用户名: 密码: 验证码:
动力学液相色谱法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生命科学的发展,众多复杂生物样品的分析、分离与纯化为现代分离科学提出了许多热点研究课题。色谱分离技术仍然是生物工程下游技术中的核心步骤,如何尽可能获得良好分离效果是分离科学工作者追求的的一个重要目标之一。近年来出现了一类全新的色谱分离方法,其分离机理与传统的基于热力学理论的分离模式不同,溶质在动力学因素,如流动相流速、填料颗粒的型状、大小的影响下具有不同的色谱保留特性,利用动力学因素对溶质进行分离,我们将其称之为动力学色谱法。已有的工作多集中在理论研究,实际应用多限于分离一些标准小分子和DNA分子片段,因此该方法有待进一步发展和开拓其用途。本文以反相液相色谱(RPLC)为载体,研究了溶质的动力学色谱规律,发现了溶质普遍遵循的动力学方程式,提出了两个描述溶质动力学色谱行为的动力学参数,并将其用于实际样品分离。
     论文包括以下六个部分:
     1.文献综述:简单地讨论了色谱动力学的发展、基础理论和主要内容,包括塔板理论、速率理论、非平衡理论和质量平衡理论四部分。阐述了动力学色谱和色谱动力学的主要区别。重点综述了两种动力学色谱,即流体动力色谱和障碍色谱的分离原理、模型、仪器、应用和二者之间的异同点及联系。共引用文献75篇。
     2.以细胞色素-c肽谱为研究对象,初步研究了反相液相色谱中动力学因素对其分离效果的影响。重点讨论了流动相流速对分离度、峰容量和溶质洗脱顺序的影响。同时研究了溶质分子量与溶质相对保留值之间的关系、发现溶质相对保留值与流速之间存在双对数的线性关系log(RRT)=a+b log(v)以及溶质分子量与方程式中二经验常数a值和b值之间的关系,并将该双对数的线性关系方程式与SDT里的两组线性方程式进行了比较。
     3.探讨了小分子、多肽和大分子蛋白质在反相液相色谱中的动力学色谱行为。提出了溶质普遍遵循的动力学色谱方程式,即log(RRT)=a+b log(v)。详细地探讨了该动力学色谱方程式中的两参数a、b在分离中的的意义,即参数a的意义定义为在流动相流速为1.0ml/min时溶质的相对保留值的对数值,b值用来描述溶质相对保留值随流速变化的趋势大小。由于a、b均是在动力学因素流速变化的条件下描述溶质保留情况的,因此,a、b是两个与热力学无关的动力学色谱参数。研究发现溶质的相对保留值与分量之间无特定关系,也不符合SC或HDC机理。a、b之间具有一定的线性关系,但其相关系数不是很好。
     4.RPLC中溶质相对保留值和流动相流速之间存在双对数线性关系,本章以Lys中4种较难分离的组分为研究目标,根据动力学色谱方程式中的两参数a、b的意义,对该4种组分的分离进行了动力学流速条件的优化。由动力学色谱参数a,b值推测了溶质在不同流速时色谱图中的分离情况,验证了动力学参数a,b值所代表意义的合理性,并预测了分离的最佳流速。
     5.溶质在RPLC中满足动力学色谱方程式log(RRT)=a+b log(v),实验证实小分子的动力学参数b值普遍地小于大分子蛋白质的b值,因此流动相流速对小分子相对保留值的影响趋势大于大分子蛋白,小分子在色谱柱中比大分子蛋白迁移速度的快。本章据此提出了两种分离复杂样品的动力学色谱策略,即:a:在流速增大到一定程度时,小分子组分会和大分子组分在进行梯度洗脱时会快速分成两大部分,简化了分离程序。b:小分子洗脱浓度是一个范围,而蛋白质大分子洗脱浓度很窄,可以认为是一个点,洗脱复杂样品时,可以先进行一个适宜浓度的等度洗脱小分子,然后进行梯度洗脱大分子。采用上述两种动力学色谱策略对蟾蜍卵子细胞组分进行了快速分离纯化,并对高丰度多肽组分进行了去除,同时富集了低丰度蛋白组分。预计该动力学色谱策略将为蛋白质组学从复杂样品中将高丰度组分去除同时检测低丰度组分的提出了一个新的实用方法。
     6.利用动力学色谱方程式两个动力学色谱参数a、b在不同热力学条件下的相对稳定性提出了动力学色谱指纹图谱的初步构建。
With the rapid development in life science, a larger number of hot researching topics for modern separation science have been reported. Chromatographic separation technology is still the key process of down-stream biotechnology. How to obtain the best LC resolution has been an important investigated hot point. In recent years, a novel chromatographic separation method basing on hydrodynamic factors, such as mobile flow rate, the shape and size of packing being different from the traditional equilibrium thermodynamics was explored. A particular feature of this chromatography is firstly named as dynamic chromatography. Many correlative publications have been concentrated in theoretical research, the practical applications are often limited to the separation of some standard small molecules and DNA molecular fragments, so more jobs should be need to promote its further development and expand its application. In this paper, the rule of solute retention by dynamic chromatography in reverse phase liquid chromatography (RPLC) has been studied. An equation that is obeyed universally by solutes is found and two parameters used to describe the dynamic chromatography behavior are firstly proposed. In the end, the method is used for the separation of the actual samples.
     Papers include the following six parts:
     1. Literature Review: A brief discussion about the development, basic theory and the main contents of chromatographic dynamics is introduced. It includes the plate theory, rate theory, non-equilibrium theory and mass balance theory. The main difference between Chromatographic dynamics and dynamic chromatography is explained. Two dynamic chromatographies, hydrodynamic chromatography (HDC) and slalom chromatography (SC) were introduced and reviewed in this paper, mainly for the recent development of separation principle, theoretical model, applications and . 75 references are cited.
     2. By taking the peptide mapping of cytochrome-c as an example, the effect of dynamic factors in RPLC is investigated. It is mainly for the effect on the resolution, peak capacity and solute elution order. To study the relationship between the flow rate of mobile phase and retentions, we found the logarithm of the relative retention time (RRT) of peptides to be proportional to the logarithm of the flow rate of mobile phase (υ), i.e.log (RRT) = a + b log (ν) (1)
     The two linear parameters were also found to obey the equation:a = c + d b (2)
     Where, a, b are empirical constants.
     The similarities and differences of log-log linear relationship with the two linear equations in stoichiometric displacement theory (SDT) are also compared.
     3. The dynamic chromatographic behavior of small solutes, peptides and the proteins in RPLC is also studied. The Eq. (1) is also tested and found it to be universal and discussed in detail. Both a, b are the two dynamic chromatographis parameters that have not any thermodynamics meaning. A specific relationship between the molecular mass of peptides and retention values is not found and the solute elution order does not obey the mechanism of SC or HDC. Both a and b have a little linear relationship, but the correlation coefficient is not very good.
     4. In this chapter, the optimization flow rate of mobile phase for the separation of four components of Lys peptide mapping is investigated and found that it is difficult to separate using common method. However, the separation of solutes at different flow rates of mobile phase is predicted from the two dynamic chromatographic parameters, a and b. The optimization flow rate of mobile phase was also predicted and it verify the meaning about a, b in separation.
     5. The experiment confirmed that the b value of is general smaller than that of protein macromolecules. Therefore, the small molecules' RRT change is greater than that of macromolecular proteins as the flow rate of mobile phase changed. The move velocity of small molecules is greater than that of macromolecular proteins in column. According to this principle, two dynamic chromatographic strategies for the separation of complex samples are presented. The one is that the complex samples will be quickly divided into two major components, the small molecules group and the macromolecules group, when the flow rate of mobile phase is increase up to a certain value during gradient elution and the two groups will simplify the separated. The small molecules has a width elution concentration range but that of macromolecules is very narrow that can be simply regarded as "a point", so the other dynamic chromatographic strategy can be adapted: A suitable concentration for isocratic elution to elute small molecules firstly, and subsequently a gradient elution to separate macromolecules. Components of hoptoad ovum cell were rapidly separated and purified by this way. High abundance of peptide components were removed with the low-enriched proteins. It would be expected that the two dynamically chromatographic strategies will be a new practical method used for proteomics.
     6. The two dynamically chromatographic parameters a, b has more stabile character in different thermodynamic conditions. A dynamically chromatographic finger Chromatogram was conceived simply.
引文
[1] 卢佩章,戴朝政.色谱理论基础[M].北京:科学出版社,1989:13
    [2] 邹汉法,张玉奎,卢佩章.液相色谱动力学过程的研究-液相色谱系统质量平衡模型的建立和矩的推导[J].色谱,1986,6:328-334
    [3] Giddings J.C. Dynamics of Chromatography [R]. New York Marcel Dekke Inc., 196
    [4] Van Deemter J. J., Zuiderweg F. J., Klinkenberg. A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography[J]. Chemical Engineering Science, 1956,V5: 271-289
    [5] Golay M. J. E. Gas Chromatography inl958 [R], London,D. H. Desty (ed.), Butterworths, 1958,p36
    [6] Kuera E. Contribution to the theory of chromatography : Linear non-equilibrium elution chromatography[J]. Journal of Chromatography, 1965,V19:237-248
    [7] Bychkov Iu. P. On the motion of a body of revolution bounded by a sphere, on a spherical base[J]. Journal of Applied Mathematics and Mechanics,, 1966,V30,: 1104-1106
    [8] Grubner O.[J]. Advance in Chromatography, 1965,V6:173.
    [9] Funk J.E., Houghton G, A lumped-film model for gas-liquid partition chromatography: Part Ⅰ. Numerical methods of solution[J]. Journal of Chromatography, 1961,V6:193-281
    [10] 卢佩章,周良模.中国科学院化学物理研究所研究报告集刊,第三集[R],1964,16
    [11] Gruska E. G.,[J]. Journal of Physical Chemistry, 1972,V76:2580-2584.
    [12] Chen S.Y., Peng S.Y. Proceedings of Sino-West German Symposium on Chromatography [M], Beijing: Sciences Press, 1983,p313,
    [13] Horvath Cs., Lin H-J. Band spreading in liquid chromatography: General plate height equation and a method for the evaluation of the individual plate height contributions[J]. Journal of Chromatography, 1978,V149:43-70.
    [14] Hethcate H.W., DeLisi C, Non-equilibrium model of liquid column chromatography : Ⅰ. Exact expressions for elution profile moments and relation to plate height theory[J]. Journal of Chromatography, 1982,V240:269-281.
    [15] H.Poppe and J. Paanakker, Peak width in solvent-programmed chromatography : Ⅰ. General description of peak broadening in solvent-programmed elution[J]. Journal of Chromatography, 1981,204,: 77-84.
    [16]Kaczmarski K, Mazzotti M, Storti G, Modeling fixed-bed adsorption columns through orthogonal collocations on moving finite elements[J]. Computers and Chemical Engineering, 1997,V21 (6):641-660.
    [17]Kaczmarski K, Antos D., Sajonz H., et al., Comparative modeling of breakthrough curves of bovine serum albumin in anion2exchange chromatography[J]. Journal of Chromatography A, 2001,V925 (1):1-17.
    [18]Geng Xindu Geng, Wang Lili, Liquid chromatography of recombinant proteins and protein drugs[J]. Journal of Chromatography B, 2008,V866:133-153
    [19]Pedersen, Arch K O. Spontaneous in vivo isomerization of bovine serum albumin as a determinant of its normal catabolism[J]. Biochemistry and Biophysics 1962,V1:157-168.
    [20] Small H. Hydrodynamic chromatography a technique for size analysis of colloidal particles[J]. Journal of Colloid and Interface Science 1974,V48:147-161
    [21] Small H, Saunders F L.; Solc, Hydrodynamic chromatography A new approach to particle size analysis[J]. Journal of advance Colloid and Interface 1976, V6:237-266
    [22] Mori S, Porter R S, Johnsons J F. Column fractionation of polymers. XXXI. Gel permeation chromatography. Mechanism of separation by flow[J]. Analytical Chemistry,1974,V46(110):1599-1602
    [23]Nole R J, Gooding K M, Regnier F E, Ball D M, Mullins M E. Capillary hydrodynamic chromatography[J]. Journal of Chromatography, 1979,V166(3):373-382
    [24] Brough A W J, Hillman D E, Perry R W. Capillary hydrodynamic chromatography --aninvestigation into operational characteristics[J]. Journal of Chromatography,1981,V208(2):175-182
    
    [25]Bos J, Tijssen R [J] J. Chromatogr. Libr Ser, 1995,V56:95
    
    [26] Silebi C A, Dosramos J G. Separation of submicrometer particles by capillary hydrodynamic fractionation[J]. Journal of Colloid and Interface Science, 1989,V130(1):14-24
    
    [27] Dosramos J G, Silebi C A. An analysis of the separation of submicron particles by capillary hydrodynamic fractionation[J]. Journal of Colloid and Interface Science, 1989,V133(2):302-320
    [28]Tijssen R, Bos J, vanKreveld M E. Hydrodynamic chromatography of macromolecules in open microcapillary tubes[J]. Analytical Chemistry 1986,V58: 3036-3044.
    [29]Bos J, Tijssen R, vanKreveld M E. Particle counting by laser light scatter for capillary hydrodynamic chromatography[J]. Analytical Chemistry 1989, V61:1318-1321.
    [30]Zarrin F, Norman D J. Particle counting by laser light scatter for capillary hydrodynamic chromatography[J]. Analytical Chemistry, 1985, V57 (9):1826-1829
    [31]DiMarzio E A, Guttman C M. Separation by Flow[J]. Macromolecules, 1970,V3:131-146
    
    [32]Brenner H, Gaydos L J[J]. Journal of Colloid and Interface Science 1977, V58:312-356
    [33] Guttman, Charles M.; DiMarzio, Edmund A. Separation by flow. II. Application to gel permeation chromatography[J]. Macromolecules. 1970,V3(5):681-91.
    [34]DiMarzio E A, Guttman C M, Separation by flow[J]. Journal of Polymer Science B,1969,V7:267-272.
    [35]Venema E, Kraak J C, Poppe H, Tijssen R. Packed-column hydrodynamic chromatography using 1-μm non-porous silica particles[J]. J. Chromatography A,1996,V740:159-167
    [36]Peyrin E, Caron C, Garre C, Ravel A, Villet A, Grosset C, Alary J, Favier A. DNA migration regimes in hydrodynamic chromatography and slalom chromatography:evidence for atransition[J]. Talanta, 2001,V55:291-296
    [37]Buffham B A. Model-independent aspects of hydrodynamic chromatography theory[J] Journal of Colloid and Interface Science, 1978,V67:154-165.
    [38]Stoisits R F, Poehlein G W, Vanderhoff J W. Mathematical modeling of hydrodynamic chromatography[J]. Journal of Colloid and Interface Science, 1976,V57: 337-344
    [39] Stegeman G, Kraak J C, Poppe H, Tijssen R. Hydrodynamic chromatography of polymers in packed columns[J]. Journal of chromatography A, 1993,V657:283-303.
    [40] Stegeman G, Oostervink R, Kraak J C, Poppe H. Hydrodynamic chromatography of macromolecules on small spherical non-porous silica particles[J]. Journal of chromatography, 1990,V506:547-561
    [41] Stegeman G, Kraak J C, Poppe H. Dispersion in packed-column hydrodynamic chromatography[J]. Journal of chromatography, 1993,V634 (2):149-159
    [42]Cheng W. Surface exclusion and geometrical exclusion[J]. Journal of chromatography,1986, V362 (3):309-324
    [43] Stegeman G, Kraak J C, Poppe H. Hydrodynamic and size-exclusion chromatography of polymers on porous particles[J]. Journal of chromatography, 1991, 550:721-739
    [44]DosRamos J G, Silebi C A[J]. Polymer International, 1993,V30:445-450
    [45]Chmela E, Tijssen R, Blom M T, Gardeniers J G E. van den Berg. A Chip System for Size Separation of Macromolecules and Particles by Hydrodynamic Chromatography[J] Analytical Chemistry 2002, V74:3470-3475
    [46]Blom M T, Chmela E, Gardeniers, J G E.; Tijssen R, Elwenspoek M, van den Berg. A.Design and fabrication of a hydrodynamic chromatography chip[J]. Sensors and Actuators, B, 2002,V82:111-16.
    [47]Blom M T, Chmela E, Oosterbroek R E, Tijssen R, van den Berg. A. On-Chip Hydrodynamic Chromatography Separation and Detection of Nanoparticles and Biomolecules[J]. Analytical Chemistry 2003,V75:6761-6768
    [48]Kato Y, Sasaki M, HashimotoT, Murotsu T, Fukushige S, Matsubara K[J]. Journal of Biochemistry, 1984,V95:83-86
    [49]Wada H, Makino K, Takeuchi T, Hatano H, Noguchi K. High-performance gel filtration of water-soluble samples on polyvinyl alcohol columns[J]. Journal of Chromatography,1985,V320:369-377
    
    [50]Hirabayashi J, Kasai K[J], Nucleic Acids Symposium Series, 1988,20,67-68
    [51]Boyes B E, Walker DG, McGeer P L. Separation of large DNA restriction fragments on a size-exclusion column by a nonideal mechanism [J]. Analytical Biochemistry,1988,V170:127-134
    [52]Hirabayashi J, K. Kasai, in: T.T. Ngo (Ed.), Molecular Interactions in Bioseparations[M],New York, Plenum Press, 1993, p. 69, Ch. 5
    [53]Hirabayashi J, Ito N, Noguchi K, Kasai K, Slalom chromatography: size-dependent separation of DNA molecules by a hydrodynamic phenomenon[J]. Biochemistry 1990,V29:9515-9521
    [54]Guillaume Y C, Perrin F X, Guinchard C, Nicod L, Truong T T, Xicluna A, Millet J, Thomassin M, Separation in Slalom Chromatography: Stretching and Velocity Dependence[J]. Analytical Chemistry 2002,V74:1217-1222
    [55] Andre C, Guillaume Y C. Novel strategy in Slalom Chromatography for studying both the protein reptation mechanism and the compacting agent effect to improve oligonucleotide separation[J]. Chromatography, 2004,V59:487-492
    [56]Peyrin E, Guillaume Y C, Garre C, Ravel A, Villet A, Grosset C, Alary J, Favier A. Effect of temperature on DNA fractionation in slalom chromatography[J]. Talanta 2000,V52:1105-1110
    [57]Ghrist B F, Stadalius M A, WSpyder L. Predicting bandwidth in the high-performance liquid chromatographic separation of large biomolecules : I. Size-exclusion studies and the role of solute stokes diameter versus particle pore diameter[J]. Journal of Chromatography 1987,V387:1-19
    [58]Boyes B E, Walker D G, McGeer P L. Separation of large DNA restriction fragments on a size-exclusion column by a nonideal mechanism[J]. Analytical Biochemistry 1988,V170:127-134.
    [59]Kasai K. Size-dependent chromatographic separation of nucleic acids[J]. Journal of Chromatography, 1993,V618:203-221.
    [60]Hirabayashi J, Kasai K, Size-dependent, chromatographic separation of double-stranded DNA which is not based on gel permeation mode[J]. Analytical Biochemistry,1989,V178:336-341
    [61]Hirabayashi J, Kasai K, in: H. Y. Aboul-Einen(Ed.), Analytical and Preparative Separation Methods of Biomacro-molecules[R], Marcel Dekker, NewYork, 1999, p.415.
    
    [62]Hirabayashi J, Kasai K. Applied slalom chromatography improved DNA separation by the use of columns developed for reversed-phase chromatography[J]. Journal of Chromatography A 1996,V722:135-142
    [63]Rittich B, Spanovaa A, Skalnlikova M, BeneS M J. Chromatographic behaviour and purification of linear lambda phage and plasmid DNA molecules on 2-hydroxyethyl methacrylate-ethylene dimethacrylate-based supports[J]. Journal of Chromatography A 2003,V1009:207-214
    [64]Peyrin E, Guillaume Y C, Villet A, Favier A. Mechanism of DNA Hydrodynamic Separation in Chromatography[J]. Analytical Chemistry 2000,V72,853-857
    [65] Hirabayashi J, Kasai K I, Effects of DNA topology, temperature and solvent viscosity on DNA retardation in slalom chromatography[J]. Journal of Chromatography A, 2000, V893:115-122
    [66] Venema E, Kraak J C, Poppe H, Tijssen R. Packed-column hydrodynamic chromatography using 1-μm non-porous silica particles[J]. Journal of Chromatography A 1996, V740:159-167
    [67] Peyrin E, Guillaume Y C, Grosset C, Ravel A, Villet A, Garrel C, Alary J, Favier A. Mobile-phase-viscosity dependence on DNA separation in slalom chromatography [J]. J. Chromatogr. A, 2000,886:1-7
    [68] Guillaume Y C, Thomessin M, Robert J F, Guinchard C. Peculiarities of the retention mechanism of circular and linear DNA fragments using non-equilibrium chromatography [J]. Journal of Liquid Chromatography & Related Techniques. 2001,24 (8), 1061-1072
    [69] Guillaume Y C, Thomessin M, Guinchard C[J]. Journal of Chromatographic Science 2001,V39:361-364
    [70] 李建军,柯从玉,耿信笃.反相液相色谱中动力学因素对肽谱影响规律研究[J],化学学报,2009,V6:541-545
    [71] Yegin B. A., Lamprecht A Lipid nanocapsule size analysis by hydrodynamic chromatography and photon correlation spectroscopy [J]. International Journal of Pharmaceutics 2006,V320 ,165-170
    [72] Dias R. P., Fernandes C. S., Mota M., Teixeira J., Yelshin A. Starch analysis using hydrodynamic chromatography with a mixed-bed particle column[J]. Carbohydrate Polymers 2008,V74:852-857
    [73] YongmeiWang,Wenhua Jiang, Millera S., Eckstein E[J]. Journal of Chromatography A, 2008, V1198-1199:140-147
    [74] Rittich B., (?)panová A., Skalniková M., Bene(?) M. J. C hromatographic behaviour and purification of linear lambda phage and plasmid DNA molecules on 2-hydroxyethyl methacrylate-ethylene dimethacrylate-based supports[J]. Journal of Chromatography A, 2003,V1009,:207-214
    [75] Yonggang Liu, Radke W, Pasch H. Coil-Stretch Transition of High Molar Mass Polymers in Packed-Column Hydrodynamic Chromatography[J]. Macromolecules,2005,V38 (17),:7476-7484
    [1] Todd, M. B.; John, T. S. Tryptic mapping of recombinant proteins by matrix-assisted laser desorption/ionization mass spectrometry[J]. Analytical Chemistry 1993,V65: 1709-1716
    [2] 程翼宇,陈闽军,吴永江.化学指纹图谱的相似性测度及其评价方法[J].化学学报,2002,V60:2017-2021
    [3] 曹进,叶兆波,车镇涛,王义明,罗国安.色谱指纹图谱在中药产品专利申请中的应用[J].药物分析杂志,2005,V25,:742
    [4] Henzel, W. J.; Billed, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C; Watanabe, C [J]. The Proceedings of the National Academy of Sciences Online 1993,V90:5011
    [5] Opiteck, G J.; Jorgenson J. W. Two-Dimensional SEC/RPLC Coupled to Mass Spectrometry for the Analysis of Peptides[J]. Analytical Chemistry 1997,V69:2283-2291
    [6] 聂磊,胡震,罗国安,王义明,曹进,中药指纹图谱的融合技术[J].分析化学,2005,V33:898
    [7] Hirabayashi, J.; Kasai, K [J]. Nucleic Acids Symposium Series 1988,V20:67
    [8] Boyes, B. E.; Walker, D.G.; McGeer, P. L. Separation of large DNA restriction fragments on a size-exclusion column by a nonideal mechanism[J]. Analytical Biochemistry 1988,V170:127-134
    [9] Small, H. J.; Colloid, J. Hydrodynamic chromatography a technique for size analysis of colloidal particles[J]. Interface Science 1974,V48:147
    [10] Stegeman, G.; Kraak, J. C; Poppe, H. Hydrodynamic and size-exclusion chromatog raphy of polymers on porous particles[J]. Journal of Chromatography 1991,V550: 721-739
    [11] Stegeman, G.; Kraak, J. C; Poppe, H.; Tijssen, R. Hydrodynamic chromatography of polymers in packed columns[J]. Journal of Chromatography. 1993,V657:283-303
    [12] Hirabayashi, J.; Kasai, K. I. Applied slalom chromatography improved DNA separation by the use of columns developed for reversed-phase chromatography[J]. Journal of Chromatography A 1996,V722:135-142
    [1] Hirabayashi J, Kasai K I, Effects of DNA topology, temperature and solvent viscosity on DNA retardation in slalom chromatography[J]. Journal of Chromatography A, 2000, V893:115-122
    [2] Hirabayashi J, Kasai K, Applied slalom chromatography improved DNA separation by the use of columns developed for reversed-phase chromatography[J] Journal of Chromatography A 1996, V722:135-142
    [3] Barford R A, Sliwinski B J, Breyer A C, Rothbard H L[J]. Journal of Chromatography., 1982,V235: 281-288
    [4] Lin S, Karger B L[J]. Journal of Chromatography, 1990,V499:89-102
    [5] Oroszalan P, Wicar S, Tashima G, Wu S L, Hancock W S, Karger B L. LC/MS method of analyzing high molecular weight proteins [J]. Analytical Chemistry, 1993,V64(14): 1623-1631
    [6] Richards K L, Aguilar M I, Hearn M T W[J]. Journal of Chromatography, 1994, V676:17-31
    [1] 李建军,柯从玉,耿信笃.反相液相色谱中动力学因素对肽谱影响规律研究.[J],化学学报,2009,V6:541-545
    [2] Cohen A., Terabe S., Deyl Z. Foreword[J]. Journal of Chromatography A, 1996, V735:1
    [3] Hirabayashi, J.; Kasai, K. I. Applied slalom chromatography improved DNA separation by the use of columns developed for reversed-phase chromatography[J]. Journal of Chromatography A 1996, V722:135-142
    [1] Washburn M P, Wolters D, Yates J R. [Ⅰ] Nature Biotechnology, 2001,19,242-247
    [2] Small H. Hydrodynamic chromatography a technique for size analysis of colloidal particles[J]. Journal of Colloid and Interface Science 1974, V48:147-161
    [3] Boyes B E, Walker DG, McGeer P L. Separation of large DNA restriction fragments on a size-exclusion column by a nonideal mechanism. Analytical Biochemistry, 1988,V170: 127-134
    [4] 李建军,柯从玉,耿信笃.反相液相色谱中动力学因素对肽谱影响规律研究.[J],化学学报,2009,V6:541-545
    [5] Tennknikov M. B, Gazdina N. V, Tennikova T. B., et al[J].. Journal of Chromatography, 1998,V798:55
    [6] Schluter H. Protein Liquid Chromatography. New York[M]: Elsevier Science, 1999:223-224
    [7] Aguilar M. I., Hearn T. W. Methods in Enzymology, 1996,V270:3-26
    [8] Belenkii B. G, Podkladenko A. M., Kurenbin O. I., et al[J].. Journal of Chromatography K 1993,V645:1
    [9] Editiorial Broad of China Herbal, State Administration of Traditional Chinese Medcine, China. China Herbal (中华本草) [M]. Shanghai: Shanghai Scientificand Technical Publishers, 1999
    [10] 何兆雄.动物生化制药基础[M].北京:中国商业出版社,19851
    [1] 孙国祥,胡月珊,智雪枝.用复杂性科学原理揭示中药指纹图谱的本质特征[J],中南药学 2008,V6(10):600-605
    [2] Todd, M. B.; John, T. S. Tryptic mapping of recombinant proteins by matrix-assisted laser desorption/ionization mass spectrometry[J]. Analytical. Chemistry. 1993, V65:1709-1716.
    [3] Hirabayashi J, Kasai K I. Effects of DNA topology, temperature and solvent viscosity on DNA retardation in slalom chromatography[J]. Journal of Chromatography A, 2000, V893:115-122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700