem. Soc-Chem. Commun., 1993: 680-682.
    [4] Kresge CT, Leonowicz ME, Roth WJ, et al. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid- Crystal Template Mechanism. Nature, 1992, 359: 710-712.
    [5] Beck J S, Vartuli J C, Roth W J, et al. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid- Crystal Templates. J. Am. Chem. Soc., 1992, 114: 10834-10843.
    [6] Inagaki S, Fukushima Y, Kuroda K, Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate. J. Chem. Soc-Chem. Commun., 1993: 680-682.
    [7] Huo Q S, Margolese D I, Ciesla U, et al. Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials. Nature, 1994, 368: 317-321.
    [8] Huo Q S, Leon R, Petroff P M, Stucky G D: Mesostructure Design with Gemini Surfactants - Supercage Formation in a 3-Dimensional Hexagonal Array. Science, 1995, 268: 1324-1327.
    [9] Zhao D Y, Huo Q S, Feng J L, et al. Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants. Chem. Mater., 1999, 11: 2668-2672.
    [10] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279: 548-552.
    [11] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 1998, 120: 6024-6036.
    [12] Tanev P T, Chibwe M, Pinnavaia T J, Titanium-Containing Mesoporous Molecular-Sieves for Catalytic- Oxidation of Aromatic-Compounds. Nature, 1994, 368: 321-323.
    [13] Tanev P T, Pinnavaia T J, A Neutral Templating Route to Mesoporous Molecular-Sieves. Science, 1995, 267: 865-867.
    [14] Ryoo R, Kim J M, Ko C H, Shin C H: Disordered molecular sieve with branched mesoporous channel network. J. Phys. Chem., 1996, 100: 17718-17721.
    [15] Kleitz F, Shin H C, Ryoo R, Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun., 2003: 2136–2137.
    [16] Kleitz F, Liu D, Anilkumar G M, et al. Large Cage Face-Centered-Cubic Fm3m Mesoporous Silica: Synthesis and Structure. J. Phys. Chem. B., 2003, 107: 14296.
    [17] Matos J R, Kruk M, Mercuri L P, et al. Ordered Mesoporous Silica with Large Cage-Like Pores: Structural Identification and Pore Connectivity Design by Controlling the Synthesis Temperature and Time. J. Am. Chem. Soc., 2003, 125: 821-829; Shen S D, Li Y Q, Zhang Z D, et al. A novel ordered cubic mesoporous silica templated with tri-head group quaternary ammonium surfactant. Chem. Commun., 2002, 2212-2213; Fan J, Yu C Z, Gao T, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem. Int. Ed., 2003, 42: 3146-3150.
    [18] Liu X Y, Tian B Z, Yu C Z, et al.Room-temperature synthesis in acidic media of large-pore three- dimensional bicontinuous mesoporous silica with Ia3d symmetry. Angew. Chem., Int. Edit., 2002, 41:3876-3878.
    [19] Yu C Z, Yu Y H, Zhao D Y. Highly ordered large caged cubic mesoporous silicastructures templated by triblock PEO-PBO-PEO copolymer. Chem. Commun., 2000: 575-576.
    [20] Matos J R, Kruk M, Mercuri L P, et al. Ordered mesoporous silica with large cage-like pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time. J. Am. Chem. Soc., 2003, 125: 821-829.
    [21] Fan J, Yu C Z, Gao T, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem-Int. Edit., 2003, 42: 3146-3150.
    [22] Shen S D, Li Y Q, Zhang Z D, et al. A novel ordered cubic mesoporous silica templated with tri-head group quaternary ammonium surfactant. Chem. Commun., 2002: 2212-2213.
    [23] Kimura T, Kamata T, Fuziwara M, et al. Formation of novel ordered mesoporous silicas with square channels and their direct observation by transmission electron microscopy. Angew. Chem-Int. Edit., 2000, 39: 3855-3859.
    [24] Wu C G, Bein T. Microwave synthesis of molecular sieve MCM -41. Chem. Commun., 1996: 925-926.
    [25] Newalkar B L, Komarneni S, Katsuki H. Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwavehydrothermal process. Phys. Chem. Chem. Phys., 2000, 2: 2389-2390.
    [26] Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396: 152-155.
    [27] MacLachlan M J, Coombs N, Ozin G A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)(4-) clusters. Nature, 1999, 397: 681-684.
    [28] Lin W Y, Chen J S, Sun Y, et al. Bimodal Mesopore Distribution in a Silica Prepared by Calcining a Wet Surfactant-Containing Silicate Gel. J. Chem. Soc-Chem. Commun., 1995: 2367-2368.
    [29] Zhao D Y, Yang P D, Melosh N, et al. Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater., 1998, 10: 1380-1385.
    [30] Melosh N A, Davidson P, Chmelka B F: Monolithic mesophase silica with large ordering domains. J. Am. Chem. Soc., 2000, 122: 823-829.
    [31] Yang P D, Zhao D Y, Margolese D I, et al. Block copolymer templating syntheses ofmesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater., 1999, 11: 2813-2826.
    [32] Crepaldi E L, Soler-Illia G, Grosso D, et al. Design and post-functionalisation of ordered mesoporous zirconia thin films. Chem. Commun., 2001: 1582-1583.
    [33] Holland B T, Isbester P K, Blanford C F, et al. Synthesis of Ordered Aluminophosphate and Galloaluminophosphate Mesoporous Materials with Anion-Exchange Properties Utilizing Polyoxometalate Cluster/Surfactant Salts as Precursors. A. J. Am. Chem. Soc., 1997, 119: 6796-6803.
    [34] Cabrera S, Haskouri E J, Guillem C, et al. Tuning the pore size from micro- to meso-porous in thermally stable aluminophosphates. Chem. Commun., 1999: 333-334.
    [35] Jimenez-Jimenez J, Maireles-Torres P, Olivera-Pastor P, et al. Surfactant-assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties. Adv. Mater., 1998, 10: 812-815.
    [36] Guo X F, Ding W P, Wang X G, Yan QJ: Synthesis of a novel mesoporous iron phosphate. Chem. Commun., 2001: 709-710.
    [37] Nenoff T M, Thoma S G, Provencio P, Maxwell R S. Novel zinc phosphate phases formed with chiral d-glucosamine molecules. Chem. Mater., 1998, 10: 3077-3080.
    [38] Mal N K, Ichikawa S, Fujiwara M. Synthesis of a novel mesoporous tin phosphate, SnPO4. Chem. Commun., 2002: 112-113.
    [39] Serre C, Auroux A, Gervasini A, et al. Hexagonal and cubic thermally stable mesoporous Tin(IV) phosphates with acidic and catalytic properties. Angew. Chem-Int. Edit., 2002, 41: 1594-1597.
    [40] Bagshaw S A, Pinnavaia T J. Mesoporous alumina molecular sieves. Angew. Chem., Int. Ed. Engl. 1996, 35: 1102-1105.
    [41] Carbrera S, El Haskouri J, Alamo J, et.al. Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes. Adv. Mater., 1999, 11: 379-381.
    [42] Vaudry F, Khodabandeh S, Davis M E. Synthesis of pure alumina mesopor ous materials. Chem. Mater., 1996, 8: 1451-1464.
    [43] Yada M, Machida M, Kijima T. Synthesis and deorganization of an aluminium–based dodecyl sulfate mesophase with a hexagonal structure. Chem. Commun. 1996: 769-770.
    [44] Valange S, Guth J L, Kolenda F, et al. Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media. Micropor. Mesopor. Mater., 2000, 35-36: 597-607.
    [45] Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396: 152-155.
    [46] Blanchard J, Schuth F, Trens P, Hudson M. Synthesis of hexagonally packed porous titanium oxo-phosphate. Micropor. Mesopor. Mater., 2000, 39: 163-170.
    [47] Romannikov V N, Fenelov V B, Paukshtis E A, et al. Mesoporous basic zirconium sulfate: structure, acidic properties and catalytic behaviour. Micropor. Mesopor. Mater., 1998, 21: 411-419.
    [48] Antonelli D M, Ying J Y. Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves. Chem. Mater., 1996, 8: 874-881.
    [49] Luo J, Suib S L. Formation and transformation of mesoporous and layered manganese oxides in the presence of long-chain ammonium hydroxides. Chem. Commun., 1997, 1031-1032.
    [50] Tian Z R, Tong W, Wang J Y, et al. Manganese oxide mesoporous structures: Mixed-valent semiconducting catalysts. Science, 1997, 276: 926-929.
    [51] Braun P V, Osenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies. Nature, 1996, 380: 325-328.
    [52] Osenar P, Braun P V, Stupp S I. Lamellar semiconductor-organic nanostructures from self-assembled templates. Adv. Mater. 1996, 8: 1022-1025.
    [53] Tohver V, Braun P V, Pralle M U, Stupp S I. Counterion Effects in Liquid Crystal Templating of Nanostructured CdS. Chem. Mater. 1997, 9: 1495-1498.
    [54] Bonnehomme F, Kanatzidis M G. Structurally Characterized Mesostructured Hybrid Surfactant?Inorganic Lamellar Phases Containing the Adamantane [Ge4S10]4- Anion: Synthesis and Properties. Chem. Mater., 1998, 10: 1153-1159.
    [55] Wachhold M, Rangan K K, Lei M, et al. Mesostructured metal germanium sulfide and selenide frameworks based on the tetrahedral Ge4(S/Se10) units. J. Solid State Chem., 2000, 152: 21-36.
    [56] Rangan K K, Trikalitis P N, Kanatzidis M G. Light-emitting meso-structured sulfideswith hexagonal symmetry. Supramolecular assembly of [Ge4S10]4- clusters with trivalent metal ions and cetylpyridinium surfactant. J. Am. Chem. Soc., 2000, 122: 10230-10231.
    [57] MacLachlan M J, Coombs N, Bedard R L, et al. Mesostructured Metal Germanium Sulfides. J. Am. Chem. Soc., 1999, 121: 12005-12017.
    [58] Trikalitis P N, Bakas T, Papaefthymiou V, Kanatzidis M G. Supramolecular Assembly of Hexagonal Mesostructured Germanium Sulfide and Selenide Nanocomposites Incorporating the Biologically Relevant Fe4S4 Cluster. Angew. Chem., Int. Ed. 2000, 39: 4558-4562.
    [59] Attard G S, Goltner C G, Corker J M, et al. Liquid-crystal templates for nanostructured metals. Angew. Chem-Int., Edit. Engl., 1997, 36: 1315-1317.
    [60] Shin H J, Ko C H, Ryoo R. Synthesis of platinum networks with nanoscopic periodicity using mesoporous silica as template. J. Mater. Chem., 2001, 11: 260-261.
    [61] Lee K, Kim Y H, Han S B, et al. Osmium replica of mesoporous silicate MCM -48: Efficient and reusable catalyst for oxidative cleavage and dihydroxylation reactions. J. Am. Chem. Soc., 2003, 125: 6844-6845.
    [62] Attard G S, Goltner C G, Corker J M, et al. Liquid-Crystal Templates for the Nanostructured Metals. Angew. Chem., Int. Ed. Engl., 1997, 36: 1315-1317.
    [63] Whitehead A H, Elliott J M, Owen J R, Attard G S: Electrodeposition of mesoporous tin films. Chem. Commun., 1999: 331-332.
    [64] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and its application toelectrochemical double-layer capacitors. Chem. Commun., 1999: 2177-2178.
    [65] Zhang W H, Liang C H, Sun H J, et al. Synthesis of ordered mesoporous carbonscomposed of nanotubes via catalytic chemical vapor deposition. Adv. Mater., 2002, 14: 1776-1778.
    [66] Kruk M, Jaroniec M, Ryoo R, Joo SH. Characterization of ordered mesoporous carbons synthesized using MCM -48 silicas as templates. J. Phys. Chem. B., 2000, 104: 7960-7968.
    [67] Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons. Adv. Mater., 2001, 13: 677-681.
    [68] Kruk M, Jaroniec M, Kim T W, Ryoo R. Synthesis and characterization of hexagonally ordered carbon nanopipes. Chem. Mater., 2003, 15: 2815-2823.
    [69] Lee J, Yoon S, Oh S M, Shin C H, Hyeon T. Development of a new mesoporous carbonusing an HMS aluminosilicate template. Adv. Mater., 2000, 12: 359-362.
    [70] Kim S S, Pinnavaia T J. A low cost route to hexagonal mesostructured carbon molecular sieves. Chem. Commun., 2001: 2418-2419.
    [71] Yang P D, Zhao D Y, Margolese D I, et al. Generalized Syntheses of Large-Pore Meosporous Metal Oxides with Nanocrystalline Walls. Nature 1998, 396: 152-154.
    [72] Tian B Z, Liu X Y, Tu B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat. Mater., 2003, 2: 159-163.
    [73] Ulagappan N, Rao CNR. Mesoporous phases based on SnO2 and TiO2. Chem. Commun., 1996: 1685-1686.
    [74] Che S, Liu Z, Ohsuna T, et al. Synthesis and Characterization of Chiral Mesoporous Silica. Nature, 2004, 429: 281-284.
    [75] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants. Science, 1995, 269: 1242-1244.
    [77] Tanev P T, Pinnavaia T J. A Neutral Templating Route to Mesoporous Molecular-Sieves. Science, 1995, 267: 865-867.
    [78] Sun T, Ying J Y. Synthesis of microporous transition metal oxide molecular sieves with bifunctional templating molecules. Angew. Chem-Int., Edit., 1998, 37: 664-667.
    [79] Kim S S, Zhang W Z, Pinnavaia T J. Ultrastable mesostructured silica vesicles. Science, 1998, 282: 1302-1305.
    [80] Smarsly B, Polarz S, Antonietti M. Preparation of porous silica materials via sol-gel nanocasting of nonionic surfactants: A mechanistic study on the self- aggregation of amphiphiles for the precise prediction of the mesopore size. J. Phys. Chem. B., 2001, 105: 10473-10483.
    [81] Kipkemboi P, Fogden A, Alfredsson V, Flodstrom K. Triblock copolymers as templates in mesoporous silica formation: Structural dependence on polymer chain length and synthesis temperature. Langmuir, 2001, 17: 5398-5402.
    [82] Khushalani D, Kuperman A, Coombs N, Ozin GA. Mixed surfactant assemblies in the synthesis of mesoporous silicas. Chem. Mater., 1996, 8: 2188-2193.
    [83] Chen F X, Huang L M, Li Q Z. Synthesis of MCM-48 using mixed cationic-anionic surfactants as templates. Chem. Mater., 1997, 9: 2685-2686.
    [84] Yan X W, Chen H Y, Li Q Z. A mixed neutral cationic surfactant templating pathway to cubic mesoporous molecular sieves. Acta. Chim. Sin., 1998, 56: 1214-1217.
    [85] Antonietti M, Berton B, Goltner C, Hentze H P. Synthesis of mesoporous silica with large pores and bimodal poresize distribution by templating of polymer latices. Adv. Mater., 1998, 10: 154-159.
    [86] Lin H P, Mou C Y. Structural and morphological control of cationic surfactant- templated mesoporous silica. Accounts. Chem. Res., 2002, 35: 927-935.
    [87] Wei Y, Feng Q W, Xu J G, et al. Polymethacrylate-silica hybrid nanoporous materials: A bridge between inorganic and polymeric molecular sieves. Adv. Mater., 2000, 12: 1448-1450.
    [88] Chen C Y, Li H X, Davis M E. Studies on mesoporous materials. I. Synthesis and characterization of MCM-41. Micropor. Mater., 1993, 2: 17-26.
    [89] Huo Q S, Margolese D I, Ciesla U, et al. Organization of Organic-Molecules with Inorganic Molecular- Species into Nanocomposite Biphase Arrays. Chem. Mater., 1994, 6: 1176-1191.
    [90] Firouzi A, Kumar D, Bull L M, et al. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science, 1995, 267: 1138-1143.
    [91] Monnier A, Schuth F, Huo Q, et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science, 1993, 261: 1299-1303.
    [92] Chen C Y, Burkette S L, Li H X, Davis M E. Studies on mesoporous materials. II. Synthesis mechanism of MCM -41. Micropor. Mater., 1993, 2: 27–34.
    [93] Attard G S, Glyde J C, G.ltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature, 1995, 378: 366-367.
    [94] Tanev P T, Pinnavaia T J. Recent Progress in the Synthesis of Porous Carbon Material. Science, 1995, 267: 865-867.
    [95] Tanev P T, Pinnavaia T J. Mesoporous Silicas Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties. Chem. Mater., 1996, 8: 2068-2079.
    [96] Corma A, Navarro M T, Pariente J P. Synthesis of an Ultralarge Pore Titanium Silicate Isomorphous to MCM-41 and Its Application as a Catalyst for Selective Oxidation of Hydrocarbons. J Chem Soc-Chem Commun., 1994:147-148.
    [97] Reddy J S, Sayari A, J. Chem. Soc. Chem. Commun., 1995: 2231-2245.
    [98] Tuel A, Gontier S, Teissier R. Zirconium containing mesoporous silicas: new catalysts for oxidation reactions in the liquid phase. Chem. Commun. 1996, 651-652.
    [99] Corma A, Martinez A, Martinez-Soria V, Monton J B. Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst. J. Catal., 1995, 153: 25-31.
    [100] Aguado J, Serrano D P, Romero M D, Escola J M. Catalytic conversion of polyethylene into fuels over mesoporous MCM-41. Chem. Commun., 1996: 725-726.
    [101] Climent M J, Corma A, Iborra S, et al. Use of Mesoporous MCM-41 Aluminosilicates as Catalysts in the Production of Fine Chemicals: Preparation of Dimethylacetals. J. Catal., 1996, 161: 783-786.
    [102] Corma A, Iglesias M, Sanchez F J. Chem. Soc. Chem. Commun., 1995: 1635.
    [103] Wong M S, Ying J Y. Amphiphilic templating of mesostructured zirconium oxide. Chem. Mater., 1998, 10: 2067-2077.
    [104] Kaskel S, Farrusseng D, Schlichte K. Synthesis of mesoporous silicon imido nitride with high surface area and narrow pore size distribution. Chem. Commun., 2000, 2481-2482.
    [105] Kaskel S, Schlichte K. Porous Silicon Nitride as a Superbase Catalyst. J. Catal., 2001, 201: 270-2074.
    [106] Farrusseng D, Schlichte K, Spliethoff B, et al. Pore-Size Engineering of Silicon Imido Nitride for Catalytic Applications. Angew. Chem., Int. Ed. Engl., 2001, 40: 4204-4207.
    [107] Kageyama K, Ogino S, Aida T. Mesoporous Zeolite as a New Class of Catalyst for Controlled Polymerization of Lactones. Macromolucules, 1998, 31: 4069-4073.
    [108] Stein A, Melde B J, Schroden R C. Hybrid inorganic-organic mesoporous silicates-Nanoscopic reactors coming of age. Adv. Mater., 2000, 12: 1403-1419.
    [109] Gunnewegh E A, Gopie S S, vanBekkum H. MCM -41 type molecular sieves as catalysts for the Friedel-Crafts acylation of 2-methoxynaphthalene. Journal of Molecular Catalysis a-Chemical, 1996, 106: 151-158.
    [110] Kozhevnikov I V, Sinnema A, Jansen RJJ, et al. New Acid Catalyst Comprising Heteropoly Acid on a Mesoporous Molecular-Sieve MCM -41. Catal. Lett., 1995, 30: 241-252.
    [111] Sun Y Y, Zhu L, Lu H J, et al. Sulfated zirconia supported in mesoporous materials.Appl. Catal. A-Gen., 2002, 237: 21-31.
    [112] Raimondo M, Perez G, Sinibaldi N, et al. Mesoporous M41S materials in capillary gas chromatography. Chem. Commun., 1997: 1343-1344.
    [113]李晓芬,何静,马润宇,段雪,朱月香.青霉素酰化酶在介孔分子筛MCM-41上的固定化研究.化学学报,2000,58:167-171,
    [114]高波,朱广山,傅学奇,辛明红,裘式纶.介孔分子筛SBA-15中a-胰凝乳蛋白酶组装及催化活性研究.高等学校化学学报. 2003, 24: 1100-1102.
    [115]高峰,赵建伟,张松,周峰,金婉,张祥民,杨原,赵东元.中孔分子筛SBA-15作为液相色谱固定相以及在巯基化合物分离中的应用.高等学校化学学报,2002, 23: 1494-1497
    [116] Xu X H, Song C S, et al. Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Micropor. Mesopor. Mater., 2003, 62: 29-45.
    [117]徐应明,李军幸,戴晓华,张泽,高怀友.介孔分子筛表面功能膜的制备及对水体中铅汞镉的去除作用.应用化学, 2002,19: 941-945.
    [118] Scott B J, Wirnsberger G, Stucky G D. Mesoporous and mesostructured materials for optical applications. Chem. Mater., 2001, 13: 3140-3150.
    [119] Corma A. Chem Rev., 1997, 97: 2373-2419.
    [120] Bekkum H V, Hoefnagel A J, Van Koten M A, et al. Zeolite Catalyzed Aromatic Acylation and Related Reaches. Stud. Surf. Sci. Catal., 1994, 83: 379-390.
    [121] Kloetstra K R, Bekkum H, Jansen J C. Mesoporous material containing framework tectosilicate by pore–wall recrystallization. Chem. Commun., 1997: 2281-2282.
    [122] Karlsson A, Stocker M, Schmidt R. Micropor. Mesopor. Mater., 1999, 27: 181.
    [123] Huang L, Guo W, Deng P, et al. Investigation of Synthesizing MCM-41/ZSM-5 Composites. J. Phys. Chem. B., 2000, 104: 2817-2823.
    [124] Xia Y, Mokaya R. On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. J. Mater. Chem., 2004, 14: 863-870.
    [125] Guo W, Xiong C, Huang L, Li Q. Synthesis and characterization of composite molecular sieves comprising zeolite Beta with MCM-41 structures. J. Mater. Chem., 2001, 11: 1886-1890.
    [126] Trong On D, Kaliaguine S. Ultrastable and Highly Acidic, Zeolite-Coated Mesoporous Aluminosilicates. Angew. Chem., Int. Ed., 2002, 41: 1036-1040; Trong On D, Kaliaguine S, Zeolite-Coated Mesostructured Cellular Silica Foams. J. Am. Chem. Soc., 2003, 125: 618-619.
    [127] Liu Y, Zhang W, Pinnavaia T J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds. J. Am. Chem. Soc., 2000, 122: 8791-8792.
    [128] Liu Y, Zhang W, Pinnavaia T J. Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds. Angew. Chem. Int. Ed., 2001, 40: 1255-1258.
    [129] Zhang Z T, Han Y, Zhu L, et al. Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure. Angew. Chem. Int. Ed., 2001, 40: 1258-1262.
    [130] Zhang Z T, Han Y, Xiao F, et al. Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures. J. Am. Chem. Soc., 2001, 123: 5014-5021.
    [131] Han Y, Wu S, Sun Y, Li D, Xiao F. Hydrothermally Stable Ordered Hexagonal Mesoporous Aluminosilicates Assembled from a Triblock Copolymer and Preformed Aluminosilicate Precursors in Strongly Acidic Media. Chem. Mater., 2002, 14: 1144-1148.
    [132] Han Y, Xiao F, Wu S, et al. A Novel Method for Incorporation of Heteroatoms into the Framework of Ordered Mesoporous Silica Materials Synthesized in Strong Acidic Media. J. Phys. Chem. B., 2001, 105: 7963-7966.
    [133] Han Y, Li N, Zhao L, et al. Understanding of the High Hydrothermal Stability of the Mesoporous Materials Prepared by the Assembly of Triblock Copolymer with Preformed Zeolite Precursors in Acidic Media. J. Phys. Chem. B., 2003, 107: 7551-7556.
    [134] Huang J, Li G, Wu S, et al. Synthesis, characterization and catalytic activity of cubic Ia3d and hexagonal p6mm mesoporous aluminosilicates with enhanced acidity. J. Mater. Chem., 2005, 15: 1055-1060.
    [135] Kloetstra K R, Bekkum H. van, Jansen J C. Mesoporous material containing framework tectosilicate by pore–wall recrystallization. Chem. Commun., 1997: 2281-2282.
    [136] Karlsson A, Stocker M, Schmidt R. Composites of micro- and mesoporous materials:simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Micropor. Mesopor. Mater., 1999, 27: 181-192.
    [137] Huang L, Guo W, Deng P, et al. Investigation of Synthesizing MCM-41/ZSM-5 Composites. J. Phys. Chem. B., 2000, 104: 2817-2823.
    [138]郭万平,黄立民,陈海鹰.新型MCM-41-β-沸石中孔-微孔复合分子筛,高等学校化学学报, 1999, 20: 356
    [139] Chen H L, Shen B J, Pan H F. In situ formation of ZSM-5 in NaY gel and characterization of ZSM-5/Y composite zeolite. Chemistry Letters, 2003, 32: 726-727.
    [140] Houzvicka J, Jacobsen C J H, Schmidt I. 26-O-02-Design of zeolite catalyst for paraffin isomerisation. Stud. Surf. Catal., 2001, 135:158-158.
    [141] Trong On D, Reinert P, et al. Hoerarchically Mesostructured Zeolitic Materials with the MFI Structure, The 13th International Zeolite Conference, France, CD-ROM, 2001, 06-0-04.
    [142] Liu Y, Pinnavaia T J. Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonalmesostructures from zeolite seeds under strongly acidic conditions. Chem. Mater., 2002, 14: 3-5.
    [143] Ogura M, Shiomiya S Y, Tateno J, et al. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution. Chemistry Letters, 2000, 29: 882-883.
    [144] Ogura M, Shiomiya S Y, Tateno J, et al. Alkali-treatment technique—new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal. A., 2001, 219: 33-43.
    [145] Grone J C, Ramire J P, Peffer L A A. Formation of uniform mesopores in ZSM-5 zeolite upon alkaline post-treatment?. Chemistry Letters, 2002, 31: 94-95.
    [146] Grone J C, Peffer L A A, et al. On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Micropor. Mesopor. Mater., 2004, 69, 29-34.
    [147] Grone J C, Jansen J C, et al. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. J. Phys. Chem. B, 2004, 108: 13062-13065.
    [148] Grone J C, Bach T,Ziese U, et al. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J. Am. Chem. Soc., 2005, 127, 10792-10793.
    [149] Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. J. Am. Chem. Soc., 2003, 125: 6044-6045.
    [150] Tao Y S, Kanoh H, Kaneko K. Synthesis of mesoporous zeolite A by resorcinol-formaldehyde aerogel templating. Langmuir, 2005, 21: 504-507.
    [151] Schmidt I, Boisen A, Gustavsson E, et al. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater., 2001, 13, 4416-4418.
    [152] Kim S S, Shah J, Pinnavaia T J. Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite. Chem. Mater., 2003, 15: 1664-1668.
    [153] Ryoo R, Jun S. Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process. J. Phys. Chem. B., 1997, 101: 317-320;Jun S, Kim J M, Ryoo R, et al. Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution. Micropor. Mesopor. Mater., 2001, 41: 119-127.
    [154] Wang L, Shao Y, Zhang J, Anpo M. Synthesis of MCM-48 mesoporous molecular sieve with thermal and hydrothermal stability with the aid of promoter anions. Micropor. Mesopor. Mater 2006, 95: 17-25.
    [155] Ryoo R, Kim J M, Ko C H, Shin C H. Disordered Molecular Sieve with Branched Mesoporous Channel Network. J. Phys. Chem. 1996, 100: 17718-17721.
    [156] Shen S C, Kaw i S. Understanding of the Effect of Al Substitution on the Hydrothermal Stability of MCM-41, J. Phys. Chem. B., 1999, 103: 8870—8876.
    [157] Mokya R. Hydrothermally stable restructured mesoporous silica. Chem. Commun., 2001: 933- 934.
    [158] He N, LuZ, Yuan C, et al. Supramol. Sci., 1998 , 5: 5-6.
    [159] Kim W J, Yoo J C , Hayhurst D T. Synthesis of hydrothermally stable MCM-41 with initial adjustment of pH and direct addition of NaF. Micropor. Mesopor. Mater., 2000, 39: 177-186.
    [160] Kruk M, Asefa T, Jaroniec M, et al. Metamorphosis of Ordered Mesopores to Micropores: Periodic Silica with Unprecedented Loading of Pendant Reactive Organic Groups Transforms to Periodic Microporous Silica with Tailorable Pore Size. J. Am. Chem. Soc., 2002, 124: 6383-6392.
    [161] Yano K, Fukushima Y. Particle size control of mono-dispersed super-microporous silica spheres. J. Mater. Chem., 2003, 13: 2577–2581.
    [162] Zhou Y, Antonietti M. Preparation of highly ordered monolithic super-microporouslamellar silica with a room-temperature ionic liquid as template via the nanocasting technique. Adv. Mater., 2003, 15: 1452-1455.
    [163] Meng X, Di Y, Zhao L, et al. Semi-fluorinated Surfactant Syntheses of Ordered Porous Materials with Tailorable Pore Sizes. Chem. Mater., 2004, 16: 5518-5526.
    [164] McInall M D, Scott J, Mercier L, Kooyman P J. Super-microporous organic-integrated silica prepared by non-electrostatic surfactant assembly. Chem. Commun., 2001: 2282-2283.
    [165] Sun T, Wong M S, Ying J Y. Synthesis of amorphous, microporous silica with adamantanamine as a templating agent. Chem. Commun., 2000: 2057–2058.
    [166] Serrano D P, Aguado J, Escola J M, Garagorri E. Synthesis of microporous surfactant-templated aluminosilicates. Chem. Commun., 2000: 2041-2042.
    [167] Ryoo R, Park I S, Jun S, et al. Synthesis of Ordered and Disordered Silicas with Uniform Pores on the Border between Micropore and Mesopore Regions Using Short Double-Chain Surfactants. J. Am. Chem. Soc., 2001, 123: 1650-1657.
    [168] Kruk M, Jaroniec M. Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes. J. Phys. Chem. B., 1997, 101: 583-589.
    [169] Chen X, Kawi S. A new MFI-type zeolite containing uniform supermicropores: synthesis by structural transformation of CTA+-MCM-41 and application in SCR of NOx. Chem. Commun., 2001: 1354–1355.
    [170] Polverejan M, Liu Y, Pinnavaia T J. Aluminated Derivatives of Porous Clay Heterostructures (PCH) Assembled from Synthetic Saponite Clay: Properties as Supermicroporous to Small Mesoporous Acid Catalysts. Chem. Mater., 2002, 14: 2283-2288.
    [171] Xia Y, Mokaya R. High surface area ethylene-bridged mesoporous and supermicroporous organosilica spheres. Micropor. Mesopor. Mater., 2005, 86: 231–242.
    [172] Pang J, Hampsey J E, Hu Q, et al. Mesoporous silica with Ia3d cubic structure and good thermal stability. Chem. Commun., 2004, 682–683.
    [173] Buchel G, Unger K K, et al. A novel pathway for synthesis of submicrometer-size solid core/mesoporous shell silica spheres. Adv. Mater., 1998, 10: 1036- 1038.
    [174] Bagshaw S A, Hayman A R. Novel super-microporous silicate templating byω-hydroxyalkylammonium halide bolaform surfactants. Chem. Commun., 2000: 533-534.
    [175] Bagshaw S A, Hayman A R. Super-Microporous Silicate Molecular Sieves. Adv. Mater.,2001, 13: 1011-1013.
    [176] Bagshaw S A, Hayman A R. synthesis of novel super-microporous silicates byω-hydroxy alkyl ammonium halide bolaform surfactant templating. Micropor. Mesopor. Mater. 2001, 44-45: 81-88.
    [177] Bastardo-Gonzalez E, Mokaya R, Jones W. Super-microporous aluminosilicate catalysts via primary amine Templating. Chem. Commun., 2001: 1016–1017.
    [178] Zhao X S, Lu G Q, Hu X. A novel method for tailoring the pore-opening size of MCM-41 materials. Chem. Commun., 1999: 1391-1392.
    [179] Sun T, Wong M S, Ying J Y. Synthesis of Amorphous, Microporous Silica with Adamantanamine as a Templating Agent. Chem. Commun., 2000: 2057–2058.
    [180] Di Y, Meng X, Wang L, et al. Ultralow Temperature Synthesis of Ordered Hexagonal Smaller Supermicroporous Silica Using Semifluorinated Surfactants as Template. Langmuir 2006, 22: 3068-3072.
    [181] Meng X, Di Y, Zhao L, et al. Semi-fluorinated Surfactant Syntheses of Ordered Porous Materials with Tailorable Pore Sizes. Chem. Mater. 2004, 16, 5518-5526
    [182] Wang R, Han S, Hou W, Sun L, Zhao J, Y Wang. Highly Ordered Supermicroporous Silica. J. Phys. Chem. C., 2007, 111: 10955-10958.
    [1] Kloetstra K R, Zandbergen H W, Jansen J C. Overgrowth of mesoporous MCM-41 on faujasite. Microporous Mater., 1996, 6: 287-293;郭万平,黄立民,陈海鹰,新型MCM-41-β-沸石中孔-微孔复合分子筛.高等学校化学学报,1999, 20: 356-357; Karlsson A, Stocker M, Schmidt R. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Micropor. Mesopor. Mater., 1999, 27: 181-192; Raja H P R P, Landry C C. Synthesis, characterization, and catalytic propertiesof a microporous/mesoporous material, MMM-1. J. Solid. State. Chem., 2002, 167: 363-369; Prokesova P, Mintova S, Cejka J. Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases. Micropor. Mesopor. Mater., 2003, 64: 165-174; Kloetstra K R, Bekkum H V, Jansen J C. Mesoporous material containing framework tectosilicate by pore–wall recrystallization. Chem. Commun., 1997, 997: 2281-2282; Huang L M, Guo W P, Deng P. Investigation of synthesizing MCM-41/ZSM-5 Composites. J. Phys Chem B., 2000, 104, 2817-2823.
    [2] Ogura M, Shiomiya S Y, Tateno J, et al. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution. Chemistry Letters, 2000, 29: 882-883; Ogura M, Shiomiya S Y, Tateno J, et al. Alkali-treatment technique—new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal. A., 2001, 219: 33-43; Grone J C, Ramire J P, Peffer L A A. Formation of uniform mesopores in ZSM-5 zeolite upon alkaline post-treatment. Chemistry Letters, 2002, 31: 94-95; Grone J C, Peffer L A A, Moulijn J A, Ramire J P. On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Micropor. Mesopor. Mater., 2004, 69: 29-34; Grone J C, Jansen J C, Moulijn J A, Ramire J P. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. J. Phys. Chem. B., 2004, 108: 13062-13065; Grone J C, Peffer L A A, Moulijn J A, Ramire J P. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids and Surfaces A: Physicochem Eng Aspects, 2004, 241: 53-58; Grone J C, Bach T, Ziese U, et al. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J. Am. Chem. Soc., 2005, 127: 10792-10793.
    [3] On D T, Kaliaguine S. Ultrastable and highly acidic, zeolite-coated mesoporous aluminosilicates. Angew Chem. Int. Ed., 2002, 41: 1036-1040; On D T, Nossov A, Springuel-Huet M A, et al. Zeolite nanoclusters coated onto the mesopore walls of SBA-15. J. Am. Chem. Soc., 2004, 126: 14324-14325.
    [4] Liu Y, Zhang W, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. J. Am. Chem. Soc., 2000, 122: 8791-8792; Liu Y, Zhang W, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeoliteZSM-5 and zeolite Beta seeds. Angew. Chem. Int. Ed., 2001, 40: 1255-1258; Liu Y, Pinnavaia J T. Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonal mesostructures from zeolite seeds under strongly acidic conditions. Chem. Mater., 2002, 14: 3-5; Zhang Z T, Han Y, Zhu L, Xiao F S. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angew Chem. Int. Ed., 2001, 40: 1258-1262; Zhang Z T, Han Y, Zhu L, Xiao F S. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. J. Am. Chem. Soc., 2001, 123: 5014-5021; Han Y, Xiao F S, Wu S, et al. A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media. J. Phys. Chem. B., 2001, 105: 7963-7966; Han Y, Wu S, Sun Y, Xiao F S. Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media. Chem. Mater., 2002, 14: 1144-1148; Di Y, Yu Y, Sun Y Y, Xiao F S. Synthesis, characterization, and catalytic properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors. Micropor. Mesopor. Mater., 2003, 62: 221-228;李工,阚秋斌,吴通好,章慧杰.含有沸石结构单元体介孔材料的合成及催化性能.化学学报, 2002, 60: 759-763;李工,阚秋斌,吴通好,侯长民,黄家辉,吴淑杰,李灿.具有强酸位的六方和立方介孔硅铝分子筛合成及催化活性比较.高等学校化学学报, 2002, 23: 1171-1173; Li G, Kan Q B, Wu T H, et al. Synthesis of cubic mesoporous aluminosilicates with enhanced acidity. Stud. Surf. Sci. Catal., 2003, 146: 149-152; Huang J H, Li G, Wu S J, et al. Synthesis, characterization and catalytic activity of cubic Ia3d and p6mm mesoporous aluminosilicates with enhanced acidity. J. Mater. Chem., 2005, 15: 1055-1060.
    [5] Kolka A J, Napolitano J P, Elike G. G. Communications - the ortho-alkylation of phenols. J. Org. Chem., 1956, 21: 712-713.
    [6] Sartori G, Bigi F, Casiraghi G, et al. Highly Selective Mono-tert-butylation of Aromatic Compounds. Chem. Ind.,(London) 1985, 22: 762-763.
    [7] Carlton A A. Alkylation of phenol with t-butyl alcohol in the presence of perchioric acid. J. Org. Chem., 1948, 13: 120-122.
    [8] Chandra K G. Sharma M M. Alkylation of phenol with MTBE and other tert-butylethers:Cation exchange resins as catalysts. Catal. Lett., 1993, 19: 309-317.
    [9] Krishnan A V, Ojha K, Pradhan N C. Alkylation of phenol with tertiary butyl alcohol over zeolites, Org. Process Res. Dev., 2002, 6: 132-137.
    [10] Sakthivek A, Badamali S K, Selvam P. para-Selective t-butylation of phenol over mesoporous H-AlMCM-41. Micropor. Mesopor. Mater., 2000, 39: 457-463.
    [11] Zhang K, Huang C, Zhang H, et al. Alkylation of phenol with tert-butyl alcohol catalysed by zeolite Hβ. Appl. Catal. A., 1998, 166: 89-95; Anand R, Maheswari R, Gore K U, Tope B B. Tertiary butylation of phenol over HY and dealuminated HY zeolites. J. Mol. Catal. A., 2003, 193: 251-257.
    [12] Savidha R, Pandurangan A, Palanihamy M, Murugesan V. A comparative study on the catalytic activity of Zn and Fe containing Al-MCM-41 molecular sieves on t-butylation of phenol. J. Mol. Catal. A., 2004, 211: 165-177; Vinu A, Nandhini K U, Murugesan V, et al. Mesoporous FeAlMCM-41: an improved catalyst for the vapor phase tert-butylation of phenol. Appl. Catal. A., 2004, 265: 1-10; Sakthivel A, Dapurkar S E, Gupta N M, et al. The influence of aluminium sources on the acidic behaviour as well as on the catalytic activity of mesoporous H-AlMCM-41 molecular sieves. Micropor. Mesopor. Mater., 2003, 65: 177-187; Selvam P, Dapurkar S E. Tertiary butylation of phenol over mesoporous MeMCM-48 and MeMCM-41 (Me = Ga, Fe, Al or B) solid acid catalysts. Catal. Today, 2004, 96: 135-141; Badamali S K, Sakthivel A, Selvam P. Tertiary butylation of phenol over mesoporous H–FeMCM-41. Catal. Lett., 2000, 65: 153-157; Sakthivel A, Selvam P. Vapor-Phase tertiary butylation of phenol over mesoporous gallosilicate molecular sieves. Catal. Lett., 2002, 84: 37-43; Badamali S K, Sakthivel A, Selvam P. Influence of aluminium sources on the synthesis and catalytic activity of mesoporous AlMCM-41 molecular sieves. Catal. Today., 2000, 63: 291-295; Sakthivel A, Saritha N, Selvam P. Vapour phase tertiary butylation of phenol over sulfated zirconia catalyst. Catal. Lett., 2001, 72: 225-228.
    [13] Zhou Q, Li B, Qiu S, Pang W. Chem. J. Chin. Univ., 1999, 20: 693
    [14] Li G, Kan Q, Zhang H, Wu T, Petrochem. Technol., (Beijing) 2002, 31: 104
    [15] Rubin, Mae K. Chu, et al. Composition of synthetic porous crystalline material, its synthesis and use. US 4954325, 1990; Güary I, Warzywoda J, Ba? N and Sacco A. Synthesis of zeolite MCM-22 under rotating and static conditions. Micropor. Mesopor. Mater., 1999, 31:241-251; Corma A, Corell C, Pérez-Pariente J. Synthesis and characterization of the MCM-22 zeolite. Zeolites, 1995, 15: 2-8; Mochida I, Eguchi S, Hironaka M, et al. The effects of seeding in the synthesis of zeolite MCM-22 in the presence of hexamethyleneimine. Zeolites, 1997, 18: 142-151.
    [16] Ryoo R, Kim J M, Ko C H, Shin C H. Disordered molecular sieve with branched mesoporous channel network. J. Phys. Chem., 1996, 100: 17718-17721.
    [17] T. Yamamoto, T. Tanaka, T. Funabiki, S. Yoshida. Acidic Property of FSM-16. J. Phys. Chem. B., 1998, 102: 5830-5839.
    [18] Love B, Massengale J T. The ortho-Alkylation of Phenols. J. Org. Chem., 1957, 22: 642-646.
    [19] Goldsmith E A, Shclatter M J, Toland W G. Uncatalyzed thermal ortho -alkylation of phenols. J. Org. Chem., 1958, 23: 1871-1876.
    [20] Subramanian S, Mitra A, Satyanarayana CVV, Chakrabarty D K. Para-selective butylation of phenol over silicoaluminophosphate molecular sieve SAPO-11 catalyst. Appl. Catal. A., 1997, 159: 229-240.
    [1] Rubin, Mae K Chu, et al. Composition of synthetic porous crystalline material,its synthesis and use. US 4954325, 1990.
    [2] Chu, Cynthia T-W. et al. Catalyst comprising MCM-36, US 5292698, 1994.
    [3]. Bennett J M, Chang C D, Lawton S L, et al. Synthetic porous crystalline MCM-49. its synthesis and use. US 5236575, 1993.
    [4] Fung A S.,Lawton S L.,Roth J. Synthetic layered zeolite MCM-56. US 5362697, 1994.
    [5] Miguel A C, Corma A, Diaz-Cabanas Maria-Jose et al. Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 andSSZ-25. J. Phys. Chem. B., 1998, 102: 44-51.
    [6] Corma A,Fornes V,et al. Preparation,characterisation and catalytic activity of ITQ-2,a delaminated zeolites. Micropor. Mesopor. Mater., 2000, 38: 301-309.
    [7] Leonowicz M E, Lawton J A, Lawton S L, et al. MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems, Science, 1994, 264:1910-1913.
    [8] Corma A, Fornes V, Forni L, et al. 2,6-Di-Tert-Butyl-Pyridine as a Probe Molecule to Measure External Acidity of Zeolites. Journal of Catalysis, 1998, 179: 451-458.
    [9] Corma A, Fornes V, Martinez-Triguero J, et al. Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses. J. Catal., 1999,186: 57-63.
    [10] Corma A, Diaz U, Fornés V, et al. Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2. J. Catal., 2000, 191:218-224.
    [11] Lawton S L, Lenowicz M E, Partrideg R D, et al. Twelve-ring pockets on the external surface of MCM-22 crystals, Micropor. Mesopor. Mater., 1998, 23: 109-117.
    [12] Wu P, Kan Q, Wang D, Xing H, et al. The synthesis of Mo/H-MCM-36 catalyst and its catalytic behavior in methane non-oxidative aromatization, Catal. Commun., 2005, 6: 449-454.
    [13] Inagaki S, Ogura M, Inami T, et al. Synthesis of MCM-41-type mesoporous materials using filtrate of alkaline dissolution of ZSM-5 zeolite. Micropor. Mesopor. Mater., 2004, 74: 163–170.
    [14] Juttu G G, Lobo R F. Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Micropor. Mesopor. Mater., 2000, 40: 9-23.
    [15] Stephen L Lawton, Anthony S Fung, Gordon J Kennedy, et al. Zeolite MCM-49: A Three-Dimensional MCM-22 Analogue Synthesized by in Situ Crystallization. J. Phys. Chem., 1996, 100: 3788-3798.
    [16] Kennedy G J, Lawtona S L, Fung A S, et al. Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49. Catalysis Today, 1999, 49: 385-399.
    [17] Parry E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal., 1963. 2: 371-379; Huang J H, Xing L H, Wang H S, et al. Tertiary butylation of phenol over hexagonal p6mm mesoporous aluminosilicates with enhanced acidity.J. Mol. Catal. A., 2006, 259: 84-90.
    [18] Vinu A, Devassy BM, Halligudi SB, et al. Highly active and selective AlSBA-15 catalysts for the vapor phase tert-butylation of phenol. Appl. Catal. A: Gen., 2005, 281: 207–213.
    [19] Dapurkar S E, Selvam P. Mesoporous H-AlMCM-48: highly efficient solid acid catalyst, Appl. Catal. A: Gen., 2003, 254: 239–249.
    [20] Yadav G D, Pathre G S. Novelties of a superacidic mesoporous catalyst UDCaT-5 in alkylation of phenol with tert-amyl alcohol. Appl. Catal. A: Gen., 2006, 297: 237–246.
    [21] Sakthivel A, Badamali S K, Selvam P. para-Selective t-butylation of phenol over mesoporous H-AlMCM-41. Micropor. Mesopor. Mater., 2000, 39: 457–463.
    [22] Anand R, Maheswari R, Hanefeld U. Catalytic properties of the novel mesoporous aluminosilicate AlTUD-1. J. Catal., 2006, 242: 82–91.
    [23] Huang J, Li G, Wu S, et al. Synthesis, characterization and catalytic activity of cubic Ia3d and hexagonal p6mm mesoporous aluminosilicates with enhanced acidity. J. Mater. Chem., 2005, 15: 1055–1060.
    [24] Nandhini K U, Mabel J H, Arabindoo B, et al. The influence of phosphotungstic acid acidity on Al-MCM-41 in t-butylation of phenol with t-butyl alcohol. Micropor. Mesopor. Mater., 2006, 96: 21–28.
    [1] Bennett J M, Chang C D, Lawton S L, et al. Synthetic porous crystalline MCM-49,its synthesis and use. US 5236575, 1993.
    [2] Leonowicz M E, Lawton J A, Lawton S L, et al. MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 1994, 264: 1910-1913.
    [3] Lawton S L, Lenowicz M E, Partrideg R D, et al. Twelve-ring pockets on the external surface of MCM-22 crystals. Micropor. Mesopor. Mater., 1998, 23: 109-117.
    [4] Lawton S L, Fung A S, Kennedy, et al. Zeolite MCM-49: A Three-Dimensional MCM-22 Analogue Synthesized by in Situ Crystallization. J. Phys. Chem., 1996, 100: 3788–3798.
    [5] Fung A S, Lawton S L, Roth J, Synthetic layered zeolite MCM-56. US 5362697, 1994.
    [6] Juttu G G., Lobo R F, Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Micropor. Mesopor. Mater., 2000, 40: 9-23.
    [7] Stephen L L, Anthony S F, Gordon J K, et al. Zeolite MCM-49: A Three-Dimensional MCM-22 Analogue Synthesized by in Situ Crystallization. J. Phys. Chem. 1996, 100:3788-3798.
    [8] Wang D Y, Kan Q B, Xu N, Wu P, Wu T H. Study on methane aromatization over MoO3/HMCM-49 catalyst. Catalysis Today, 2004, 93–95: 75–80.
    [9] Karsten E, Rudolf K.Preparation of amines from olefins on zeolites of the MCM-49 or MCM-56 type. US 5840988, 1998.
    [10] Cheng J C, Huang T J. Process for the alkylation of benzene-rich reformate using MCM-49. US 5545788, 1996.
    [11] Brown S H, Crane R A, De C L. Ethyl acetate synthesis from ethylene and acetic acid using solid acid catalysts, US 5973193, 1999.
    [12] Juttu G G., Lobo R F. Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Micropor. Mesopor. Mater., 2000, 40: 9-23.
    [13]许宁,吴通好,王东阳,吴鹏,阚秋斌,孙家锺.层状分子筛MCM-56的合成与表征.高等学校化学学报,2001, 22: 1898-1900.
    [14] Cheng J C, Clarksburg. Process for preparing short chain alkyl aromatic compounds. US 5557024, 1996.
    [15] Juttu G G, Lobo R F. Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Micropor. Mesopor. Mater., 2000, 40: 9-23.
    [16] Corma A, Diaz U, Fornés V, et al. Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2. J. Catal., 2000, 191: 218-224.
    [17] Kennedy G J, Lawton S L, Fung A S, Rubin M K, Steuernagel S: Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49. Catalysis Today, 1999, 49: 385-399.
    [1] Xia Y, Mokaya R. On the Hydrothermal Stability of Mesoporous Aluminosilicate MCM-48 Materials. J. Phys. Chem. B., 2003, 107: 6954-6960.
    [2] Ryoo R, Jun S. Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process. J. Phys. Chem. B., 1997, 101: 317-320.
    [3] Jun S, Kim J M, Ryoo R, Ahn Y-S, Han M-H. Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution. Micropor. Mesopor. Mater., 2001, 41: 119-127.
    [4] Wang L, Shao Y, Zhang J, Anpo M. Synthesis of MCM-48 mesoporous molecular sieve with thermal and hydrothermal stability with the aid of promoter anions. Micropor. Mesopor. Mater., 2006, 95: 17-25.
    [5] Shen S C, Kaw i S. Understanding of the Effect of Al Substitution on the Hydrothermal Stability of MCM-41. J. Phys. Chem. B., 1999, 103: 8870-8876.
    [6] Kloetstra K R, Bekkum H van, Jansen J C. Mesoporous material containing framework tectosilicate by pore–wall recrystallization. Chem. Communm., 1997: 2281-2282,
    [7] Campos A A, Dimitrov L, Silva CR, Wallau M, Urquieta-González E A. Recrystallisation of mesoporous SBA-15 into microporous ZSM-5. Micropor. Mesopor. Mater., 2006, 95: 92–103.
    [8] Mokya R. Hydrothermally stable restructured mesoporous silica. Chem. Commun., 2001: 933-934.
    [9] Liu Y, Zhang W, Pinnavaia T J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds. J. Am. Chem. Soc., 2000, 122: 8791-8792.
    [10] Liu Y, Zhang W, Pinnavaia T J. Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds. Angew. Chem. Int. Ed., 2001, 40: 1255-1258.
    [11] Zhang Z T, Han Y, Zhu L, et al. Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure. Angew. Chem. Int. Ed., 2001, 40: 1258-1262.
    [12] Zhang Z T, Han Y, Xiao F, et al. Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures. J. Am. Chem. Soc., 2001: 123: 5014-5021.
    [13] Han Y, Wu S, Sun Y, Li D, Xiao F. Hydrothermally Stable Ordered Hexagonal Mesoporous Aluminosilicates Assembled from a Triblock Copolymer and PreformedAluminosilicate Precursors in Strongly Acidic Media. Chem. Mater., 2002, 14: 1144-1148.
    [14] Han Y, Xiao F, Wu S, Sun Y, Meng X, Li D, S Lin. A Novel Method for Incorporation of Heteroatoms into the Framework of Ordered Mesoporous Silica Materials Synthesized in Strong Acidic Media. J. Phys. Chem. B., 2001, 105: 7963-7966.
    [15] Han Y, Li N, Zhao L, et al. Understanding of the High Hydrothermal Stability of the Mesoporous Materials Prepared by the Assembly of Triblock Copolymer with Preformed Zeolite Precursors in Acidic Media. J. Phys. Chem. B., 2003, 107: 7551-7556.
    [16] Huang J, Li G, Wu S, et al. Synthesis, characterization and catalytic activity of cubic Ia3d and hexagonal p6mm mesoporous aluminosilicates with enhanced acidity. J. Mater. Chem., 2005, 15: 1055-1060.
    [17] Chen C Y, Li HX, Davis M E. Studies on mesoporous materials: I. Synthesis and characterization of MCM-41. Micropor. Mater., 1993, 2: 17-26.
    [18] Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons. Adv Mater., 2001, 13: 677-681.
    [19] Solovyov L A, Kim T W, Kleitz Fr, et al. Comprehensive Structure Analysis of Ordered Carbon Nanopipe Materials CMK-5 by X-ray Diffraction and Electron Microscopy. Chem. Mater., 2004, 16; 2274-2281.
    [20] Vantommel A, Surahy L, Su B L. Highly ordered mesoporous carbon materials CMI-8 with variable morphologies synthesised by nanocasting. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 300: 65–69.
    [21] Liang C, Li Z, Dai S. Mesoporous Carbon Materials: Synthesis and Modification. Angew. Chem. Int. Ed., 2008, 47: 3696-3717.
    [22] Wang K, Lin Y, Morrisa M A, Holmes J D. Preparation of MCM-48 materials with enhanced hydrothermal stability. J. Mater. Chem., 2006, 16: 4051-4057.
    [23] Liu W, Cai. Q, Pang. W, Yue. Y. Preparation of aluminosilicate MCM-41 in desirable forms via a novel co-assemble route. Chem. Commun., 1998: 2473-2474; [24] Kleitz F, Choi S H, Ryoo R; Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes; Chem. Commun., 2003: 2136–2137.
    [25] Jun S, Joo S H, Ryoo R, et al. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. J. Am. Chem. Soc., 2000, 122: 10712-10713.
    [26] Che S, Lund K, Tatsumi T, et al. Direct Observation of 3D Mesoporous Structure by Scanning Electron Microscopy (SEM): SBA-15 Silica andCMK-5 Carbon. Angew. Chem. Int. Ed., 2003, 42: 2182-2185.
    [27] Yamamoto T, Tanaka T, Funabiki T, Yoshida S. Acidic Property of FSM-16, J. Phys. Chem. B., 1998, 102: 5830-5839.
    [28] He J, Yang X B, Evans D G, Duan X. New methods to remove organic templates from porous materials. Mater. Chem. Phys., 2003, 77: 270-275.
    [29] Yang X, Zhang S, Qiu Z, Tian G, Feng Y, Xiao F-S. Stable Ordered Mesoporous Silica Materials Templated by High-Temperature Stable Surfactant Micelle in Alkaline Media. J. Phys. Chem. B., 2004, 108: 4696-4700.
    [30] Li C, Wang Y, Guo Y, et al. Synthesis of Highly Ordered, Extremely Hydrothermal stable SBA-15/Al-SBA-15 under the Assistance of Sodium Chloride. Chem. Mater., 2007, 19: 173-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700