用户名: 密码: 验证码:
非贵金属氧化物电极的制备及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用恒电位方法制备了不同颗粒尺度的Ti/SnO_2+Sb_2O_5/PbO_2电极(以下表示为Ti/PbO_2),对不同条件制备的Ti/PbO_2分别进行了XPS、XRD、SEM分析,在此基础上研究了Ti/PbO_2电极电沉积制备过程,提出了电沉积制备Ti/PbO_2电极的立体生长机理。采用恒电位法制备了掺杂F的Ti/PbO_2电极,F-在PbO_2电极中的掺杂对电极的结构,形貌和电化学性质的影响很大。F-的掺杂有利于电极表面的颗粒减小,影响了PbO_2晶粒的大小、电极的电化学特性。Fe3+、Co2+在Ti/PbO_2电极中掺杂对电极性质同样产生了影响。掺杂Co2+比掺杂Fe3+的Ti/PbO_2电极的活性要高。采用阳极共沉积法制备PbO_2+MnO_2电极材料。通过XPS测试了该电极的价态和原子比例,发现电位对电极材料中原子比例几乎没有影响,原子比例主要受乙酰丙酮的浓度控制。并且在高的乙酰丙酮浓度时制得的电极具有多孔性的结构特点,并表现出很高的电化学电容器性能,通过循环伏安测试发现电极材料的赝电容电流很高。在涂有IrOx中间层的钛基体上电化学方法沉积WO_3,并且在不同温度下烧结。这些电极分别进行Raman光谱、SEM、XRD测试,在450℃退火的WO_3电极表现出很好的赝电容性能,循环伏安曲线具有很好的可逆性,稳定性,比电容46 F·g-1,电极材料具有很高的导电性
Power, material and environment have been attracted much attention as well as development of science and technology, and electrochemistry can applied in lots of field due to its safety and cleanness. Recently, electrochemistry and its production can applied in various field, including lead-acid battery, lithium ion battery, fuel cell, flow battery, electrochemical supercapacitor, electrosynthesis, oxidation of organic compounds in waste water, electrochemical transducer and so on. Electrode plays a key role in the system on which the reaction is took place. It is the most important problem to select and prepare the electrode for the electrochemical process. A study on the preparation of electrode is undertaken, and the factors that influence the mechanism of the preparation, morphology, structure and electrochemical properties of electrode are concluded.
     The Ti/SnO_2+Sb2O5/PbO_2 electrode with different particle scale is prepared by potentiostatic technology and is characterized by SEM, XPS and XRD. On the base of the date, the mechanism of lead dioxide in the process of anodic deposition is supposed.
     Ti/PbO_2 doped with F- is electrochemical deposited by potentiostatic technology. F- has much effect on the morphology, structure and electrochemical properties of electrode. F- doping can make the particle get smaller, smooth the surface and inhibit the preferred crystal plane of (200). The depositing potential can change the mass of F- in the electrode which has greater mass when the depositing potential is 1.60 V. the mass of F- in the electrode influences the crystallite size of PbO_2. F- can shrink the crystal. The more the mass of F- contains, the smaller the PbO_2 crystal particle is. F- doping can also have effect on the electrochemical properties of electrode, e.g. inhibiting the oxygen evolution.
     Fe3+, Co2+ can also influence the properties of electrode. The Ti/PbO_2 doped with Co2+ has more activity than with Fe3+. Ti/PbO_2 is unstable in the anodic process and easy to erode in the acid solution.
     PbO_2+MnO_2 composite electrode is electrochemical co-deposited in the solution containing Pb2+ and Mn2+. The valence and atom ratio of Pb and Mn is detected by the XPS, which show that the atom radio can be hardly influenced by the potential deposited and controlled by the concentration of acetylcholine. The CV shows that the current density of pseudocapacitance is very high.
     WO_3 films have been prepared onto IrO_2-coated Ti substrate by electro-deposition, and as-deposited and annealed films have been characterized by using Raman spectroscopy, SEM, XRD. It was found that the as-deposited film consists of orthorhombic WO_3?H2O phase, which transforms to to monoclinic phase by annealing at and above 350 oC. Ti/IrO_2/WO_3 annealed at 450 oC shows significant irreversibility, high electrochemical stability, conductivity and the typical characteristic of capacitive behavior. The specific capacitance obtained at a scan rate of 50 mV·s-1is 46 F·g-1.
引文
[1] Karami H,Masoomi B,Asadi R.Recovery of discarded sulfated lead-acid batteries by inverse charge [J].Energy Conversion and Management,2009,50: 893-898.
    [2] Morales J,Petkova G.Synthesis and characterization of lead dioxide active material for lead-acid batteries [J].Journal of Power Sources,2006,158:831-836.
    [3] Kim C,Noh M,Choi M, et al. Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery.Chemical. Materials, 2005,17:3297-3301.
    [4] Mukaibo H., Momma T, Osaka T. Changes of electro-deposited Sn–Ni alloy thin film for lithium ion battery anodes during charge discharge cycling [J].Journal of Power Sources, 2005, 46: 457-463.
    [5] Xu W, Lu T, Liu C, et al. Nanostructured PtRu/C as Anode Catalysts Prepared in a Pseudomicroemulsion with Ionic Surfactant for Direct Methanol Fuel Cell [J].Journal of Physical Chemistry B, 2005,109:14325-14330.
    [6] Chakraborty D, Chorkendorff I, Johannessen T. Electrochemical impedance spectroscopy study of methanol oxidation on nanoparticulate PtRu direct methanol fuel cell anodes: Kinetics and performance evaluation [J]. Journal of Power Sources, 2006,162:1010-1022.
    [7] Suffredini H B, Banda G R S, Avaca L A. Enhanced ethanol oxidation on PbOx-containing electrode materials for fuel cell applications [J].Journal of Power Sources, 2007,171:355-362.
    [8] Hobbs B S, Tseung A C C. High performance platinum activated tungsten oxide fuel cell electrodes [J]. Nature, 1969, 222:556-558.
    [9] Shen P K, Chen K Y, Tseung A C C. Co-Deposited Pt-WO3 Electrodes [J]. Journal of Chemistry Society Faraday Discussions, 1994,90:3089-3096.
    [10]Jayaraman S, Jaramillo T F, Baeck S H, et al. Synthesis and Characterization of Pt-WO3 as Methanol Oxidation Catalysts for Fuel Cells [J]. Journal of Physical Chemistry B 2005,109:22958-22966.
    [11]张远明,李伟善.多硫化钠/溴与全钒液流电池的发展现状[J].电池工业, 2006,06:414-416.
    [12] Beaudrouet E, Guyomard D. Nanostructured manganese dioxides:Synthesis and properties as supercapacitor electrode materials [J]. Electrochimica Acta,2009,54: 1240-1248
    [13] Ghaemi M, Ataherian F, Zolfaghari A, et al. Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction [J]. Electrochimica Acta,2008,53:4607-4614.
    [14] Zheng Y Z, Ding H Y, Zhang M L. Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material [J]. Materials Research Bulletin, 2009,44:403-407.
    [15] Mitra S, Lokesh K S, Sampath S. Exfoliated graphite–ruthenium oxide composite electrodes for electrochemical supercapacitors [J]. Journal of Power Sources, 2008,185: 1544-1549.
    [16] Jiang J H, Kucernak A. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization [J]. Electrochimica Acta, 2002,47:2381-2386
    [17] Xu C J, Li B H, Du H D, et al. Supercapacitive studies on amorphous MnO2 in mild solutions [J]. Journal of Power Sources,2008,184:691–694.
    [18] Zhang X, Yang W S, Evans D G.. Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors [J]. Journal of Power Sources, 2008,184:695–700.
    [19] Zhang H., Cao G, Wang W, et al. Influence of Microstructure on the Capacitive Performance of Polyaniline/carbon Nanotube Array Composite Electrodes [J]. Electrochimica Acta, 2009, 54,1153-1159.
    [20] Sharma R K, Rastogi1 A C, Desu S B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor [J]. Electrochimica Acta,2008,53:7690–7695.
    [21] Lee H Y, Goodenough J B. Supercapacitor Behavior with KCl Electrolyte [J]. Journal of Solid State Chemistry,1999, 144:220-223.
    [22] Sharma R K, Oh H S, Shul Y G, et al. Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor [J]. Journal of Power Sources,2007,173:1024-1028.
    [23] Dong X P, Shen W H, Gu J L, et al. MnO2 Embedded in Mesoporous Carbon Wall Structure for Use as Electrochemical Capacitors [J]. Journal of Physical Chemistry B,2006, 110:6015–6019.
    [24] Prasad K R, Miura N. Electrochemically synthesized MnO2 based mixed oxides for high performance redox supercapacitors [J]. Electrochemistry Communications,2004,6:1004-1008.
    [25] Fan Z, Chen J H, Wang M Y, et al. Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials [J]. Diamond and Related Materials,2006,15:1478-1483.
    [26] Nekrasov A A, Ivanov V F, Gribkova O L, et al. Electrochemical and chemical synthesis of polyaniline on the surface of vacuum deposited polyaniline films [J]. Journal of Electroanalytical Chemistry, 1996,412:133-137
    [27] Chen X, Chen G, Yue P L. Novel electrode system for electroflotation of wastewater [J]. Environmental Science & Technology,2002,36:778-783.
    [28] Panizza M, Cerisola G. Electrochemical oxidation as a final treatment of synthetic tannery wastewater [J]. Environmental Science & Technology, 2004, 38:5470-5475.
    [29] Martinez H C A. , Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes [J]. Chemical Society Reviews,2006,35: 1324-1340.
    [30] Samet Y, Elaoud S C. Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes [J]. Journal of Hazardous Materials,2006, 138: 614-619.
    [31] Andrade L S, Ruotolo L A M, Rocha R C, et al. On the performance of Fe and Fe,F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater [J]. Chemosphere, 2007,66:2035-2043.
    [32] Li G T, Qu J H, Zhang X W, et al. Electrochemically assisted photocatalytic degradation of Acid Orange 7 with beta-PbO2 electrodes modified by TiO2 [J]. Water Research,2006,40:213-220.
    [33] Pelegrini R T, Frire R S, Duran N, et al. Photoassisted electrochemical degradation of organic pollutants on a DSA type oxide electrode: process test for a phenol synthetic solution and its application for the E1 bleach kraft mill effluent [J]. Environmental Science & Technology,2001,35:2849-2853.
    [34] Zhi J F, Wang H B, Nakashima T, et al. Electrochemical Incineration of Organic Pollutants on Boron-Doped Diamond Electrode. Evidence for Direct Electrochemical Oxidation Pathway [J]. Journal of Physical Chemistry B,2003,107:13389-13395.
    [35] Boudenne J L, Cerclier O, Galea J, et al. Electrochemical oxidation of aqueous phenol at a carbon black slurry electrode [J]. Applied Catalysis A: General, 1996,143:185-202.
    [36] Jedral W, Merica S G, Bunce N J. Electrochemical oxidation of chlorinated benzenes [J]. Electrochemistry Communication,1999,1:108-110.
    [37] Iotov P I, Kalcheva S V. Mechanistic approach to the oxidation of phenol at a platinumgold electrode in an acid medium [J]. Journal of Electroanalytical Chemistry,1998,442:19-26.
    [38] Maluleke M A, Linkov V M. Partial electrochemical oxidation of phenol on ceramic based flat sheet type electromembrane reactors [J]. Separation and Purification Technology,2003,32:377-385.
    [39] Li X Y, Cui Y H, Feng Y J, et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes [J]. Water Research, 2005,39:1972-1981.
    [40] Arslan G E, Yazici B, Erbil M. The effect of pH, temperature and concentration on electrooxidation of phenol [J]. Journal of Hazardous Materials B,2005,124:37-43.
    [41] Canizares P, Garcia G J, Lobato J, et al. Modeling of Wastewater Electro-oxidation Processes Part II. Application to Active Electrodes [J]. Industrial & Engineering Chemistry Research,2004,43:1923-1931.
    [42] Wu Z, Zhou M. Partial Degradation of Phenol by Advanced Electrochemical Oxidation Process [J]. Environmental Science & Technology, 2001,35:2698-2703.
    [43] Itagaki M, Ono A, Watanabe K, et al. Analysis on organic film degradation by dynamic impedance measurements [J]. Corrosion Science,2006,48:3802-3811.
    [44] Zhou M H, He J R. Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO2 electrode [J]. Journal of Hazardous Materials,2008, 153:357-363.
    [45] Feng Y J, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution [J]. Water Research, 2003,37:2399-2407.
    [46] Sistiaga M, Pierna A R, Marzo F F, et al. Electrooxidation of phenol on amorphous Ni–40Nb–(1?x)Pt–xSn alloys [J]. Applied Surface Science, 1998,133:124-128.
    [47] Mor?o A, Lopes A, Gon?alves I C, et al. Degradation of mixtures of phenols using boron doped diamond electrodes for wastewater treatment [J]. Electrochimica Acta, 2004,49:1587-1595.
    [48] Lee K H, Ishikawa T, McNiven S J, et al. Evaluation of chemical oxygen demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode [J]. Analytical Chimica Acta, 1999,398:161-171.
    [49] Johnson D C, Feng J, Houk L L. Direct electrochemical degradation of organic wastes in aqueous media [J]. Electrochim. Acta, 2000,46:323-330.
    [50] BatesJ R, Kathirgamanathan P, Miles R W. The influence of the electrodeposition parameters on the morphology of organo-transition metal complexes for thin film gas sensor applications [J].Thin Solid Films, 1997,299,18-24.
    [51] Shimizu Y. Furuta Y. An opto-electrochemical phosphate-ion sensor using a cobalt-oxide thin-film electrode [J]. Solid State Ionics,1998,113,241-245.
    [52] Li Q W, Luo G A, Shu Y Q. Response of nanosized cobalt oxide electrodes as pH sensors [J].Analytical Chimica Acta, 2000,409,137-142.
    [53] Ibrahima K, Thierry D, Rachid H, et al. Electrical behaviour of fractal nanosized tin dioxide films prepared by electrodeposition for gas sensing applications Microelectronics Journal,2005,36:639-643.
    [54] Comninellis Ch, Vercesi G P. Problem in DSA coating deposition by thermal decomposition [J]. Journal of Applied. Electrochemistry,1991,21:136-142.
    [55] Lozano B C, Comninellis Ch, Battisti A D. Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique [J]. Journal of Applied. Electrochemistry,1996,26:683-688.
    [56] Lipp L, Pletcher D. The preparation and characterization of tin dioxide coated titanium electrode [J]. Electrochimca Acta, 1997,42:1091-1099.
    [57] Foti G, Mousty C, Comninellis Ch, et al. Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor [J]. Electrochimica Acta, 1998,44:813-818.
    [58] Hwang B J, Santhanam R, Chang Y W. Mechanism of Electrodeposition of PbO2 at a Pt Sheet/Rotating Disk Electrode [J]. Electroanalysis,2002,14:363-367.
    
    [59] Shen P K, Wei X L. Morphologic study of electrochemically formed lead dioxide [J]. Electrochimica Acta, 2003,48:1743-1747.
    [60] Chang S T, Leu I C, Liao C L,et al. Electrochemical behavior of nanocrystalline tin oxide electrodeposited on a Cu substrate for Li-ion batteries [J].Journal of Materials Chemistry,2004,14:1821-1826.
    [61]谢原寿,黄存礼.网孔板式瓷基二氧化铅电极:中国,92212284.9[P].1993-03-12
    [62] Chen G H, Chen X M, Yue P L. Electrochemical Behavior of Novel Ti/IrOX-Sb2O5-SnO2 Anodes [J]. Journal of Physical Chemistry B,2002,106: 4364-4369.
    [63] Taunier S, Guery C, Tarascon J M. Design and characterization of a three-electrode electrochromic device, based on the system WO3/IrO2 [J]. Electrochimica Acta,1999,44:3219-3225.
    [64] Otogawa R, Morimitsu M, Matsunaga M. Effects of microstructure of IrO2-based anodes on electrocatalytic properties [J]. Electrochimica Acta,1998,44: 1509-1513
    [65] Alve V A, Silva L A d, Boodts J F C. Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkaline solution [J]. Electrochimica Acta,1998,44: 1525-1534
    [67] Hou Y Y, Hu J M, Liu L, et al. Effect of calcination temperature on electrocatalytic activities of Ti/IrO2 electrodes in methanol aqueous solutions [J]. Electrochimica Acta,2006,51:6258-6267.
    [68] Silva D, Franco L M, Faria D V D, et al. Surface, kinetics and electrocatalytic properties of Ti/(IrO2+Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production [J]. Electrochimica Acta, 2004,49: 3977-3988.
    [69] Silva L A d, Alves V A, Trasatti S, et al. Oxygen evolution in acid solution on IrO2+TiO2 ceramic films A study by impedance, voltammetry and SEM [J]. Electrochimica Acta,1997,42:271-281.
    [70] Musiani M, Furlanetto F, Bertoncello R. Electrodeposited PbO2+RuO2: a composite anode for oxygen evolution from sulphuric acid solution [J]. Journal of Electroanalytical Chemistry, 1999,465:160 -167.
    [71] Toupin M, Brousse T, Bélanger D. Influence of Microstucture on theCharge Storage Properties of Chemically Synthesized Manganese Dioxide [J]. Chemical Materials,2002,14:3946-3952.
    [72] Kim H K, Seong T Y, Lim J H, et al. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors [J]. Journal of Power Sources, 2001,102:167-171.
    [73] Fan Z, Chen J, Zhang B, et al. High dispersion ofγ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors [J]. Diamond & Related Materials,2008,17:1943-1948.
    [74] Zhang Z J, Chen X Y, Wang B N, et al. Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties [J]. Journal of Crystal Growth,2008,310:5453-5457.
    [75] Shen P K, Chen K Y, A.C.C.Tseung. Performance of CO-electrodeposited Pt-Ru/WO3 electrodes for the electrooxidation of formic acid at room temperature [J]. Journal of Electroanalytical Chemistry,1995,389:223-225.
    [76] Chou S L, Cheng F Y, Chen Jun. Electrodeposition synthesis and electrochemical properties of nanostructuredγ-MnO2 films [J]. Journal of Power Sources,2006,162:727-734.
    [77] Wei W F, Cui X W, Chen W X, et al. Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors [J]. Journal of Power Sources,2009,186:543-550.
    [78] Pang S C, Anderson M A, Chapman T W. Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide [J]. Journal of Electrochemistry Society, 2000,147,444-449
    [79] Hsieh Y C, Lee K T, Lin Y P, et al. Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor [J]. Journal of Power Sources, 2008, 177:660-664.
    [80] Cui X W, Wei W F, Liu H F, et al. Electrochemical study of codeposition of Al particle-Nanocrystalline Ni/Cu composite coatings [J]. Electrochimica Acta,2008, 54:415-420.
    [81] Velichenko A B, Girenko D V, Kovalyov S V, et al. Lead dioxide electrodeposition and its application: influence of fluoride and iron ions [J]. Journal of Electroanalytical Chemistry, 1998,454:203-208.
    [82] Chang H,Johnson D C.Electrocatalysis of Oxygen Transfer Reaction Detection of Soluble Intermediate Products during Electrodeposition and Stripping ofβ-Lead Dioxide at a gold Electrode [J]. Journal of Electrochemistry Society,1989,136: 23.
    [83] Chang H, Johnson D C. Electrocatalysis of Anodic Oxygen-Transfer Reaction Chronoamperometric and Voltammetric Studies of the Nucleation and Electrodeposition ofβ-Lead Dioxide at a rotated Gold Disk Electrode in Acidic Media [J]. Journal of Electrochemistry Society,1989,136:17-23.
    [84] Chang H, Johnson D C. Electrocatalysis of Anodic Oxygen-Transfer Reactions Ultrathin Films of Lead Oxide On Solid Electrodes [J]. Journal of Electrochemistry Society,1990,137:3108-3114.
    [85] Yeo I H, Lee Y S, Johnson D C. Growth of Lead Dioxide on a Gold Electrode in the Presence of Foreign Ions [J]. Electrochimica Acta,1992, 37: 1811-1819
    [86] Velichenko, A.B.; Girenko, D.V.; Danilov, F.I. Mechanism of lead dioxide electrodeposition [J]. Journal of Electroanalysis Chemistry 1996,405,127-133.
    [87] Velichenko A B, Girenko D V, Danilov F I. Electrodeposition of lead dioxide at an Au electrode [J]. Electrochim. Acta 1995,40,2803-2807.
    [88] Campbell S A, Peter L M. Detection of soluble intermediates during deposition and reduction of lead dioxide. Journal of Electroanalysis Chemistry,1991, 36,185-191.
    [87] Chen X, Chen G, Gao F, et al. High-Performance Ti/BDD Electrodes for Pollutant Oxidation [J]. Environmental Science & Technology,2003,37:5021-5026.
    [88] Sirés I, Brillas E, Cerisola G, et al. Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes [J]. Journal of Electroanalytical Chemistry, 2008,613: 151-159.
    [89] Terashima C, Rao T N, Sarada B V, et al. Electrochemical Oxidation of Chlorophenols at a Boron-Doped Diamond Electrode and Their Determination by High-Performance Liquid Chromatography with Amperometric Detection [J]. Analytical Chimica Acta, 2002,74:895-902.
    [90] Wang J K, Farrell J. Electrochemical Inactivation of Triclosan with Boron Doped Diamond Film Electrodes [J]. Environmental Science & Technology,2004,38:5232-5237.
    [91] Foord J S, Eaton K, Wang H. Alison CrossleyPresent Interaction between co-deposited metals during stripping voltammetry at boron-doped diamond electrodes [J]. Physical Chemistry Chemical Physics,2005,7:2787-2792.
    [92] Terashima C, Rao T N, Sarada B V, et al. Electrochemical Oxidation of Chlorophenols at a Boron-Doped Diamond Electrode and Their Determination by High-Performance Liquid Chromatography with Amperometric Detection [J]. Analytical Chimica Acta,2002,74:895-902.
    [93] Colley A L, Williams C G, D'Haenens J , et al. Examination of the Spatially Heterogeneous Electroactivity of Boron-Doped Diamond Microarray Electrodes [J]. Analytical Chimica Acta,2006,78:2539-2548.
    [94] Polcaro A M, Ricci P C, Palmas S, et al. Characterization of boron doped diamond electrodes during oxidation processes: Relationship between electrochemical activity and ageing time [J]. Thin Solid Films, 2006, 515:2073-2078.
    [95] Suryanarayanan V, Nakazawa I. The influence of electrolyte media on the deposition/dissolution of lead dioxide on boron-doped diamond electrode - A surface morphologic study [J]. Journal of Electroanalytical Chemistry, 2006,592:175-182.
    [96] Cao J L, Zhao H Y, Cao F H et al. The influence of F- doping on the activity of PbO2 film electrodes in oxygen evolution reaction [J]. Electrochimica Acta, 2007,52:7870-7876.
    [97] Devilliers D, Dinh M T, Thi, Lequeux N, et al. Electroanalytical investigations on electrodeposited lead dioxide [J]. Journal of Electroanalytical Chemistry,2004,573:227-239.
    [98] Krishna K M, Sharon M, Mishra M K. Preparation and characterization of a PbTiO3 + PbO mixed-oxide photoelectrode [J]. Journal of Electroanalytical Chemistry, 1995,391,93-99.
    [99] Monahov B, Pavlov D, Kirchev A, et al. Influence of pH of the H2SO4 solution on the phase composition of the PbO2 active mass and of the PbO2 anodic layer formed during cycling of lead electrodes [J]. Journal of Power Sources, 2003,113:281-292.
    [100] Shahram G, Karami H, Mousavi M F, et al. Synthesis and morphologicalinvestigation of pulsed current formed nano-structured lead dioxide [J]. Electrochemistry Communications, 2005,7:1257-1264.
    [101] Vatistas N, Cristofaro S. Lead dioxide coating obtained by pulsed current technique [J]. Electrochemistry Communications, 2000, 2:334-337
    [102] Kerouani N, Chelali N, Kerouani D. Electrochemical and kinetic behavior of the MnOX/C-beta-PbO2 electrode [J]. Journal of solid state electrode, 20038: 34-36.
    [103] Payne D J, Egdell R G. Experimental and theoretical study of the electronic structures of alpha-PbO and beta-PbO2 [J]. Journal of materials chemistry, 2007,17: 267-277
    [104] Amadelli R, Maldotti A, Molinari, A, et al. Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution atβ-PbO2 anodes in acid media [J]. Journal of Electroanalytical Chemistry,2002,534: 1-12
    [105] Wu C Z, Hu S Q, Lei L Y, et al. beta-PbO2 hollow nanostructures from the complex precursor: A self-produced intermediate template route [J]. Microporous and Mesoporous Materials, 2006,89:300-305.
    [106] Lee J, Varela H, Uhm S, et al Electrodeposition of PbO2 onto Au and Ti substrates [J]. Electrochemistry Communications,2000,2:646-652
    [107] Kong J T, Shi S Y, Kong L C, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides [J]. Electrochimica Acta, 2007,53:2048-2054.
    [108] Mahalingam T, Velumani S, Raja M, et al. Electrosynthesis and characterization of lead oxide thin films [J]. Materials Characterization, 2007,58: 817-822.
    [109] Musiani M, Guerriero . P. Oxygen evolution reaction at composite anodes containing Co3O4 particles: Comparison of metal-matrix and oxide-matrix composites [J]. Electrochimica Acta,1998,44:1499-1507.
    [110] Musiani M, Furlanetto F, Guerriero P. Electrochemical deposition and properties of PbO2+Co3O4 composites [J]. Journal of Electroanalytical Chemistry, 1997,437,131-138.
    [111] Bertoncello R, Furlanetto F, Musiani M, et al. Electrodeposited composite electrode materials: effect of the concentration of the electrocatalyticdispersed phase on the electrode activity [J]. Electrochimica Acta, 1999,44:4061-4068.
    [112] Casellato U, Cattarin S. Musiani M. Preparation of porous PbO2 electrodes by electrochemical deposition of composites [J]. electrochimica Acta,2003,48: 3991-3998
    [113] Hyde M E, Jacobs R M J, Compton R G. An AFM Study of the Correlation of Lead Dioxide Electrocatalytic Activity with Observed Morphology [J]. Journal of Physical Chemistry B,2004,108:6381-6390.
    [114] Cong Y. Wu Z. Electrocatalytic Generation of Radical Intermediates over Lead Dioxide Electrode Doped with Fluoride [J]. Journal of Physical Chemistry C, 2007,111:3442-3446.
    [115] Ai S Y, Gao M N, Zhang W, et al.Preparation of fluorine-doped lead dioxide modified electrodes for electroanalytical applications [J]. Electroanalysis, 2003,15:1403-1409.
    [116] Cattarin S, Frateur I, Guerriero P, et al. Electrodeposition of PbO2-CoOx composites by simultaneous oxidation of Pb2+ and Co2+ and their use as anodes for O2 evolution [J]. Electrochimica Acta,2000,45:2279-2288.
    [117] Cattarin S, Guerriero P, Musiani M. Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides [J]. Electrochimica Acta,2001,46:4229-4234.
    [118] Velichenko A B, Amadelli R, Zucchini G L, et al. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts [J]. Electrochimica Acta, 2000,45:4341-4350.
    [119] Velichenko A B, Girenko D V, Kovalyov S V, et al. Lead dioxide electrodeposition and its application: influence of fluoride and iron ions [J]. Journal of Electroanalytical Chemistry,1998,454:203-208.
    [120] Ai S Y, Gao M N, Zhang W, et al. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines [J]. Talanta,2004,62:445-450.
    [121] Borras C, Monroy, A. On the initial stages of electrooxidation of aqueous maleic acid on Bi-Doped PbO2 [J]. Electroanalysis,2007,19:1628-1634.
    [122] Lubenov L, Bojinov M, Tzvetkoff T. Oxidation of toluene on Bi-doped PbO2 studied by electrochemical impedance spectroscopy and UV spectrophotometry [J]. Journal of Solid State Electrochemistry,2007,11:1613-1620.
    [123] Tahar N B, Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: a comparison of the activities of various electrode formulations [J]. Journal of Applied Electrochemistry,1999,29,277-283.
    [124] Borras C, Laredo T, Scharifker B R. Competitive electrochemical oxidation of p-chlorophenol and p-nitrophenol on Bi-doped PbO2 [J].Electrochimica Acta,2003,48:2775-2780.
    [125] Ras A H; Staden J F V. Electrodeposition of PbO2 and B-PbO2 on Ebonex [J]. Journal of Applied Electrochemistry, 1999,29:313-319.
    [126] Cai W B, Liu H T, Zhou W F. Comparison of the reduction behaviour of anodic PbO2 films on Pb-As and Pb-Bi alloys in sulfuric acid [J]. Journal of Applied Electrochemistry,1997,27:1212-1216.
    [127] Velichenko A B, Devilliers D. Electrodeposition of fluorine-doped lead dioxide [J]. Journaol of Fluorine Chemistry,2007,128: 269-276.
    [128] Velichenko A B, Amadelli R, Baranova E A, et al. Electrodeposition of Co-doped lead dioxide and its physicochemical properties [J]. Journal of Electroanalytical Chemistry,2002,527:56-64.
    [129] Song Y H, Wei G, Xiong R H. Structure and properties of PbO2-CeO2 anodes on stainless steel [J]. Electrochimica Acta,2007,52:7022-7027.
    [130] Ghasemi S, Mousavi M F. Energy storage capacity investigation of pulsed current formed nano-structured lead dioxide [J]. Electrochima Acta,2006,52: 1596-1602
    [131] Ai S Y, Li J Q, Li L P, et al. Electrochemical Deposition and Properties of Nanometer-structure Ce-doped Lead Dioxide Film Electrode [J]. Chinese Journal of Chemistry, 2005,23,71-75.
    [132] Ghasemi S, Mousavi M F, Shamsipur M, et al. Sonochemical-assisted synthesis of nano-structured lead dioxide [J]. Ultrasonics Sonochemistry,2008,15: 448-455.
    [133] Cao M, Hu C, Peng G, et al. Selected-Control Synthesis of PbO2 and Pb3O4 Single-Crystalline Nanorods [J]. Journal of American Chemistry Society,2003,125: 4982-4983.
    [134] Bartlett P N, Dunford T, Ghanem M A. Templated electrochemical deposition of nanostructured macroporous PbO2 [J]. Journal of Materials Chemistry, 2002,12:3130-3135.
    [135 ] Zhou D L, Gao L J. Effect of electrochemical preparation methods on structure and properties of PbO2 anodic layer [J]. Electrochimica Acta,2007,53, 2060-2064.
    [136] Ai, SY, Wang, QJ, Li, H, et al. Study on production of free hydroxyl radical and its reaction with salicylic acid at lead dioxide electrode [J]. Journal of electroanalysis chemistry,2005,578:223-229.
    [137] Liu Y, Liu H L. Comparative studies on the electrocatalytic properties of modified PbO2 anodes [J]. Electrochimica Acta,2008,53:5077-5083.
    [138] Pavlov D, Kirchev A, Stoycheva M, et al. Influence of H2SO4 concentration on the mechanism of the processes and on the electrochemical activity of the Pb/PbO2/PbSO4 electrode [J]. Journal of Power Sources,2004,137: 288-308.
    [139] Liu H L, Liu Y, Zhang C, et al. Electrocatalytic oxidation of nitrophenols in aqueous solution using modified PbO2 electrodes [J]. Journal of Applied Electrochemistry,2008,38,101-108.
    [140] Yao J N, Chen P, Fujishima A. Electrochromic behavior of electrodeposited tungsten oxide thin film [J]. Journal of electroanalysis chemistry,1996, 406:223-226.
    [141] Patil P R, Pawar S H, Patil P S. The electrochromic properties of tungsten oxide thin film deposited by solution thermolysis [J]. Solid State Ionics,2002,136: 505-511.
    [142] Shen P K, Tseung A C C. Anodic oxidation on Pt/WO3 in Acidic Media [J].Journal of Electrochemistry Society,1994,141:3082-3089
    [143] Guo J d, Li Y J, Stanley M, et al. Hydrothermal synthesis of electrode materials Pyrochlore tungsten trioxide film [J]. Journal of Power Sources,1995,54, 461-464.
    [144] Park K W, Choi J H, Ahn K S, et al. Pt Ru Alloy and PtRu-WO3 Nanocomposite Electrodes for Methanol Electrooxidation Fabricated by a Sputtering Deposition Method [J]. Journal of Physical Chemistry B,2004,108,5989-5994.
    [145] Park K W, Choi J H, Ahn K S, et al. Electrocatalytic Enhancement of Methanol Oxidation at Pt-WOx Nanophase Electrodes and In-Situ Observation of Hydrogen Spillover Using Electrochromism [J]. Journal of Physical Chemistry B,2003,107:4352-4355
    [146] Park K W, Ahn K S, Choi J H, et al. Pt-WO3 electrode structure for thin-film fuel cells [J]. Applied Physical Letter,2002,81:907-909.
    [147] Abbaro S A, Tseung A C C. Synergism in hydrogen evolution on platinizid tungsten trioxide in acid medium [J]. Journal of Electrochemistry Society,1980,127: 1106-1107.
    [148] Baeck S H, Jaramillo T, Stucky G D, et al. Controlled Electrodeposition of Nanoparticulate Tungsten Oxide [J]. Nano Letters,2002,2:831-834.
    [149] Bock C, Smith A, MacDougall B. Anodic oxidation of oxalic acid using WOx based anodes[J]. Electrochimica Acta,2002,48:57-67.
    [150] Habazaki H, Hayashi Y, Konno H. Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment [J]. Electrochimica Acta,2002,47:4181-4188.
    [151]Lee M, Chang J, Hsieh Y, et al. Annealed Mn–Fe Binary Oxides for Supercapacitor Applications [J]. Journal of Power Sources,2008,185:1234-1239
    [152] Beaudrouet E, Salle A L G L, Guyomard D, et al. Nanostructured Manganese Dioxides: Synthesis and Properties as Supercapacitor Electrode Materials [J]. Electrochimica Acta,2009,54:1240-1249
    [153] Itagaki M, Suzuki S, Shitanda I, et al. Impedance analysis on electric double layer capacitor with transmission line model [J]. Journal of Power Sources,2007,164:415-423.
    [154] Kotz R, Hahn M, Gallay R. Temperature Behavior and Impedance Fundamentals of Supercapacitors [J]. Journal of Power Sources,2006,154:550-557.
    [155] Lee S H, Cheong H M, Tracy C E, et al. Raman spectroscopic studies of electrochromic a-WO3 [J]. Electrochimica Acta,1999,44,3111-3115.
    [1] Velichenko A B, Devilliers D.Electrodeposition of fluorine-doped lead dioxide [J]. Journal of Fluorine Chemistry, 2007,128:269-276.
    [2] Gilory D, Stevens R. The electrodeposition of lead dioxide on titanium [J]. Journal of Applied Electrochemistry,1980,10:511-525.
    [3]王雅琼,童宏扬,许文林.热分解法制备的Ti/SnO2+Sb2O3/PbO2电极性质研究[J].无机材料学报,2003,18:1033-1035
    [4] Velichenko A B,Amadelli R,Baranova E A,et al.Electrodeposition of Co-doped lead dioxide and its physicochemical properties[J]. Journal of Electroanalytical Chemistry,2002,527:56-64
    [5] Casellato U, Cattarin S. Musiani M. Preparation of porous PbO2 electrodes by electrochemical deposition of composites [J]. electrochimica Acta,2003,48: 3991-3998.
    [6] Shen P K, Wei X L. Morphologic study of electrochemically formed lead dioxide [J]. Electrochimica Acta, 2003,48:1743-1747.
    [7] Chang H,Johnson D C.Electrocatalysis of Oxygen Transfer Reaction Detection of Soluble Intermediate Products during Electrodeposition and Stripping ofβ-Lead Dioxide at a gold Electrode [J]. Journal of Electrochemistry Society,1989,136: 23-29.
    [8] Chang H, Johnson D C. Electrocatalysis of Anodic Oxygen-Transfer Reaction Chronoamperometric and Voltammetric Studies of the Nucleation and Electrodeposition ofβ-Lead Dioxide at a rotated Gold Disk Electrode in Acidic Media [J]. Journal of Electrochemistry Society,1989,136:17-23.
    [9] Chang H, Johnson D C. Electrocatalysis of Anodic Oxygen-Transfer Reactions Ultrathin Films of Lead Oxide On Solid Electrodes [J]. Journal of Electrochemistry Society,1990,137:3108-3114.
    [10] Yeo I H, Lee Y S, Johnson D C. Growth of Lead Dioxide on a Gold Electrode in the Presence of Foreign Ions [J]. Electrochimica Acta,1992, 37: 1811-1819
    [11] Velichenko, A.B.; Girenko, D.V.; Danilov, F.I. Mechanism of lead dioxide electrodeposition [J]. Journal of Electroanalysis Chemistry 1996,405,127-133.
    [12] Velichenko A B, Girenko D V, Danilov F I. Electrodeposition of leaddioxide at an Au electrode [J]. Electrochim. Acta 1995,40,2803-2807.
    [13] Hwang B J, Santhanam R, Chang Y W. Mechanism of Electrodeposition of PbO2 at a Pt Sheet/Rotating Disk Electrode [J]. Electroanalysis,2002,14: 363-367.
    [14]金向军,李晓萍,林海波. Ru-Ti-Sn/Ti三元氧化物金属阳极的析氧性能[J].化学与粘合,2003,3 149-150.
    [15] Shahram G, Karami H, Mousavi M F, et al. Synthesis and morphological investigation of pulsed current formed nano-structured lead dioxide [J]. Electrochemistry Communications, 2005,7:1257-1264.
    [16] Wu C Z, Hu S Q, Lei L Y, et al. beta-PbO2 hollow nanostructures from the complex precursor: A self-produced intermediate template route [J]. Microporous and Mesoporous Materials, 2006,89:300-305.
    [1] Velichenko A B, Devilliers D. Electrodeposition of fluorine-doped lead dioxide [J]. Journaol of Fluorine Chemistry,2007,128:269-276.
    [2] Lipp L, Pletcher D. The preparation and characterization of tin dioxide coated titanium electrode [J]. Electrochimca Acta, 1997,42:1091-1099.
    [3] Mohd Y, Pletcher D. The fabrication of lead dioxide layers on a titanium substrate [J]. Electrochimica Acta,2006,52:786-793.
    [4] Gilory D, Stevens R. The electrodeposition of lead dioxide on titanium [J]. Journal of Applied Electrochemistry,1980,10:511-525.
    [5] Shen P K, Wei X L. Morphologic study of electrochemically formed lead dioxide [J]. Electrochimica Acta, 2003,48:1743-1747.
    [6] Lozano B C, Comninellis Ch, Battisti A D. Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique [J]. Journal of Applied. Electrochemistry,1996,26:683-688.
    [7] Ras A H; Staden J F V. Electrodeposition of PbO2 and B-PbO2 on Ebonex [J]. Journal of Applied Electrochemistry, 1999,29:313-319.
    [8] Velichenko A B, Amadelli R, Zucchini G L, et al. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts [J]. Electrochimica Acta, 2000,45:4341-4350.
    [9] Velichenko A B, Amadelli R, Baranova E A, et al. Electrodeposition of Co-doped lead dioxide and its physicochemical properties [J]. Journal of Electroanalytical Chemistry,2002,527:56-64.
    [10] Ai S Y, Gao M N, Zhang W, et al. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines [J]. Talanta,2004,62:445-450.
    [11] Kong J T, Shi S Y, Kong L C, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides [J]. Electrochimica Acta, 2007,53:2048-2054.
    [12] Cao J L, Zhao H Y, Cao F H et al. The influence of F- doping on the activity of PbO2 film electrodes in oxygen evolution reaction [J]. Electrochimica Acta, 2007,52:7870-7876.
    [13] Casellato U, Cattarin S. Musiani M. Preparation of porous PbO2 electrodes by electrochemical deposition of composites [J]. electrochimica Acta,2003,48:3991-3998
    [14]Amadelli R, Armelao L, Velichenko A B, et al. Oxygen and ozone evolution at fluoride modified lead dioxide electrodes [J]. Electrochimica Acta,1999,45:713-720.
    [15] Ai S Y, Gao M N, Zhang W, et al.Preparation of fluorine-doped lead dioxide modified electrodes for electroanalytical applications [J]. Electroanalysis, 2003,15:1403-1409.
    [16]金向军,李晓萍,林海波. Ru-Ti-Sn/Ti三元氧化物金属阳极的析氧性能[J].化学与粘合,2003,3 149-150.
    [17] Wu C Z, Hu S Q, Lei L Y, et al. beta-PbO2 hollow nanostructures from the complex precursor: A self-produced intermediate template route [J]. Microporous and Mesoporous Materials,2006,89:300-305.
    [18] Wanger C D, Riggs W M, Davis L E, et al. Handbook of X-ray Photoelectron Spectroscopy [M],Perkin-Elmer:Eden prairie,1978.
    [19] Cong Y. Wu Z. Electrocatalytic Generation of Radical Intermediates over Lead Dioxide Electrode Doped with Fluoride [J]. Journal of Physical Chemistry C, 2007,111:3442-3446.
    [20] Shahram G, Karami H, Mousavi M F, et al. Synthesis and morphological investigation of pulsed current formed nano-structured lead dioxide [J]. Electrochemistry Communications, 2005,7:1257-1264.
    [21] Ingela Petersson, Elisabet Ahlberg and Bo Berghult. Parameters influencing the ratio between electrochemically formedα- andβ-PbO2 [J].Journal of Power Sources, 1998,76:98-105.
    [22] Payne D J, Hu J P, Egdell R G, et al Photon energy dependence of final state screening in a dilute electron gas system: A synchrotron radiation photoemission study ofβ-PbO2 [J]. Chemical Physics Letters, 2007,443:61-65.
    [23] Bocca C, Barbucci A, Delucchi M, et al. Nickel-cobalt oxide-coated electrodes: influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution [J] International Journal of Hydrogen Energy,1999,24:21-26
    [24] Castro E B, Gervasi C A. Electrodeposited Ni–Co-oxide electrodes:characterization and kinetics of the oxygen evolution reaction [J].International Journal of Hydrogen Energy, 2000,25:1163-1170.
    [25] Wu G, Li N, Zhou D R, et al. Anodically electrodeposited Co+Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media [J]. Journal of Solid State Chemistry,2004,177:3682-3692
    [26] Cattarin S, Guerriero P, Musiani M. Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides [J]. Electrochimica Acta,2001,46:4229-4234.
    [27] Chen G H, Chen X M, Yue P L. Electrochemical Behavior of Novel Ti/IrOX-Sb2O5-SnO2 Anodes [J]. Journal of Physical Chemistry B,2002,106: 4364-4369.
    [1] ] Ghasemi S, Mousavi M F, Shamsipur M, et al. Sonochemical-assisted synthesis of nano-structured lead dioxide [J]. Ultrasonics Sonochemistry,2008,15: 448-455.
    [2] Ai S Y, Li J Q, Li L P, et al. Electrochemical Deposition and Properties of Nanometer-structure Ce-doped Lead Dioxide Film Electrode [J]. Chinese Journal of Chemistry, 2005,23,71-75.
    [3] Markovi N M, Grgur B N, Lucas C A, et al. Underpotential deposition of lead onto Pt(100) in acid solutions: Adsorption isotherms and interface structures [J]. Faraday Transactions,1998,94:3373-3379.
    [4] Casella I G, Gatta M. Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions [J]. Journal of Electroanalytical Chemistry, 2002,534:31-38.
    [5] Cattarin S, Frateur I, Guerriero P, et al. Electrodeposition of PbO2-CoOx composites by simultaneous oxidation of Pb2+ and Co2+ and their use as anodes for O2 evolution [J]. Electrochimica Acta,2000,45:2279-2288.
    [6] Cattarin S, Guerriero P, Musiani M. Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides [J]. Electrochimica Acta,2001,46:4229-4234.
    [7] Patil P S, Kadam L D, Lokhande C D. Studies on electrochromism of spray pyrolyzed cobalt oxide thin films [J]. Solar Energy Materials and Solar Cells,1998, 53:229-234.
    [8] Grimm J H, Bessarabov D G, Simon U, et al. Characterization of doped tin dioxide anodes prepared by a sol-gel technique and their application in an SPE-reactor [J]. Journal of Applied Electrochemistry,2000,30:293-302.
    [9] Kim H K, Seong T Y, Lim J H, et al. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors [J]. Journal of Power Sources, 2001,102:167-171.
    [10] Musiani M, Guerriero . P. Oxygen evolution reaction at composite anodes containing Co3O4 particles: Comparison of metal-matrix and oxide-matrix composites [J]. Electrochimica Acta,1998,44:1499-1507.
    [11] Casellato U, Cattarin S, Guerriero P, et al. Anodic Synthesis ofOxide-Matrix Composites. Composition, Morphology, and Structure of PbO2-Matrix Composites [J]. Chemical Materisals,1997,9:960-966.
    [12] Hue F, Musian M, Nogueira RP. Electrochemical noise analysis of O-2 evolution on PbO2 and PbO2-matrix composites containing Co or Ru oxides [J]. Electrochim Acta, 2003,48:3981-3989.
    [13] Cattarin S, Musiani M. Electrosynthesis of nanocomposite materials for electrocatalysis [J]. Electrochim Acta,2007,52:2796-2805.
    [14] Chang H,Johnson D C.Electrocatalysis of Oxygen Transfer Reaction Detection of Soluble Intermediate Products during Electrodeposition and Stripping ofβ-Lead Dioxide at a gold Electrode [J]. Journal of Electrochemistry Society,1989,136: 23-29.
    [15] Velichenko A B, Amadelli R, Zucchini G L, et al. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts [J]. Electrochimica Acta, 2000,45:4341-4350.
    [16] Velichenko A B, Girenko D V, Kovalyov S V, et al. Lead dioxide electrodeposition and its application: influence of fluoride and iron ions [J]. Journal of Electroanalytical Chemistry,1998,454:203-208.
    [17] Krishna K M, Sharon M, Mishra M K. Preparation and characterization of a PbTiO3+PbO mixed-oxide photoelectrode [J]. Journal of Electroanalytical Chemistry, 1995,391,93-99.
    [18] Gervasi C A, Vilche J R, Alvarez E. A transition in the kinetics of electroreduction of anodically formed cobalt oxides. Influence of potentiostatic ageing [J]. Electrochimica Acta, 1996,41:455-461.
    [19] Bocca C, Barbucci A, Delucchi M, et al. Nickel-cobalt oxide-coated electrodes: influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution [J]. International Journal of Hydrogen Energy,1999,24:21-26.
    [20] Castro E B, Gervasi C A. Electrodeposited Ni–Co-oxide electrodes: characterization and kinetics of the oxygen evolution reaction [J]. International Journal of Hydrogen Energy,2000,25:1163-1170.
    [21] Barbero C, Planes G A, Miras M C. Redox coupled ion exchange in cobalt oxide films [J]. Electrochemistry Communications,2001,3:113-116.
    [22] Wu G, Li N, Zhou D R, et al. Anodically electrodeposited Co+Ni mixedoxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media. Journal of Solid State Chemistry, 2004,177:3682-3692.
    [23] Velichenko A B, Amadelli R, Baranova E A, et al. Electrodeposition of Co-doped lead dioxide and its physicochemical properties [J]. Journal of Electroanalytical Chemistry,2002,527:56-64.
    [24]金向军,李晓萍,林海波. Ru-Ti-Sn/Ti三元氧化物金属阳极的析氧性能[J].化学与粘合,2003,3 149-150.
    [25] Payne D J, Egdell R G. Experimental and theoretical study of the electronic structures of alpha-PbO and beta-PbO2 [J]. Journal of materials chemistry, 2007,17: 267-277.
    [26] Mohd Y, Pletcher D. The fabrication of lead dioxide layers on a titanium substrate [J]. Electrochimica Acta,2006,52:786-793.
    [27] Monahov B, Pavlov D, Kirchev A, et al. Influence of pH of the H2SO4 solution on the phase composition of the PbO2 active mass and of the PbO2 anodic layer formed during cycling of lead electrodes [J]. Journal of Power Sources, 2003,113:281-292.
    [28] Mahalingam T, Velumani S, Raja M, et al. Electrosynthesis and characterization of lead oxide thin films [J]. Materials Characterization, 2007,58: 817-822.
    [29] Devilliers D, Dinh M T, Thi, Lequeux N, et al. Electroanalytical investigations on electrodeposited lead dioxide [J]. Journal of Electroanalytical Chemistry,2004,573:227-239.
    [30] Zhi J F, Wang H B, Nakashima T, et al. Electrochemical Incineration of Organic Pollutants on Boron-Doped Diamond Electrode. Evidence for Direct Electrochemical Oxidation Pathway [J]. Journal of Physical Chemistry B,2003, 107:13389-13395.
    [31] Montilla F, Morallon E, Battisti A D, et al. Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. l Ectrochemical Characterization [J]. Journal of Physical Chemistry B,2004,108:5036-5043.
    [32] Martinez H C A, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes [J]. Chemical Society Reviews,2006,35: 1324-1340.
    [1] Zhang Z J, Chen X Y, Wang B N, et al. Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties [J]. Journal of Crystal Growth,2008,310:5453-5457.
    [2] Wei W F, Cui X W, Chen W X, et al. Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors [J]. Journal of Power Sources,2009,186:543-550.
    [3] Chang J H, Lee S J, Ganesh T, et al. Viologen-assisted manganese oxide electrode for improved electrochemical supercapacitors [J]. Journal of Electroanalytical Chemistry, 2008,624:167-173.
    [4] Beaudrouet E, Salle A L G L, Guyomard D, et al. Nanostructured Manganese Dioxides: Synthesis and Properties as Supercapacitor Electrode Materials [J]. Electrochimica Acta,2009,54:1240-1249.
    [5] Ghaemi M, Ataherian F, Zolfaghari A, et al. Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction [J]. Electrochimica Acta,2008,53:4607-4614.
    [6] Zheng Y Z, Ding H Y, Zhang M L. Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material [J]. Materials Research Bulletin, 2009,44:403-407.
    [7] Mitra S, Lokesh K S, Sampath S. Exfoliated graphite–ruthenium oxide composite electrodes for electrochemical supercapacitors [J]. Journal of Power Sources, 2008,185: 1544-1549.
    [8] Jiang J H, Kucernak A. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization [J]. Electrochimica Acta, 2002,47:2381-2386.
    [9] Xu C J, Li B H, Du H D, et al. Supercapacitive studies on amorphous MnO2 in mild solutions [J]. Journal of Power Sources,2008,184:691–694.
    [10] Zhang X, Yang W S, Evans D G.. Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors [J]. Journal of Power Sources, 2008,184:695–700.
    [11] Chou S L, Cheng F Y, Chen Jun. Electrodeposition synthesis and electrochemical properties of nanostructuredγ-MnO2 films [J]. Journal of PowerSources,2006,162:727-734.
    [12] Sharma R K, Rastogi1 A C, Desu S B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor [J]. Electrochimica Acta,2008,53:7690–7695.
    [13] Lee H Y, Goodenough J B. Supercapacitor Behavior with KCl Electrolyte [J]. Journal of Solid State Chemistry,1999, 144:220-223.
    [14] Sharma R K, Oh H S, Shul Y G, et al. Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor [J]. Journal of Power Sources,2007,173:1024-1028.
    [15] Dong X P, Shen W H, Gu J L, et al. MnO2 Embedded in Mesoporous Carbon Wall Structure for Use as Electrochemical Capacitors [J]. Journal of Physical Chemistry B,2006, 110:6015–6019.
    [16] Fan Z, Chen J, Zhang B, et al. High dispersion ofγ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors [J]. Diamond & Related Materials, 2008,17:1943-1948.
    [17] Fan Z, Chen J H, Wang M Y, et al. Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials [J]. Diamond and Related Materials,2006,15:1478-1483.
    [18] Sun Z Y, Liu Z M, Han B X, et al. Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine [J]. Carbon,2006,44:888-893. [19 156] Kim H K, Seong T Y, Lim J H, et al. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors [J]. Journal of Power Sources, 2001,102:167-171.
    [20] Kotz R, Hahn M, Gallay R. Temperature Behavior and Impedance Fundamentals of Supercapacitors [J]. Journal of Power Sources,2006,154:550-557.
    [21] Toupin M, Brousse T, Bélanger D. Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide [J]. Chemical Materials,2002,14:3946-3952.
    [22] Gonzdlez C, Gutirrez J L, Gonzdlez J R, et al. Transformations of manganese oxides under different thermal conditions [J]. Journal of Thermal Analysis, 1996,47:93-102.
    [23] Simon D E, Morton R W, Gislason J J. A close look at electrolyticmanganese dioxide and theγ-MnO2 &ε-MnO2 phases using rietveld modeling [J]. International Centre for Diffraction Data,2004,47:267-280.
    [24] Prasad K R, Miura N. Electrochemically synthesized MnO2 based mixed oxides for high performance redox supercapacitors [J]. Electrochemistry Communications,2004,6:1004-1008.
    [25] Chen G H, Chen X M, Yue P L. Electrochemical Behavior of Novel Ti/IrOX-Sb2O5-SnO2 Anodes [J]. Journal of Physical Chemistry B,2002,106: 4364-4369.
    [26] Devilliers D, Dinh M T, Thi, Lequeux N, et al. Electroanalytical investigations on electrodeposited lead dioxide [J]. Journal of Electroanalytical Chemistry,2004,573:227-239.
    [27] Gilory D, Stevens R. The electrodeposition of lead dioxide on titanium [J]. Journal of Applied Electrochemistry,1980,10:511-525.
    [28] Shen P K, Wei X L. Morphologic study of electrochemically formed lead dioxide [J]. Electrochimica Acta, 2003,48:1743-1747.
    [29]金向军,李晓萍,林海波. Ru-Ti-Sn/Ti三元氧化物金属阳极的析氧性能[J].化学与粘合,2003,3 149-150.
    [30] Wanger C D, Riggs W M, Davis L E, et al. Handbook of X-ray Photoelectron Spectroscopy [M],Perkin-Elmer:Eden prairie,1978.
    [31] Wu C Z, Hu S Q, Lei L Y, et al. beta-PbO2 hollow nanostructures from the complex precursor: A self-produced intermediate template route [J]. Microporous and Mesoporous Materials,2006,89:300-305.
    [32] Cattarin S, Musiani M. Electrosynthesis of nanocomposite materials for electrocatalysis [J]. Electrochim Acta,2007,52:2796-2805.
    [33] Ghasemi S, Mousavi M F. Energy storage capacity investigation of pulsed current formed nano-structured lead dioxide [J]. Electrochima Acta,2006,52: 1596-1602.
    [1] Bock C, Smith A, MacDougall B. Anodic oxidation of oxalic acid using WOx based anodes[J]. Electrochimica Acta,2002,48:57-67.
    [2] Zhi J F, Wang H B, Nakashima T, et al. Electrochemical Incineration of Organic Pollutants on Boron-Doped Diamond Electrode. Evidence for Direct Electrochemical Oxidation Pathway [J]. Journal of Physical Chemistry B,2003, 107:13389-13395.
    [3] Boudenne J L, Cerclier O, Galea J, et al. Electrochemical oxidation of aqueous phenol at a carbon black slurry electrode [J]. Applied Catalysis A: General, 1996,143:185-202.
    [4] Bock C, MacDougall B. The influence of metal oxide properties on the oxidation of organics [J]. Journal of Electroanalytical Chemistry,2000,491:48–54.
    [5] Bock C, MacDougall B.The electrochemical oxidation of organics using tungsten oxide based electrodes [J]. Electrochimica Acta,2002,47:3361-3373.
    [6] Bock C, MacDougall B.The Anodic Oxidation of p-Benzoquinone and Maleic acid, Journal of electrochemistry Society,1999,146:2925-2932.
    [7] Cong Y. Wu Z. Electrocatalytic Generation of Radical Intermediates over Lead Dioxide Electrode Doped with Fluoride [J]. Journal of Physical Chemistry C, 2007,111:3442-3446.
    [8] Tahar N B, Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: a comparison of the activities of various electrode formulations [J]. Journal of Applied Electrochemistry,1999,29,277-283.
    [9] Gilory D, Stevens R. The electrodeposition of lead dioxide on titanium [J]. Journal of Applied Electrochemistry,1980,10:511-525.
    [10] Chen A, Nigro S. Influence of a Nanoscale Gold Thin Layer on Ti/SnO2-Sb2O5 Electrodes [J]. Journal of Physical Chemistry B,2003,107: 13341-13348.
    [11] Lozano B C, Comninellis Ch, Battisti A D. Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique [J]. Journal of Applied. Electrochemistry,1996,26:683-688.
    [12] Lipp L, Pletcher D. The preparation and characterization of tin dioxide coated titanium electrode [J]. Electrochimca Acta, 1997,42:1091-1099.
    [13] Polcaro A M, Mascia M, Palmas S, et al. Kinetic Study on the Removal of Organic Pollutants by an Electrochemical Oxidation Process [J]. Industrial & Engineering Chemistry Research,2002,41,2874-2881.
    [14] Shen P K, Bokhari J S, Tseung A C C. The Performance of Electrochromic tungsten trioxide film doped with cobalt or nickel [J]. Journal of electrochemistry Society,1991,138: 2778-2793.
    [15] Yao J N, Chen P, Fujishima A. Electrochromic behavior of electrodeposited tungsten oxide thin film [J]. Journal of electroanalysis chemistry,1996, 406:223-226.
    [16] Granqvist, C.G. Electrochromic tungsten oxide films: Review of progress [J]. Solar Energy Materials & Solar Cells,2000,60:201-262
    [17] Shen P K, Chen K Y, Tseung A C C. Co-Deposited Pt-WO3 Electrodes [J]. Journal of Chemistry Society Faraday Discussions, 1994,90:3089-3096.
    [18] Hobbs B S, Tseung A C C. High performance platinum activated tungsten oxide fuel cell electrodes [J]. Nature, 1969, 222:556-558.
    [19] Chen G H, Chen X M, Yue P L. Electrochemical Behavior of Novel Ti/IrOX-Sb2O5-SnO2 Anodes [J]. Journal of Physical Chemistry B,2002,106: 4364-4369.
    [20] Patil P R, Pawar S H, Patil P S. The electrochromic properties of tungsten oxide thin film deposited by solution thermolysis [J]. Solid State Ionics,2002,136: 505-511.
    [21] Guo J d, Li Y J, Stanley M, et al. Hydrothermal synthesis of electrode materials Pyrochlore tungsten trioxide film [J]. Journal of Power Sources,1995,54, 461-464.
    [22] Park K W, Choi J H, Ahn K S, et al. Pt Ru Alloy and PtRu-WO3 Nanocomposite Electrodes for Methanol Electrooxidation Fabricated by a Sputtering Deposition Method [J]. Journal of Physical Chemistry B,2004,108,5989-5994.
    [23] Park K W, Choi J H, Ahn K S, et al. Electrocatalytic Enhancement of Methanol Oxidation at Pt-WOx Nanophase Electrodes and In-Situ Observation of Hydrogen Spillover Using Electrochromism [J]. Journal of Physical Chemistry B,2003,107:4352-4355.
    [24] Shen P K, Tseung A C C. Anodic oxidation on Pt/WO3 in Acidic Media[J].Journal of Electrochemistry Society,1994,141:3082-3089.
    [25] Lee S H, Cheong H M, Tracy C E, et al. Raman spectroscopic studies of electrochromic a-WO3 [J]. Electrochimica Acta,1999,44,3111-3115.
    [26] Montilla F, Morallon E, De Battisti A, et al. Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. 3. XPS and SIMS Characterization [J]. Journal of Physical Chemistry B,2004,108:15976-15981.
    [27]金向军,李晓萍,林海波. Ru-Ti-Sn/Ti三元氧化物金属阳极的析氧性能[J].化学与粘合,2003,3 149-150.
    [28] Habazaki H, Hayashi Y, Konno H. Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment [J]. Electrochimica Acta,2002,47:4181-4188.
    [29] Alves V A, Silva L A D, Trastti S, et al. Kinetics and mechanism of oxygen evolution on IrO2-based electrodes containing Ti and Ce acidic solutions [J]. Electrochim. Acta,1994,39:1585-1562.
    [30] Jiang J H, Kucernak A. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization [J]. Electrochimica Acta, 2002,47:2381-2386.
    [31] Zhang Z J, Chen X Y, Wang B N, et al. Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties [J]. Journal of Crystal Growth,2008,310:5453-5457.
    [32] Fan Z, Chen J, Zhang B, et al. High dispersion ofγ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors [J]. Diamond & Related Materials, 2008,17:1943-1948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700