用户名: 密码: 验证码:
纳米TiO_2纤维的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2作为光催化剂在水处理和气体净化等环保及光解制氢新材料领域具有广阔的应用前景,受到人们的广泛关注。但目前广泛研究的纳米TiO_2悬浮相体系存在着催化剂易凝聚、易失活、难回收及光能利用率低等弊端,从而限制了该项技术的实际应用。本文在全面综述TiO_2光催化技术、改性途径、TiO_2纤维合成方法及应用现状的基础上,制备并系统研究了纳米TiO_2纤维(TiO_2 nanofibers, TF),以适应TiO_2光催化技术在水处理和环境治理中实用化的迫切要求。
     首先采用溶胶-乳化-凝胶技术合成了TiO_2纳米粉体,通过XRD、TEM、FT-IR、Raman、XPS等手段对其进行表征,相比溶胶-凝胶法制备的TiO_2纳米粉体颗粒尺寸减小、比表面积增大、团聚程度下降,带隙能增大、紫外吸收带边发生蓝移。当溶胶pH达到8.5,表面活性剂与蒸馏水摩尔比W=1.08时,TiO_2颗粒尺寸达到最小为7nm,比表面积达到最大为273m2/g,且粒度分布较均匀。随着热处理温度的升高和热处理时间的延长,晶粒尺寸增大,TiO_2粉体晶型从无定型,经过锐钛矿最终转变成金红石。TiO_2晶粒生长服从Eastman晶粒生长动力学模型。以上述纳米TiO_2粉体为前驱体,采用简单水热法和热处理成功地制备了TF。
     探讨了反应温度、时间、碱液浓度、洗涤条件、热处理温度等对产物结构和形貌的影响。研究发现,随着反应时间的延长,TF的长度和产率逐渐增加,72h以后,前驱体完全转变为纤维,长度达到微米级;反应温度低于130℃时,TiO_2粉体转化不完全,150℃是较合适的反应温度,高于170℃时,产物的形貌发生变化,成为带状;KOH溶液浓度低于8mol/L时,只有少量纤维生成,超过12mol/L后,产物为片状或短杆状,不能成长为纤维;洗涤条件基本不影响TF的形貌,但对TF的结构和化学成分有较大影响,当酸洗不够,离子交换不完全时,TF中有较多的K2Ti6O13成分;煅烧最佳温度为400℃,产物形貌均匀,结晶完善,随着煅烧温度的升高,TF的烧结现象逐渐加重,达到550℃时,TF明显被烧塌。样品在热处理温度低于550℃时为锐钛矿相,当热处理温度超过650℃时,为锐钛矿和金红石的混合晶型,当热处理温度达到850℃时,样品中锐钛矿完全转变成金红石相。
     HRTEM、XPS、DRS等分析表明:TF为实心层状结构,由Ti、O、C元素组成,相对于TiO_2原料粉体,紫外吸收带出现红移现象。其形成机理是锐钛矿型TiO_2纳米颗粒在强碱作用下生成K2Ti6O13晶核,这些晶核遵循溶解-结晶-生长机理,沿(010)晶面方向生长,逐渐长成为纳米K2Ti6O13纤维。通过离子交换和热处理,转化成锐钛矿TiO_2纳米纤维。
     从光催化反应的基本特点出发,研究了光催化反应条件对亚甲基蓝(MB)光催化降解的影响。TF对MB(3mmol/L)光催化降解的最佳反应条件是:通气速率为56mL·s-1,催化剂浓度为2g/L,紫外灯功率为40W,pH值为6.0。建立了包含有机物初始浓度、紫外灯功率、催化剂浓度等在内的动力学模型,即
     在相同的实验条件下,TF对大肠杆菌(E.Coli)的灭活性能高于P25。TF光催化灭菌机理是:由于TiO_2在光照射下生成的活性组分(·O2-,·OH,h+)对细胞外膜的破坏,使其产生孔洞、从而导致细胞外膜对活性组分渗透性改变,使活性组分通过孔洞达到细胞质膜发生过氧化反应,以致细胞死亡。
     分别采用原位法和浸渍法制备了Ag-TF。以TEM、XRD、DRS及XPS手段对不同工艺条件下获得的产物晶型结构、微观形貌以及化学组成进行了表征,探讨了掺杂方式对TF结构和性质的影响。结果表明:两种方法制备的纤维表面形貌有明显差别,采用原位法制备的Ag-TF表面平滑,采用浸渍法制备的纤维表面有粒径2~5nm的球状颗粒存在,且浸渍法制备纤维的XRD谱出现Ag2O的特征衍射峰,而原位法制备的纤维谱线没有出现Ag2O衍射峰,说明Ag+嵌入了晶格,而非沉积在纤维表面形成颗粒。与原位法制备的Ag-TF谱线相比,浸渍法制备的纤维DRS谱线发生红移。
     当TF中掺杂适量Ce4+时,TF的光催化活性增大,最佳掺杂率为0.5wt%。在适当的热处理温度和掺杂浓度下,制备的Ce-TF对亚甲基蓝的光催化活性比P25好。利用相关分析方法,对掺杂0.5wt%Ce4+的TF样品[Ce-TF(0.5)]进行了表征,结果表明:相对于未掺杂TF,Ce-TF(0.5)中TiO_2纳米颗粒粒径减小,同时Ce4+掺杂对锐钛矿向金红石的相转变具有阻碍作用,Ce-TF(0.5)的荧光强度减弱,光量子产率增大。原因是掺杂Ce4+可作为电子—空穴对的捕获位,降低了电子和空穴的复合率。
     通过深入研究TF合成的影响因素和生长机理,为规模制备形态和尺寸可控的一维钛基纳米结构材料奠定了基础,研究结构表明:TF对微生物和有机物具有很高的光催化降解活性和很长的连续使用寿命,可在污水处理中发挥重要作用,具有非常广阔的应用前景。
As one kind of photocatalyst, TiO_2 (nanomaterials) has a vast range of prospects for waste water treatment, gas purification and hydrogen preparation, thus a great deal of attention has aroused. But the TiO_2 nanoparticles suspension, which is widely studied now, has many disadvantages: it is easily to flocculate and deactivate and it is difficult to be recovered, the efficiency of using photoenergy is low, therefore the practical application of this photocatalytic technique is restricted. On the bases of comprehensive review of the photocatalysis technology and the approaches for improving photoactivity, TiO_2 nanofibers (TF) were prepared and investigated systematically to meet obliged requirements for practical applications of TiO_2 in waste water treatments and environmental management.
     At first, TiO_2 nanopowder was prepared by sol-microemulsion-gel technique and was characterized by X-ray diffraction spectra (XRD), transmission electron microscope images (TEM), fourier transform infrared spectra (FT-IR), Raman spectra and X-ray photoelectron spectroscopy spectra (XPS). Comparing with TiO_2 nanopowder prepared by sol-gel method, TiO_2 nanopowder synthesized by sol-microemulsion-gel method shows smaller particle size, larger surface area, lower aggregation degree, higher binding energy and blue shift of ultraviolet absorption. When pH value is 8.5 and the mole ratio of surfactant to distilled water (W) is 1.08, the TiO_2 particle size reaches the least (7nm), the granularity distribution is more uniform and the surface area is the largest (273m2/g). Increasing heat-treatment temperature and prolonging the heat-treatment time, TiO_2 powders transform from amorphous, anatase and finally transform to rutile, the crystallite size increases. The process of TiO_2 crystalline growth accords with the model of crystalline growth kinetics which was suggested by Eastman.
     Taking the above TiO_2 powder as precursor, TF was prepared successfully with the simple hydrothermal method and heat treatment. The influences of reaction temperature, reaction time, alkali content, washing conditions and heat treatment temperature on the structure and morphology of the product were investigated. Prolonging the reaction time, the length of nanofibers and its yield increase gradually, after 72h all the precursors transform into fibers, the length of them reaches micron degree, when the reaction temperature is lower then 130℃, the transformation of TiO_2 powder is incomplete, the appropriate temperature is 150℃. If the temperature is higher than 170℃, the morphology of the product changes into band shapes; when the KOH concentration is lower than 8mol/L, the yield of fibers is little. When the concentration is over 12mol/L, the shape of the products becomes flakes or short poles and cannot turns to be fibers. Washing conditions do not affect the morphology of the fibers, but make great influences on the structure and chemical component of TF.
     When acid washing is not enough and the ion exchange is incomplete, there is more K2Ti6O13 component in TF. The optimum calcination temperature is 400℃, at this temperature, the morphology of the product is uniform, the crystallite is complete. With increasing the calcination temperature, the agglomeration degree of fibers increases gradually. When the temperature reaches 550℃, fibers collapse evidently. When the heat treatment temperature is less than 550℃, the sample phase is anatase. When the heat treatment temperature is over 650℃, the sample phase is the mixture of anatase and rutile. When the heat treatment temperature reaches 850℃, the anatase in the sample turns to be rutile completely.
     High-resolution transmission electron microscope images (HRTEM), X-ray photoelectron spectra (XPS) and diffuse reflection spectra (DRS) show that TiO_2 fibers have solid-layer structure and are consisted of Ti, O and C elements comparing with TiO_2 powder. Their crystalline sizes are small and the red shift appears in the ultraviolet absorption band. The synthesis mechanism of TF can be described as follows: under the effect of strong alkali, TiO_2 nanoparticles of anatase turn to be the nuclei of K2Ti6O13, which may grow along the crystalline faces to be K2Ti6O13 nanofibers gradually according the mechanism of dissolution-crystallization -growth. By ionic exchange and heat treatment, K2Ti6O13 nanofibers are changed into TiO_2 nanofibers with anatase.
     From the fundamental characteristics of photocatalytic reaction, the influences of photocatalytic reaction conditions on photocatalytic degradation of MB were investigated. The optimum conditions are 56mL/s of aerating rate, 2.0g/L of photocatalyst concentration, 40W of UV-lamp power and 6.0 pH value. The kinetics model is established which contains initial concentration of organic compound, UV-lamp power, photocatalyst concentration etc, i.e.
     With the same experimental condition, TF show better disinfection performance than P25. The disinfection mechanism can be described as follows: in the course of TF disinfection, the outer membrane of cells are destroyed and holes are made by the reactive species (·O2-、·OH and h+) produced by TiO_2 photocatalysis, which results in the change of the permeability membrane and enables the reactive species to reach the cytoplasmic membrane easily. The cytoplasmic membrane is attacked by reactive species, which leads the peroxidation of membrane lipid and the death of cells.
     Ag-TF fibers were prepared by in-situ method and immersion method. Their phase structure, microscopic morphology and chemical component were characterized by TEM, XRD, DRS, and XPS in order to analyze the effects of different-doping methods on the structures and performances of the products, The results show that the morphology of the fibers prepared by two methods is evidently different. The surface of Ag-TF fibers prepared by in-situ method is smooth, but on the surface of Ag-TF fibers prepared by immersion method, there are spheric grains with size range of 2 to 5nm which have Ag2O characteristic X-radiation peak. However, fibers prepared by an in-situ method do not show diffraction peak Ag2O, which suggest Ag+ implant into the crystal lattice of TiO_2 and do not exist on the fibers surface to form grains. Comparing with the Ag-TF fibers prepared by in-situ method, the fibers prepared by immersion method show red shift of DRS.
     Doping with certain amount of Ce4+, the photoactivity of TF increases. The optimum content is 0.5wt% Ce4+. With the adequate heat-treatment temperature and doping concentration, the photocatalytic rate of prepared Ce-TF to MB degradation is higher than that of P25. Ce-TF(0.5) was characterized by correlation analysis methods. The results show that TiO_2 nanoparticle size of Ce-TF(0.5) fibers is less than that of TF, and Ce4+ has barrier effect on the phase transition from anatase to rutile in fibers. Ce-TF(0.5) fibers show low fluorescence intensity and high photoquantum yield. It is attributed to the fact that the doping Ce4+ is the capturing places for electron/hole pairs, which decreases the recombination rate of electron/hole pairs.
     Through the research of TF, it is showed that TF has very high photocatalytic degradation activity and a very long continuously-utilizing life. It has a very important role in the treatment of waste water and a vast range of prospects.
引文
[1]张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2002,1-5
    [2]张立德,解思深.纳米材料和纳米结构.北京:化学工业出版社,2005,1-6
    [3]曹广胜.基于钨和钛的一维纳米材料的水热合成及性质研究:[浙江大学博士论文].杭州:浙江大学,2005,1-3
    [4]贾德昌,宋桂明.无机非金属材料性能.北京:科学出版社,2008,351-353
    [5] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95 (3): 735-758
    [6]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002,14-15
    [7]周武艺,唐绍裘,万隆等.纳米TiO2光催化降解有机物的机理及其影响因素的研究.中国陶瓷工业, 2003, 10(5): 26-29
    [8] Shiying Zhang, Quming Yu, Zhenhua Chen, et al. Nano-TiO2 particles with increased photocatalytic activity prepared by the miniemulsion method. Materials Letters, 2007,61(26):4839-4842
    [9] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238:37-38
    [10] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc., 1977, 99(1): 303-304
    [11] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem., 1977, 81(15): 1484-1488
    [12] Ollis D F.Solar-assisted photocatalysis for water purification:issues, data, questions, in photochemical conversion and storage of solar energy.Kluwer Academic Publishers, 1991, 91: 593-622
    [13] Ferry J, Glaze W H. Photocatalytic reduction of nitro organics over illuminated titanium dioxide: role of the TiO2 surface. Langmuir, 1998, 14:3551-3555
    [14] Ohno T, Tanigawa F, Fujihara K. Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using Iron (III) ions as electron acceptor. J. Photochem. Photbiol A: Chem., 1998, 118: 41-44
    [15] Ohno T, Tanigawa F, Fujihara K. Photocatalytic oxidation of water by visiblelight using ruthenium-doped titanium dioxide powder. J. Photochem. Photobiol A: Chem., 1999, 127: 107-110
    [16] Peral J, Domenech X, Ollis D F. Hetrogeneous photocatalysis for purification, decontamination and deodorization of air. J. Chem. Tech. Biotech., 1997, 70: 117-140
    [17] Zhao J, Yang X D. Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment, 2003, 38: 645-654
    [18] Ichiura H, Kitaoka T, Tanaka H. Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound. Chemosphere, 2003, 51: 855-860
    [19] Yukiko Hara-Kudo, Yuko Segawa, Kunio Kimura. Sanitation of seawater effluent from seaweed processing plants using a photo-catalytic TiO2 oxidation.Chemosphere, 2006, 62(1): 149-154
    [20] Li Luo, Lei Miao, Sakae Tanemura. Photocatalytic sterilization of TiO2 films coated on Al fiber.Materials Science and Engineering B, 2008, 148: 183-186
    [21] Min Song, Chao Pan, Chen Chen, et al. The application of new nanocomposites: Enhancement effect of polylactide nanofibers/nano-TiO2 blends on biorecognition of anticancer drug daunorubicin.Applied Surface Science, 2008, 6(131):1-3
    [22] Paul Thevenot, Jai Cho, Dattatray Wavhal, et al. Surface chemistry influences cancer killing effect of TiO2 nanoparticles.Nanomedicine: Nanotechnology, Biology and Medicine, 2008,4(3):226-236
    [23] Min Song, Chao Pan, Jingyuan Li, et al. Blends of TiO2 nanoparticles and poly (N-isopropylacrylamide)-co-polystyrene nanofibers as a means to promote the biorecognition of an anticancer drug.Talanta, 2008, 75:1035-1040
    [24] Min Song, Renyun Zhang, Xuemei Wang. Nano-titanium dioxide enhanced biosensing of the interaction of dacarbazine with DNA and DNA bases. Materials Letters, 2006, 60: 2143-2147
    [25] Christos Fotiadis, Nikolaos P Xekoukoulotakis, Dionissios Mantzavinos. Photocatalytic treatment of wastewater from cottonseed processing: Effect of operating conditions, aerobic biodegradability and ecotoxicity. Catalysis Today, 2007, 124: 247-253
    [26] Paolaa A D, Gar??a-Lópeza E, Ikeda S. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal. Today, 2002, 75: 87-93
    [27] Yamashita H, Harada M, Misaka J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2.Catal. Today, 2003, 84:191-196
    [28] Chen J S, Liu M C, Zhang L, et al. Application of nano TiO2 towards polluted water treatment combined with electro-photochemical method. Water Res., 2003, 37: 3815-3820
    [29]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002, 43-44
    [30] Viswanathamurthi P, Bhattarai N, Kim C K, et al. D.R. Ruthenium doped TiO2 fibers by electrospinning. Inorganic Chemistry Communications, 2004, 7 (5): 679-682
    [31]张留学.具有光催化活性的纳米TiO2复合抗菌纤维的低温制备及性能研究:[兰州大学博士论文].兰州:兰州大学,2006, 3-6
    [32] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev., 2000,1: 1-21
    [33] Hoffmann M R, Martin S T, Choi W Y. Environmental application of semiconductor photocatalyst. Chem. Rev., 1995, 95(1): 69-96
    [34] Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. Phys. Chem. 1987, 91: 4305-4310
    [35]管晶,梁文懂.可见光响应型二氧化钛光催化剂研究进展.武汉科技大学学报, 2006,29(2): 164-168
    [36] Choi W, Termin A, Hoffmann M R. The role of metal-ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem., 1994, 98(51): 13669-13679
    [37] Paola A D, Marei G, Palmisano L, et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J. Phys. Chem. B, 2002, 106(3): 637-645
    [38]郭光美,丁士文,李景印.可见光响应光催化材料研究进展.河北化工, 2004, (5): 6-9
    [39]卢萍,姚明明,张颖等.过渡金属离子掺杂对TiO2光催化活性的影响.感光科学与光化学, 2002, 20(3): 185-190
    [40]姚明明,杨平,卢萍.光自洁TiO2膜的制备及表面处理.石化技术与应用, 1999, 18(1): 13-15
    [41] Borgarello E, Kiwi J, Gr?tzel M, et al. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc., 1982, 104(11): 2996-3002
    [42] Wilker K, Breuer H D. The influence on transition metal doping on the physical and photocatalytic properties of titania. J. Photochem. Photobiol. A: Chemistry, 1999, 121: 49-53
    [43]余锡宾,王桂华,罗衍庆.Fe/Ti/S复合微粒的表面结构与催化活性,化学学报,2000,5:88-97
    [44]籍宏伟,马万红,黄应平等.可见光诱导TiO2光催化的研究进展.科学通报, 2003, 48(21): 2199-2204
    [45] Khan S U M. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science, 2002, 297(27): 2243-2245
    [46] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen- doped titanium oxides. Science, 2001, 293:269-271
    [47]侯亚奇,庄大明,张弓等.二氧化钛薄膜光催化性能的影响因素及提高途径.化工环保, 2004, 24(3): 180-184
    [48]程萍,顾明元,金燕苹. TiO2光催化剂可见光化研究进展.化学进展,2005,17(1):9-14
    [49] Umebayashi T, Yamaki T, Tamaka S, et al. Visible light-induced degradation of methylene blue on s-doped TiO2. Chem. Lett., 2003, 32(4): 330-331
    [50] Umebayashi T, Yamaki T, Itoh H. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phy. Lett., 2002, 81(3): 454-546
    [51] Zhang Q W, Wang J, Yin S, et al. Synthesis of a visible-light active TiO2-xSx photocatalyst by means of mechanochemical doping. J. Am. Ceram.Soc., 2004, 87(6): 1161-1163
    [52] Jimmy C, Yu J G, Ho W K, et al. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 Powders. Chem. Mater., 2002, 14: 3803-3816
    [53] Yu J G, Yu J C, Zhang L Z, et al. Enhancing effects of water content and ultrasonic irraditation on the photocatalytic activity of nano-sized TiO2 powders. J. Photochem. Photobiol. A: Chem., 2002, 148(1-3): 263-271
    [54] Yu J G, Yu J C, Cheng B, et al. Effects of F- doping and temperature on the structural and textural evolution of mesoporous TiO2 powders. J. Solid State Chem., 2003, 174: 372-380
    [55] Yu J G, Yu J C, Leung M K, et al. Effect of acidic and basic hydrolysis catalystson the photocatalyti activity and microstructures of bimodal mesoporous titania. J. Cata., 2003, 217: 69-78
    [56] Jimmy C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 Powders. Chem. Mater., 2002, 14: 3803-3816
    [57]李芳柏,古国榜,黎永津. WO3/TiO2复合半导体的光催化性能研究.环境科学, 1999, 20(4):75-78
    [58] Jiho Yoo, Dongjo Oh, Eric D. Wachsman. Investigation of WO3-based potentiometric sensor performance (M/YSZ/WO3, M = Au, Pd, and TiO2) with varying counter electrode. Solid State Ionics, 2008, 179: 2090-2100
    [59] Lin J, Yu J C, Lo D, et al. Photocatalytic activity of rutile Ti1-xSnxO2 solid solutions. J. Catal., 1999,183: 368-372
    [60] Tada H, Hattori A, Tokihisa Y, et al. A patterned-TiO2/SnO2 bilayer type photocatalyst. J. Phys. Chem. B, 2000, 104: 4585-4587
    [61] Vogel R, Hoyer P, Weller H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem.,1994, 98(12): 3183-3188
    [62]张青红,高濂,孙静.氧化硅对二氧化钛纳米晶相变和晶粒生长的抑制作用.无机材料学报, 2002, 17(3): 415-421
    [63] Zorn M E, Tom pkins D T, Zeltner W A ,et al. Photocatalytic oxidation of a cetonevaporon TiO2-ZrO2 thin films. Applied Catalysis B: Environment, 1999, 23: 1-8
    [64] Heinz D, Hoelderich W F, Kriu S, et al. V2O5-TiO2 catalysts for the vapor-Phase oxidation ofβ-Picoline influence of the TiO2-carrier. J. Catal., 2000,192(1): 10-11
    [65] Marci G, Augugliaro V, Lopez-Munoz M J, et al. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems, surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime. J. Phys. Chem. B, 2001, 105(5): 1033-1040
    [66] Do Y R, Lee W, Dwight K, et al. The effect of WO3 on the photocatalytic activity of TiO2. J. Solid State Chem., 1994, 108 (1): 198-201
    [67] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradation. J. Photochem.Photobiol. A: Chemistry, 2001, 141: 209-217
    [68]张琦,李新军,李芳柏等. WOX-TiO2光催化剂的可见光活性机理探讨.物理化学学报, 2004, 20(5): 507-511
    [69]彭峰,任艳群.提高二氧化钛光催化性能的研究进展.现代化工, 2002, 22(10): 6-9
    [70]付贤智,丁正新,苏文悦等.二氧化钛基固体超强酸的结构及其光催化氧化性能.催化学报, 1999, 20(3): 321-324
    [71] Solbrand A, Henningsson A, So1dergren S. Charge transport properties in dye-sensitized nanostructured TiO2 thin film electrodes studied by photoinduced current transients. J. Phys. Chem. B, 1999, 103(7): 1078-1083
    [72] Park N G, Lagemaat J, Frank A J. Comparison of dye-sensitized rutile and anatase-based TiO2 solar cells. J. Phys. Chem. B, 2000, 104(38): 8989-8994
    [73] Yükse ?KTE A N. TiO2 sensitized photomineralization kinetics of phthalic anhydride. Chemosphere, 1998, 36(14): 2969-2975
    [74] Jan M.Macak,Hiroaki Tsuchiya Andrej Ghicov,et al.Dye-sensitized anodic TiO2 nanotubes.Electrochemistry Communications,2005,7: 1133-1137
    [75]张莉,王艳芹,杨迈之等. Ru(bpy)2(NCS)2染料敏化CdS/Zn2+-TiO2复合半导体纳米多孔膜的光电化学.高等学校化学学报, 2000, 21(7): 1075-1079
    [76] Tai W P. Photoelectrochemical properties of SnO2/TiO2 coupled electrode sensitized by a mercurochromedye. Mater.Lett., 2001, 51: 451-454
    [77] Cho Y M, Choi W Y. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ. Sci. Technol., 2001, 35(5): 966-970
    [78] Jayaweera P M, Palayangoda S S, Tennakone K. Nanoporous TiO2 solar cells sensitized with iron (II) complexes of bromopyrogallol red ligand. J. Photochem. Photobiol. A: Chem., 2001, 14: 173-177
    [79] Al-Sayyed G,Doliveria J C,Pichat P.Semiconductor-sensitized photodegradation of 4-chlorophenol in water. Journal of Photochemistry and Photobiology A:Chemistry, 1991, 58: 99-114
    [80] Bae E Y, Choi W Y. Highly enhangced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol., 2003, 37(1): 147-152
    [81]杨术明,李富友,黄春辉.染料敏化稀土离子修饰二氧化钛纳米晶电极的光电化学性质.中国科学B, 2003, 33(1): 59-65
    [82] Ranjit K T, Cohen H, Willner I, et al. Lanthanide oxide-doped titanium dioxide: effective photocatalysts for the degradation of organic pollutants. J. Mater.Sci., 1999, 34: 5273-5280
    [83] Clovis A L, Carter G J, Locuson D B, et al. Photocatalytic inhibition of algaegrowth using TiO2, WO3, and cocatalyst modifications. Environ. Sci. Technol., 2000, 34(22): 4754-4758
    [84] Li X Z, Li F B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol., 2001, 35(11): 2381-2387
    [85] Yamakata A, Ishibashi T, Onishi H. Electron- and hole-capture reactions on Pt/TiO2 photocatalysts exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy. J. Phys. Chem. B, 2002, 106(35): 9122-9125
    [86] Kisch H, Zang L, Lange C, et al. Modified amorphous titania-A hibrid semiconductor for detoxification and current generation by visible light. Angew. Chem., Int. Ed., 1998, 37: 3034-3036
    [87] Xi B D, Liu H L. Photocatalytic degradation of PCP-Na with TiO2 photocatalysis loaded with platinum. J. Environ. Sci., 2002, 14(3): 428-432
    [88]周武艺,唐绍裘,张世英.纤维TiO2的制备及光催化应用研究进展.中国陶瓷工业,2004,11(6):56-59
    [89]包南,张锋,马志会等. TiO2纤维制备与应用研究进展.化工进展,2007,26(3):345-350
    [90]游咏,匡加才.溶胶-凝胶法在材料制备中的研究进展.高科技纤维与应用, 2000, 27(2): 12-15
    [91]王德刚,刘润涛,顾利霞.溶胶–凝胶法在陶瓷/玻璃纤维制备中的应用.山东陶瓷, 2001, 24 (4): 13-16
    [92] Kamiya K, Yoko T,Bessho M. Nitridation of TiO2 fibers prepared by the sol–gel method. J.Mater. Sci., 1987, 22: 937-941
    [93] Kamiya K, Tanimoto, Yoko T. Preparation of TiO2 fibers by hydrolysis and polycondensation of Ti(O-i-C3H7)4. J. Mater. Sci. Lett.,1986, 5: 402-404
    [94]陈奇,崔景巍,宋鹏等. TiO2纤维的制备及其凝胶结构转变的研究.无机材料学报, 1991, 6 (2): 249-257
    [95]陈奇,宋鹏,崔景巍等. Ti(OC4H9)4水解制备TiO2纤维的凝胶化和热处理研究.上海建材学院学报, 1995, 8 (1): 1-8
    [96] Koike H, Oki Y, Takeuchi Y. Titania fiber and its production: JP, 10– 325021. 1998-08-12
    [97] Oki Y, Koike H, Takeuchi Y. Method for producing a catalyst component- carrying titania fiber: US, 6162759. 2000-12-19
    [98] Koike H, Oki Y, Takeuchi Y. Titania fiber, method for producing the fiber and method for using the fiber: US, 6086844. 2000-07-11
    [99]刘和义,许东,包南等.二氧化钛纤维的制备方法:中国, ZL200410024265.1. 2006-01-04
    [100]包南,张锋,马志会等.介孔TiO2纤维的制备及其光催化性能.化工环保, 2007, 27(3): 204-208
    [101]包南,张锋,张成禄等.二氧化钛纤维光催化功能材料的制备方法:中国, 200510104390.8. 2006-05-17
    [102]窦雁巍,徐明霞,徐廷献.溶胶-凝胶法制备TiO2薄膜中溶胶结构的研究.硅酸盐学报, 2002, 30: 87-89
    [103]刘泽,李永祥,吴冲若等.水热法制备二氧化钛晶须.硅酸盐学报, 1998, 26 (3): 392-394
    [104] Wang Z L. Nanowires and Nanobelts-Materials,Properties and Devices, VolⅡ: Nanowires and Nanobelts of Functional Materials(VersionⅠ). Beijing: Press of Tsinghua University, 2004, 157-171
    [105] Yin Shu, Fujishiro Yoshinobu, Wu jihuai, et al. Synthesis and photocatalytic properties of fibrous titania by the solvothermal reactions. J. Mater. Process Tech., 2003, 137: 45-48
    [106]杨祝红,暴宁钟,郑仲等.用溶剂热处理法制备TiO2纤维及其光催化降解甲基橙的活性.催化学报,2002,23(6):539-542
    [107] Hori N, Matsunami Y, Kagohashi W. Potassium titanate filament and production of titania fiber using the same filament, JP, 02– 164722. 1990-06-25
    [108] Fujiki Y, Oota Y. Production of titania hydrate fiber, titania glass fiber and titania fiber: JP, 55– 003371. 1980 -01-11
    [109] Fujiki Y, Oota Y. Manufacture of titania fiber: JP, 55-136126. 1980-10-23
    [110] Noda K, Morita Y, Aramaki Y. Production of titania fibers: JP, 01- 246139. 1989-10-02
    [111]刘玉明. KDC法合成钛酸钾纤维的研究.无机材料学报, 1994, 9 (1): 83-88
    [112]王福平,宋英,姜兆华等. KDC法合成四钛酸钾纤维的反应机制研究.硅酸盐学报, 1999, 27(4): 471-475
    [113]王福平,宋英,姜兆华等.水合二氧化钛纤维的制备及其相变过程研究.材料科学与工艺, 1999, 7 (1): 64-71
    [114]杨祝红,暴宁钟,刘畅等. TiO2纤维的制备及其光催化活性研究.高等学校化学学报, 2002, 23 (7): 1371-1374
    [115] Liu S Q, Huang K L. Straight forward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Solar Energy Materials andSolar Cells, 2005, 85: 125-131
    [116] Georey I N, Waterhouse Mark R. Waterland. Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron, 2007, 26: 356-368
    [117] Sun L, Searson P C, Chien C L. Electrochemical deposition of nickel nanowire arrays in single-crystal mica films, J. Appl. Phys. Lett., 1999, 74: 2803-2805
    [118] Zhu Y Q, Hsu W K, Kroto H W, et al. An alternative route to NbS2 nanotubes. J. Phys. Chem. B, 2002, 106: 7623-7626
    [119] Philippe R, Laurence R, Marc C. Synthesis of structured titanium dioxide from carbonaceous templates Preparation of supported nanoscaled titania particles. Materials Chemistry and Physics, 2007, 106: 102-108
    [120] Li Z, Wu M H, Liu T B. Preparation of TiO2 nanowire gas nanosensor by AFM anode oxidation. Ultramicroscopy, 2008, 108: 1334-1337
    [121] Lei Y, Zhang L D, Fan J C. Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chemical Physics Letters, 2001, 338: 231-236
    [122] Wang J S, Sun J Q, Bian X F. Preparation of oriented TiO2 nanobelts by microemulsion technique. Materials Science and Engineering, 2004, 379:7-10
    [123] Formhals A. Process and apparatus for preparing artificial thread: US, 1934-10-02
    [124]王永芝.有机/无机纳米纤维的制备及其性能研究. [吉林大学博士学位论文].吉林:吉林大学,2007,119-137
    [125] Viswanathamurthi P, Bhattarai N, Kim C K, et al. Ruthenium doped TiO2 fibers by electrospinning. Inorganic Chemistry Communications, 2004, 7 (5): 679-682
    [126] Watthanaarun J, Supaphol P, Pavarajarn V. Photocatalytic activity of neat and silicon-doped titanium(IV) oxide nanofibers prepared by combined sol-gel and electrospinning techniques. Journal of nanoscience and nanotechnology, 2007, 7 (7): 2443-2450
    [127]徐淑芝,张双虎,董相廷等.静电纺丝技术制备TiO2空心纤维与表征.硅酸盐学报,2007, 35(10): 1302-1304
    [128]张天骄,邹黎光,张丽娜.溶融法纺制聚醚砜纤维的探索研究.合成技术及应用, 2005, 20 (4): 5-9
    [129] Wang Z L, Gao R P, Poncharal P,et al. Mechanical and electrostatic properties of carbon nanotubes and nanowires. Materials Science and Engineering: C,2001, 16(1-2): 3-10
    [130]张辉.准一维纳米材料的化学法制备、表征及应用研究:[浙江大学博士论文].杭州:浙江大学,2004,6-15
    [131] Zhu Y C, Li H H, Gedanken H A, et al. Sonochemical synthesis of titania whiskers and nanotubes. Chem. Commun., 2001: 2616-2617
    [132] Liu Z G, Yang Z H, Zheng Z, et al. Study on oxidant strengthening photocatalytic degradation of DMF over TiO2 fiber catalyst. Environmental Science, 2006, 27 (1): 47-50
    [133] Skubal L R, Meshkov N K, Vogt M C. Detection and identification of gaseous organics using a TiO2 sensor. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148: 103-108
    [134] Song M Y, Ahn Y R, Jo S M, et al. New application of electrospun TiO2 nanofibers as an electrode for dye-sensitized solar cell. Materials Research Society Symposium Proceedings, 2005, 836: 107-112
    [135]王福平,孙得志,王俊辉等.用纤维TiO2作光催化剂降解饮用水中腐殖质.高技术通讯, 1998, 12: 21-24
    [136] Zhang Liuxue, Liu Peng, Su Shixing. A new route for preparation of TiO2/C hybrids and their photocatalytic properties. Journal of Molecular Catalysis A: Chemical, 2006, 248 (1-2): 189-197
    [137] Zhang Liuxue, Liu Peng, Su Shixing. Photocatalysis anatase thin film coated PAN fibers prepared at low temperature. Materials Chemical and Physics, 2006, 98(1): 111-115
    [138] Zhou Y, Zhang S Y, Zhu Z P, et al. Preparation and photocatalytic activity of Gd-doped TiO2 nanofiber. Journal of Central South University of Technology , 2005, 12(6): 657-661
    [139]杨祝红,暴宁钟,刘畅等. TiO2纤维的制备及其光催化活性研究.高等学校化学学报, 2002, 23 (7): 1371-1374
    [140] Yamaoka H, Harada Y, Fujii T, et al. Development of strong photocatalytic fiber and environmental purification. Ceramic Engineering and Science Proceedings, 2004, 25 (3): 505-510
    [141] Gibson P W, Schreuder-Gibson H L, Rivin D. Electrospun fiber mats: Transport properties. Aiche Journal, 1999,45(1):190-195
    [142] Schreuder-Gibson Heidi L, Gibson Phillip,Senecal Kris,et al. Protective textile materials based on electrospun nanofibers. Journal of Advanced Materials, 2002, 34(3):44-55
    [143] Bergshoef M M, Vancso G J. Transparent nanocomposites with ultrathin electrospun Nylon-4,6 fiber reinforcement. Adv. Mater., 1999, 11(16) : 1362- 1365
    [144]徐维正.宇部首创TiO2光催化剂纤维.精细与专用化学品,2003,11(7):19
    [145] Hou Meifang, Li Fangbai, Li Ruifeng. Mechanisms of enhancement of photocatalytic properties and activity of Nd-doped TiO2 for methyl orange degradation. J. Rare. Earths, 2004, 22(4): 542-546
    [146] Liu S, Li K. Preparation TiO2/Al2O3 composite hollow fibre membranes. Journal of Membrane Science, 2003, 218 (1-2): 269-277
    [147] He C H, Gong J. The preparation of PVA-Pt/TiO2 composite nanofiber aggregate and the photocatalytic degradation of solid-phase polyvinyl alcohol. Polymer Degradation and Stability, 2003, 81(1): 117-124
    [148]史月萍,杨祝红,冯新等.掺铂二氧化钛纤维光催化降解氯仿的研究.催化学报, 2003, 24(9): 663-665
    [149] Xu J C, Lu M, Guo X Y,et al.Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. Journal of Molecular Catalysis A:Chemical, 2005, 226: 123-127
    [150] Hozumi A, Itoh T, Yokogawa Y, et al. Preparation of unidirectionally aligned hollow TiO2 fibers using electrostatically assembled short organic fibers. Journal of Materials Science Letters, 2002, 21(11): 897-900
    [151]弓晓峰,简敏菲,刘春英等.玻璃纤维布负载TiO2膜光催化氧化垃圾渗滤液.重庆环境科学,2003,25(11):56-60
    [152]胡艳,徐晶晶,袁春伟等.负载纳米二氧化钛的弥散光纤在光催化废水处理中的应用.科学通报,2005,50(19):2169-2173
    [153] Youji Li, Xiaodong Li, Yin Jin. Photocatalytic degradation of methyl orange in a sparged tube reactor with TiO2-coated activated carben composites. Catalysts communications, 2005, 6(10): 650-655
    [154] loddo V, Marci G, Palmisano L. Preparation and characterization of Al2O3 supported TiO2 catalysts employed for 4-nitrophenol photodegradation in aqueous medium. Mat. Chem. Phys., 1998, 53(3): 217-224
    [155] Bao N, Shen L, Feng X, et al. Shape and size characterization of potassium titanate fibers by image analysis. Journal of Materials Science, 2004, 39 (2): 469-476
    [156] Balachandran U,Erorn G.Raman spectra of titanium dioxide.J.Solid State Chem.,1982,42: 276-282
    [157] Chatterjee M, Naskar M K, Gangali D J. The preparation of nano-TiO2 particles prepared with high surface area. Sol-gel Sci. and Tech., 2003, 28: 217-225
    [158] Yu Jiaguo,Zhao Xiujian. Hydrophilicity and Photocatalytic Activity of Self―Cleaning Porous TiO2 Thin Film on Glass. Chem. J. Chinese Unversities, 2000, 21(9): 1437-1440
    [159] Ponthieu E,Payen E,Grimblot J.Ultrafine alumina powders via a sol-emulsion-gel method.Journal of Non-crystalline Solids,1992,148:598-605
    [160] Bessekhouad Y,Robert D,Weber J V.Synthesis of photocatalytic TiO2 nanoparticles:optimization of the preparation conditions. J.Photochem. Photobiol.A:Chem., 2003, 157: 47-53
    [161] Lenka Svecova, Sebastien Cremel, Catherine Sirguey, et al. Comparison between batch and column experiments to determine the surface charge properties of rutile TiO2 powder. Journal of Colloid and Interface Science, 2008, 325: 363-370
    [162] Mayo M J, Hague D C. Porosity-grain growth relationships in the sintering of nanocrystalline ceramics. Nanostructured Materials, 1993, 3(1-6): 43-52
    [163] Dohcevic-Mitrovic Z D, Scepanovic M J, et al. Laser induced synthesis of ultrafine anatase TiO2 powders. Materials Science Forum, 2004, 453: 237-242
    [164]颜晓莉,史惠祥,雷乐成.负载型二氧化钛光电催化降解苯酚废水的反应动力学.化工学报, 2004, 55: 426-433
    [165]施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用.功能材料,1998,29(2):136-139
    [166] Iijima Sumio, Ajayan P M, Ichihashi T. Growth model for carbon nanotubes. Physical Review Letters, 1992, 69(23): 3100-3103
    [167] Francioso L, Taurino A M, Forleo A, et al. TiO2 nanowires array fabrication and gas sensing properties. Sensors and Actuators B, 2008, 130: 70-76
    [168] Tomoko Kasuga. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films, 2006, 496(1): 141-145
    [169] Baomei Wen, Chunyan Liu, Yun Liu, et al. Synthesis of Titanate Nanofibers and Nanotubes. Journal of Nanoscience and Nanotechnology, 2004, 4: 1062-1066
    [170] De Boer J H. The structure and properties of porous materials. Butterworths, London, 1958, 68-69
    [171] Bian Chao-qing, Yu Yi-jun, Xue Gi. Synthesis of conducting Polyaniline /TiO2 composite nanofibres by one-step in situ polymerization method. Journal of Applied Polymer Science, 2007, 104: 21-26
    [172] Wei Ming-deng, Konishi Yoshinari, Zhou Hao-shen, et, al. A simple method to synthesize nanowires titanium dioxide from layered titanate particles. Chemical Physics Letters, 2004, 400: 231-234
    [173] Dmitry V Bavykin, Jens M Friedrich, Frank C. Walsh. Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Adv. Mater., 2006, 18(21): 2807-2824
    [174] Baomei Wen, Chunyan Liu, Yun Liu. Controllable Synthesis of One- dimensional Single-crystalline TiO2 Nanostructures. Chemistry Letters, 2005, 34: 396-397
    [175] Wang B X, Shi Y, Xue D F. Large aspect ratio titanate nanowire prepared by monodispersed titania submicron sphere via simple wet-chemical reactions.Journal of Solid State Chemistry, 2007, 180: 1028-1037
    [176] Yuan Z Y, Su B L. Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surface A: Physicochem. Eng. Aspects, 2004, 241: 173-183
    [177] Childs L P, Ollis D F. Photoassited heterogeneous catalysis: rate equations for oxidation of 2-methyl-2buthyl-alcohol and isobutene. Journal of Catalysis, 1981,67: 35-48
    [178] Ku Y, Jung I L. Decomposition of monocrotophos in aqueous solution by uv irradiation in the presence of titanium dioxide. Chemosphere, 1998, 37(13): 2589-2597
    [179] Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of Catalysis, 1990, 122: 178-192
    [180] Augugliaro V, Palmisano L, Schiavello M, et al. Photocatalytic degradation of nitrophenols in aqueoustitanium dioxide dispersion. Appl. Catal., 1991, 69: 323-340
    [181] Dingwang C, Ajayk R. Photodegradation kinetics of 4-nitrophenolin TiO2 suspension. Wat. Res., 1998, 32(11): 3223-3234
    [182]马颖,姚建年.亚甲基蓝在TiO2薄膜和P-25涂层催化下光反应的比较.感光科学与光化学,1998, 16(2): 117-120
    [183]马万红,蔡汝秀,刘志红等.偶氮类化合物在纳米TiO2表面光降解的UV-Vis光谱示踪研究(I).高等学校化学学报,1999, 20(10): 1542-1547
    [184] Almquist C B, Biswas P. A mechanistic approach to modeling the effect of dissolved oxygen in photooxidation reactions on titanium dioxide in aqueous systems. Chemical Engineering Science, 2001, 56: 3421-3430
    [185]王岩,张纪伟,金振声等.新型N-TiO2亚甲基蓝的可见光催化脱色研究.科学通报,2007,52(16):1973-1983
    [186] Li Youji, Li Xiaodong. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research, 2006, 40(6): 1119-1126
    [187]武正簧.二氧化钛薄膜光催化降解甲基橙.过程工程学报,2002, 2: 183-185
    [188] Hoffmann M R, Martin S, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev., 1995, 95: 69-96
    [189] Huang Z, Maness P C, Blake D M, et al. Bacterial mode of titanium dioxide photocatalysis. J. Photochem. Photobiol. A: Chem., 2000, 130: 163-170
    [190] Jacoby W A, Maness P M, Wolfrum E J, et al. Mineralization of bacterial cell mass on a photocatalytic surface in air. Environ. Sci. Technol., 1998, 32: 2650-2653
    [191] Lee S, Nishida K, Otaki M. Photocatalytic inactivation of phage Qβby immobilized titanium dioxide mediated photocatalyst. Wat. Sci. Technol., 1997, 35: 101-106
    [192] Klaus P. Kǜhn,Iris F.Chabemy,Karl Massholder,et al.Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light.Chemosphere, 2003, 53: 71-77
    [193] Ginkel G V, Sevanian A. Lipid peroxidation induced membrane structural alterations. Metho. Enzymol., 1994, 233: 273-288
    [194] Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO2 thin film. J. Photochem. Photobiol. A: Chem., 2003, 156: 227-233
    [195]李卫华,郝彦忠,王艳芹. CeO2-TiO2复合纳米晶多孔膜的光电化学行为.应用化学, 1998, 15(4): 17-20
    [196] Yamashita H, Harada M, Misaka J, et al. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J. Photochem. Photobiol. A: Chem., 2002, 148(2): 257-261
    [197]雅菁,贾堤,刘云兆. Y3+掺杂对TiO2粒子自然光催化降解酸性蓝染料效果的影响.硅酸盐学报,2001,29(1):90-92
    [198]井立强,孙晓君,辛柏福等.掺杂镧和铈的TiO2纳米粒子的结构相变.材料科学与工艺,2004,12(2): 148-152
    [199] Sakthivel S, Shankar M V, Palanichamy M, et al. Photocatalytic decomposition of leather dye Comparative study of TiO2 supported on alumina and glass beads. J. Photochem. Photobiol. A: Chem., 2002, 148: 153-159
    [200] Peng Xu, Lan Mi, Pei-Nan Wang. Improved optical response for N-doped anatase TiO2 films prepared by pulsed laser deposition in N2/NH3/O2 mixture. Journal of Crystal Growth, 2006, 289: 433-439
    [201] Wang Y F, Wu M Y, Zhang W F. Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries. Electrochimica Acta, 2008, 5: 1-6
    [202] Xie Y B,Yuan C W.Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation.Applied Surface Science,2004,221(1-4):17-24
    [203] Tong T Z, Zhang J L, Tian B Z, et al. Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. Journal of Colloid and Interface Science, 2007, 315: 382-388
    [204] Yue-hua Xu, Zhuo-xian Zeng. The preparation, characterization, and photocatalytic activities of Ce-TiO2/SiO2. Journal of Molecular Catalysis A: Chemical, 2008, 279: 77-81
    [205] Hou Tinghong, Mao Jian, Zhu Xiaodong, et al. STM and STS investigations of Ce-doped TiO2 nanoparticles. Rare Metals, 2006, 25(4): 331-336
    [206] Shi Jian, Li Jun, Cai Yun Fa. Fabrication of C, N-Codoped TiO2 Nanotube Photocatalysts with Visible Light Response. Acta Phys. Chim. Sin., 2008, 24: 1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700