用户名: 密码: 验证码:
新型化学修饰电极体系的研究及其在痕量铅检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会环境中的重金属污染物,尤其是铅的污染问题日益引起人们的关注,环境及人体中铅的检测方法研究广泛开展。铅是环境中广泛存在并具有很强毒性的重金属离子,随着现代工业和交通的高速发展,环境铅污染日趋严重,已经成为影响人类,尤其是儿童健康的一个重要社会问题。研究证实:血铅水平超过100μg/L将影响儿童的生长发育,特别是损害儿童的神经发育,影响儿童的智力和行为。目前常用的血铅测定方法包括双硫腙络合比色法、原子吸收光谱法、原子发射光谱法等。所有这些方法都存在分析成本昂贵、操作步骤繁琐、分析时间长等缺点。与此相比电化学方法,以其低成本和高灵敏度的优点,成为包括铅在内的重金属离子检测的优势方法。
     经由各种途径制备的化学修饰电极,通过可控的方法对电极表面的分子剪裁,可按意图给电极预定功能,以便在其上有选择地进行所期望的反应,在分子水平上实现了电极功能的设计。化学修饰电极是当前电化学、电分析化学方面十分活跃的研究领域。这种修饰电极包括了对电极界面区的化学改变,因此它所呈现的性质与电极材料本身任何表面上的性质不同。自1975年化学修饰电极问世以来,为化学和相关边缘学科开拓了一个创新的和充满希望的广阔研究领域。为了提高分析检测的灵敏度,满足实时现场分析的需要,降低分析成本及样品需要量,如何实现整个分析检测装置的微型化进而得到有效的化学生物传感器已成为当前分析化学微型化与集成化研究的重要发展前沿之一。基于化学修饰电极构建的传感器系统已在自然及生命科学领域得到了广泛的应用,成为一个常用的研究解决科研及实际问题的有效工具。而集成化、微型化也已成为研究的热点。通过分析系统的微型化,可以有效减少样品和试剂的需要量,降低分析成本及能耗,同时还可以提高检测分析的灵敏度,增加检测通量。引起了广大研究工作者的关注。
     本论文正是基于以上的研究背景,围绕如何能够将基于新型化学修饰电极体系建立的化学生物传感器应用于实际样品分析,使实验室的研究工作最终能够与大众的现实生活要求相接轨这一目标,开展了工作。着重建立更加灵敏、简便、准确的重金属Pb(Ⅱ)的定量分析方法,以期能将所建立的分析方法实际推广到血铅和环境铅离子的检测中。因此,本课题具有重大的理论和实际意义。
     本论文共分为六个部分:
     第一章首先介绍了铅的毒性及其对人体的危害,总结了铅离子的实际检测手段。再次,介绍了化学修饰电极的概况,列举了其主要的制备方法及在电分析化学领域内的应用。最后,提出了本论文的实验思路,对本论文的研究思路及创新点进行了概述。指出了该课题的理论和实际意义。
     第二章构建了一种可用于血铅检测的集成型薄膜电极。使用CAD技术设计了集成型三电极体系的模版。利用蒸镀的方法,将电化学传感器技术、现代印刷技术与微机械加工技术相结合,研制出可批量生产的一体化三电极体系。分别考察了导电银胶与氯化银粉末混合涂布的Ag/AgCl电极与在金膜基底上电镀制作的Ag/AgCl参比电极,最终在金膜表面制得了稳定的Ag/AgCl参比电极。从而发展得到了将金膜工作电极、Ag/AgCl参比电极、碳印刷油墨对电极集成于一体的三电极集成体系。为血铅检测的集成化、微型化提供了可能。随后采用共沉积镀汞的方法对标样中的Pb(Ⅱ)进行检测,分别考察了沉积时间、沉积电位、后溶出时间对实验结果的影响,并对其实验条件进行优化,分别考察电极的稳定性和可靠性。
     第三章在第二章工作的基础上利用基于成熟技术制备的薄膜电极进一步构建快速血铅分析系统。采用微分脉冲阳极溶出伏安法,通过原位镀汞,将mL级电解池体系下的反应降至50μL的微量体系下进行,在3min时间内就可测出μg/dL水平的微量血铅。减少了采血量和大比例稀释血样引起的系统误差;同时所采用的一次性电极即避免了传统电极重复使用清洗所造成的额外工作量,又避免了电极反复使用可能造成的血液样品之间的交叉污染。在pH=1.1的溶液体系中,检测限达到了1.2μg/dL,铅离子在1.2~70μg/dL的浓度范围内呈现良好的线性关系。通过对大量实验数据的分析整理,在严格控制集成三电极体系的制备条件下,得到对于此血铅快速分析系统具有普遍适用性的经验公式Y=9.726E-8+X*9.959E-8(线性相关系数为0.998)。此血铅快速分析系统具有快速、准确,低成本等特点,能够达到现场实时检测的要求。进一步的工作针对蒸镀金膜电极本身所存在的缺陷造成的筛选率较高的问题,对三电极体系进行改进,以碳印刷油墨作为工作电极。实验结果表明,该电极体系同样具有良好的稳定性和可靠性。
     第四章合成巯基修饰的β-环糊精(6-(2-mercaptoethylamino)-6-deoxy-β-cyclodextrin,MEA-β-CD),在金电极表面构建了一层性能稳定的巯基化合物自组装膜(self-assembled monolayer,SAM)。通过电化学手段对自组装电极表面进行了表征,进而得到了一种可用于无汞条件下对Pb(Ⅱ)进行检测的新型膜修饰电极。通过对实验条件的优化,发现通过增加正电位下的后溶出过程,能够很好的实现电极的再生。该修饰电极相对于其他干扰离子:Cu(Ⅱ)、Cd(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)、Zn(Ⅱ)和Cr(Ⅱ)显示出了对Pb(Ⅱ)极高的选择性。实验以酸性溶液HClO_4作为媒介,采用微分脉冲溶出伏安法。检出限0.71×10~(-8)M(以3倍信噪比计算),这与传统的基于汞的铅离子检测手段相比非常接近,而又不会对健康与环境造成危害。在1.7×10~(-8)M到9.3×10~(-7)M的浓度范围内保持线性关系,大大优于文献所报道的以涂布法等制备的环糊精修饰玻碳电极的结果。该修饰电极为创造高灵敏度高选择性的无汞测铅传感器提出了一个新的途径。将此电极应用于实际血液样品的检测,其结果与ICP-AES方法的结果相一致。
     第五章,利用杂环类化合物修饰电极对铅离子的检测进行了初步探讨。在本章中,讨论了杂环类化合物噻吩、吡咯共聚,及桑色素在电极表面聚合制备检测痕量铅离子的几种新型膜修饰电极。文章共分二节。分别讨论了吡咯、噻吩单体共聚测铅和桑色素体系中的铅离子检测。杂环类化合物聚合修饰电极在无汞的条件下,对铅离子各自产生了电化学响应信号,并且呈现一定的线性关系。推测为杂环聚合物中的氮、硫、氧原子的存在,与溶液中的Pb(Ⅱ)存在一定的螯合作用,但具体的作用机理仍有待讨论。
     第六章首先对论文的工作进行了全面的总结,客观地评价了所取得的研究成果,同时指出了研究中存在的一些不足。并在前面几章的工作基础上,在方法学上提出了可进一步深入的方向,提出了后续工作的目标和研究路线。
Heavy metal pollutants in the environment, especially the lead pollution problem, have been a cause of concern. The lead in the environment and human lead in the detection method extensively carried out. Lead is widespread in the environment and becoming a kind of highly toxic heavy metal ions. With the rapid development of modern industrial and transport, the environmental lead pollution has become a major problem affect health of human, especially for the children. It has been proved that the blood lead levels exceeding 100μ/ L will have an impact on children' s growth and development, especially damage to the neural development of children, affecting children's mental and behavior. The commonly methods for determination of blood lead include dithizone colorimetry, atomic absorption spectrometry and atomic emission spectrometry. All of these analysis methods have problems such as costly, cumbersome steps and taking long time. Compared with those methods, the electrochemical method has the advantages of low-cost and high sensitivity, which make the electrochemical method become a good choice for heavy metals detection, especially for lead.
     Chemically modified electrodes were prepared through various means. Controlled by the method of molecular tailoring of the electrode surface, according to the intent of the function of electrode is scheduled to have its choice to carry out the desired reaction at the molecular level to achieve an electrode function design. The current electrochemical and chemical analysis have very active research field. This modified electrode has a different character on the electrode interface with the nature. Since 1975, with the advent of chemically modified electrodes for the chemical and related interdisciplinary pioneering, an innovative and broad research field has been promised. In order to increase the sensitivity of detection, to meet the needs of real-time scene analysis, reduce costs and sample analysis requirements, the analysis of how to achieve the miniaturization of devices which are effectively chemical and biological sensors have become the important part for the miniaturization of chemical analysis and integration of the research. Based on chemically modified electrode, the sensor system has been constructed in the natural and life sciences fields and has been widely used as an effective tool for common research. The integrated and micro-electrodes have also become a hot research part. Through micro-analysis system, it can be effective in reducing the sample and reagent requirements, and reduce the cost of energy, improve the monitoring and analysis of the sensitivity, increase throughput detection.
     This paper is based on the above research background, focusing on how micro-analysis system can be chemically modified electrodes and the new system applied to the actual analysis of samples, laboratory research work can ultimately live with the reality of public convergence requirements of this goal, in work, with emphasis on the establishment of a more sensitive, simple and accurate heavy metals Pb (II) quantitative analysis method can be established with a view to the promotion of practical methods and the environment to lead the detection of lead ions. Therefore, this issue is of great theoretical and practical significance.
     This dissertation has great original and frontier innovation and includes six chapters, which are introduced separately as follows:
     In chapter one, we focus on the toxicity of lead on the human body, summed up the actual testing method for lead ion at first. Second, on the profile of chemically modified electrodes, we list the main preparation methods and the applications in the field of analytical chemistry. Finally, the experimental ideas of this paper and innovative ideas outlined points are pointed out.
     In chapter two, a blood lead testing integrated thin film electrode had been used. The CAD technology has been used to design the templates for integrated three-electrode system. With the evaporation method, electrochemical sensor technology, modern printing technology and micro-machining technology, the mass-produced integrated three-electrode system can be developed. The system had stable on the Ag/AgCl reference electrode, which was chosen out between the mixtures of Ag/AgCl electrodes and electroplating the Ag/AgCl reference electrode on the basal membrane, which makes it possible for the blood lead being tested on the integration of micro-electrode. Then we use the mercury deposition method for detection of Pb (II), respectively inspected the deposition, deposition potential, the time after the dissolution of the experimental results, and its optimized experimental conditions.
     In chapter three, a novel fast system based on the integrated film electrodes was created. The resulting system was successfully applied in the detection of blood lead, by means of differential pulse anodic stripping voltammetry in tiny amount of volume,~50μL, co-deposited with Hg without removal of oxygen. Under the optimum conditions, the peak current was linear to Pb~(2+) concentration from 1.2 to 70μg/dL, and detection limit was 1.2/μg/dL. Blood lead was detected with calibration curve, Y = 9. 726E-8 + X*9. 959E-8(R=0. 998). Compared with other methods reported, this method was more rapid, low-cost and could meet the requirement of real-time analysis.
     In chapter four, a self-assembled monolayer (SAM) of thiolatedβ-cyclodextrin (6-(2-mercaptoethylamino)-6-deoxy-β-cyclodextrin, MEA-β- CD) on a gold electrode (MCGE) was prepared. Mercury-free sensors for lead (Pb~(2+)) assay based on MCGE have been developed. The analysis of Pb using MCGE-based adsorptive stripping voltammetry (ASV) includes two steps. Pb~(2+) ions are firstly adsorbed on electrode surface in a Pb~(2+) solution (5mL) during a preconcentration step, followed by a measurement step using acidic solution as medium for stripping voltammetry. Due to the strong covalent bonding of the functional groups, the MCGE-based sensors with a built-in three electrode system can be reused for tens of measurements with minimal degradation, enabling the establishment of the calibration curve and lowering the costs. Linear calibration curve was found in the range of 1.7×10~(-8)M to at least 9.3×10~(-7)M Pb~(2+) after 3min of preconcentration. Statistic analysis of the results strongly suggests the MCGE exhibited a good analytical response, while the detection limits obtained for Pb(II) was 0.71×10~(-8) M (calculated from 3S/N). The modified electrodes displayed good resolution of the oxidation peaks. This work presented a new way to create a selective lead ion capturing film via modified cyclodextrin in design of specific lead sensors with high sensitivity. It has been a matter of deepening interest to quantify heavy metals in natural media such as air, soil and water, as much as in foodstuffs and biological fluids. Therefore, there has been a noticeable drive to develop diverse analytical techniques capable of detecting trace levels of the said metals in various matrices. The modified electrode to create high sensitivity highly selective mercury-free measurement sensors lead to a new approach. This electrode applied to the actual blood sample testing, the results of ICP-AES method and the results.
     In chapter five, the heterocyclic compounds modified electrode for detection of lead has been discussed. In this chapter, the discussions are about Morin, thiophene, pyrrole and their polymerization on the electrode surface. The article is divided into two sections. The heterocyclic compounds polymerization modified electrodes have been created. They both have a lead ion electrochemical response signal with free-mercury condition, and show a linear relationship with concentration of Pb (II). Speculate as heterocyclic polymers of the nitrogen, sulfur, oxygen atoms exist, there is a certain sequestration with Pb (II). But the role of specific mechanism still should be discussed.
     In chapter six, we summarized and gave objective comments on the results obtained. Meanwhile, the problems and shortcomings of this thesis were pointed out. Finally, we proposed the objects and schemes of further research.
引文
[1] Lu YT, Shen GQ , Hua YF. Advances on the technique of rapid determination of heavy metals by enzyme inhibition in the contaminated environment [J].Journal of Safety and Environment, 2005, 5(2): 68-71
    
    [2] Hernberg S. Lead poisoning in a historical perspective [J].Am. J. Ind. Med., 2000, 38 (3): 244-254.
    
    [3] 魏翠英.铅污染与人体健康[J].生物学通报, 1999, 34 (3): 24.
    
    [4] Steenland K, Boffetta P. Lead and cancer in humans: where are we now [J]. Am. J. Ind. Med., 2000, 38(3):295-299.
    
    [5] Silbergeld EK. Facilitative mechanisms of lead as carcinogen [J].Mutat. Res, 2003, 533(1-2):121-133.
    
    [6] IARC. Lead and lead compounds [R]. IARC Monographs, Lyon, 1987,supplement, 7:230
    
    [7] Wakefield J. The lead effect [J].Environ Health Perspect,2002, 110(10): 574-580.
    
    [8] Lanphear BP, Dietrich K, Auinger P, et al. Cognitive deficits associated with blood lead concentrations<10microg/dL in US children and adolescents [J].Public Health Rep, 200, 115(6):521-529.
    
    [9] Canfield RL, Henderson CR Jr, Cory-Slechta DA, et al. Intellectual impairment in children with blood lead concentrations below 10 ug per deciliter [J]. N. Engl. J. Med., 2003, 348(16) : 1517-1526.
    
    [10] Todd AC, Wetmur JG, Moline JM, Godbold JH, Levin SM. Landrigan PJ.Unraveling the chronic toxicity of lead: An essential priority for environmental health [J]. Environ. Health Perspect, 1996, 104:141-146.
    
    [11] Cook JA, Hofimann EO, Di Luzio NR. Influence of lead and cadmiumon the susceptibility of rats [J]. Proc. Soc. Exp.Biol.Med.,1975,150:741—744.
    
    [12] Koller LD, Kovacic S. Decreased antibody formation in mice exposed to lead [J]. Nature, 1974,250:148-149.
    [13]Paradkar RP,Williams RR.Micellar.Colorimetric Determination of Dithizone Metal Chelates[J].Anal.Chem.,1994,66(17):2752-2756.
    [14]朱振中,李在均,虞学俊,等.二溴对甲基偶氮甲磺光度法测定食品中微量铅[J].无锡轻工大学学报,1997,17(3):82-85.
    [15]庄炳游.Pb(II)一X0一CTMAB光度法测定树叶上附着的铅含量[J].理化检验化学分册,2001,37(9):419-420.
    [16]Liu JW,Lu Y.Accelerate color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb~(2+) detection[J].J.Am.Chem.Soc.,2004,126(39):12298-12305.
    [17]黎源倩,杨经国,郑欣,等.流动注射-二极管阵列检测分光光度法同时测定铅和镉[J].分析化学,1998,26(7):843-846.
    [18]杨经国,黎源倩,哈文清,等.用于多组分同时测定的流动注射一CCD阵列探测分光光度装置研究[J].光谱学与光谱分析,1999,19(2):212-214.
    [19]訾言勤,陈立国,陈运生.非平衡流动注射分光光度法在线测定痕量铅的研究[J].分析测试学报,2000,19(6):50-52.
    [20]杨超.束胶分光光度法测定双硫腙金属络合物[J].中国卫生检验杂志,2002,12(1):41.
    [21]李卫华,王占玲,李建中,等.以偶合反应流动注射化学发光法测定铅[J].分析化学,1998,26(2):219-221.
    [22]吴伟明,杜海燕,戎关镛.离子交换树脂相分光光度法测定水中的铅[J].南方冶金学院学报,1998,19(2):142-145.
    [23]张永航,赵中一,金继红,等.固相反射散射分光光度法测定化妆品中的铅[J].环境科学与技术,200l,(2):44-45.
    [24]李华禄,刘汉东,刘延湘.流动注射在线萃取FAA$法测定天然水中铅[J].武汉教育学院学报,2000,19(3):15-18.
    [25]张秀尧.在线流动注射螯合树脂预富集石英缝管增敏火焰原子吸收法测定水中痕量铅[J].分析化学,2000,28(12):1493-1496.
    [26]Chau Y K,Lumshuec K.Complex extraction of vanadium for atomic absorption spectroscopy-determination of microgram quantities of vanadium in lake water[J]Anal.Chim.Acta.,1970,50(2):201-204.
    [27]Belchev S,Arpadjan S,Koleva S,Kostadinova M,Getcheva R.A new preconcentration procedure for spectrochemical analysis of high-purity salts by AES[J].Anal.Lett.,1988,21(3):529-536.
    [28]王光明,焦传英.共沉淀预富集一火焰原子吸收光谱法测定水中的铅和镉[J].光谱实验室,2002,19(5):680-683.
    [29]开小明,张群,凌必文,等.基体改进剂和L′VOV平台技术石墨炉原子吸收光谱法测定全血中铅[J].光谱学与光谱分析,2001,2l(2):244-246.
    [30]蒙若兰,胡德斌.石墨炉台技术测定痕量铅-硝酸钯-硝酸镁混合基体改进剂[J].重庆建筑大学学报,1999,21(3):86-90.
    [31]陈恒初,刘汉东,汤志勇,等.悬浮液进样平台石墨炉原子吸收光谱法测定生物样品中痕量铅[J].光谱实验室,1998,15(1):44-46.
    [32]王利平,贡小清.石墨炉原子吸收法测定食品中痕量铅一用硝酸镍兼作助灰剂和基体改良剂[J].无锡轻工大学学报,2000,19(1):80-83.
    [33]吴仪贞,边东风,郁保宁,等.DB-HEAl01型氢化物电热原子化器及其应用[J].分析仪器,1998,(3):39-42.
    [34]沈志武,董银根,沈惠君.VA-90氢化物发生-原子吸收光谱法测定食品中痕量铅[J].光谱学与光谱分析,2000,20(3):390-392.
    [35]裴如俊,郭玉敏,张丽.氢化物发生一原子荧光光谱法测定废水中痕量铅[J].中国环境监测,2000,16(3):30-31.
    [36]杨宝玺.氢化物发生原子荧光光谱法测定水中铅[J].中国公共卫生,2001,17(10):926.
    [37]郑瑾,边文耀,高美叶.氢化物发生一原子荧光光谱法测定尿中铅[J].内蒙古大学学报(自然科学版),2002,33(5):538-540.
    [38]刘培栋,李清昌.AFS-2202原子荧光光度法测定血清中的铅[J].微量元素与健康研究,2002,19(3):56-57.
    [39]蔡秋,莫凤.氢化物-原子荧光光谱法测定食品中的微量铅[J].贵州科学,2002,20(2):64-67.
    [40]Baena JR,Gallego M,Vacarcel M,Leenaers J,Adams FC.Comparison of three coupled gas chromatographic detectors(MS,MIP-AES,ICP-TOFMS) for organolead speciation analysis[J].Anal.Chem.,2001,73(16):3927-3934.
    [41]Winge RK,Peterson VJ,Fassel VA.Inductively coupled plasma-atomic emission-spectroscopy-prominent lines[J].Applied Spectroscopy.,1979,33(3):206- 219.
    [42]Broekaert JAC,Leis F.Application of 2 different ICP-hedride techniques to the determination of arsenic[J].Fresenius Zeitschrift Fur Analytische Chemie,1980,300(1):22-27
    [43]傅昀,王文桂,谢克金,等.利用多功能LB-HG型雾化氢化物发生器与电感耦合等离子体原子发射光谱联用测定人发中砷、锑、汞、铅[J].分析化学,1998,26(4):431-434.
    [44]谯斌宗,杨元,文君,等.连续氢化物发生端视ICP-AES法直接测定纯净水中痕量铅[J].中国卫生检验杂志,2001,11(4):385-386.[45]范哲锋.化妆品中的Hg、As和Pb的微波消解-氢化物发生ICP-AES法测定[J].分析测试学报,2001,20(1):56-57.
    [46]Johnson AM,Holcombe JA.Poly(L-cysteine) as an electrochemically modifiable ligand for trace metal chelation[J].Anal.Chem.,2005,77(1):30-35.
    [47]Bond AM.Modern Polarographic Methods in Analytical Chemistry[M].New York,1980.
    [48]Heineman WR,Mark HB,Wise JA,Roston DA.Laboratory Techniques in Electroanalytical Chemistry.New York:Marcel Dekker,1984.
    [49]Brainina KZ,Neyman E.Electroanalytical Stripping Methods,New York:J.Wiley and Sons,1993.
    [50]Turyan I,Mandler D.Electrochemical determination of trace amounts of gold(Ⅲ) by anodic-stripping voltammetry using a chemically-modified electrode[J].Anal.Chem.,1993,65(15):2089-2092.
    [51]Feldman BJ,Osterloh JD,Hata BH,Dalessandro A.Determination of lead in blood by square-wave anodic-stripping voltammetry at a carbon disk ultramicroelectrode[J].Anal.Chem.,1994,66(13):1983-1987.
    [52]Wu HP.Dynamics and Performance of Fast Linear Scan Anodic Stripping Voltammetry of Cd,Pb,and Cu Using In Situ-Generated Ultrathin Mercury Films[J].Anal.Chem.,1996,68(9):1639-1645.
    [53]Brainina KhZ,Bond AM.Characterization of Thick-Layer Graphite Disposable Voltammetric Electrodes[J].Anal.Chem.,1995,67(15):2586-2591.
    [54]Gao ZQ,Siow KS.Determination of trace amounts of iron by catalyticadsorptive stripping voltammetry[J].Talanta,1996,43(5):727-733
    [55]GaG ZQ,Slow KS.Catalytic-adsorptive stripping voltammetry of cobalt in the presence of2,2'-bipyridine and nitrite[J].Talanta,1996,43(2):255-261.
    [56]Heppeler F,Sander S,Henze G.Determination of tin traces in water samples by adsorptive stripping voltammetry[J].Anal.Chim.Acta.,1996,319(1-2):19-24.
    [57]Gao ZQ,Siow KS.Catalytic-adsorptive stripping voltammetric determination of chromium in environmental materials[J].Electroanalysis,1996,8(6):602-606.
    [58]Locatelli C,Vasca E,Bighi C,Fagioli F,Garai T.Determination of metals in a multicomponent system by differential pulse and alternating current anodic stripping voltammetry[J].Electroanalysis,1996,8(2):165-170.
    [59]Brand M,Eshkenazi I,Kirowa-Eisner E.The Silver Electrode in Square-Wave Anodic Stripping Voltammetry.Determination of Pb~(2+) without Removal of Oxygen[J].Anal.Chem.,1997,69(22):4660-4664.
    [60]杨天鸣,邓敏,钟利.PVC膜修饰粉末微电极溶出伏安法测定水中铅(Ⅱ)[J].分析实验室,1999,18(5):27-30.
    [61]张海丽,叶永康,徐斌.酸性铬蓝K固体石蜡碳糊修饰电极溶出伏安法测定痕量铅[J].分析化学,2000,28(2):194-196.
    [62]费俊杰,黎拒难,易芬云.槲皮素化学修饰碳糊电极吸附溶出伏安法测定痕量铅[J].分析化学,2001,29(8):916-918.
    [63]王志华,卢小泉,耿再新,等.2,4,6-三(3,5-二甲基吡唑)-1,3,5-三嗪碳糊修饰电极溶出伏安法测定铅[J].西北师范大学学报(自然科学版),2001,37(1):60-62.
    [64]Rahman MdA,Won MS,Shim YB.Characterization of an EDTA bonded conducting polymer modified electrode:its application for the simultaneous determination of heavy metal ions[J].Anal.Chem.,2003,75(5):1123-1129.
    [65]吴四维,付敏,黄宗卿.椭圆法用于阴极溶出伏安法测定铅的研究[J].渝州大学学报(自然科学版),1999,16(2):66-68.
    [66]黎艳飞,张正奇.用色谱膜法富集阴极吸附溶出伏安法测定空气中的镍铜铅镉[J].分析测试学报,1999,18(1):72-74.
    [67]Pouretedal HR,Keshavarz MH.Lead(Ⅱ)-selective electrode based on dibenzodiaza-15-crown-4[J].Asian.J.Chem.,2004,16(3-4):1319-1326
    [68]Ganjali MR,Rouhollahi A,Mardan AR,et al.Lead ion-selective electrode based on 4'-vinylbenzo-15-crown-5 homopolymer[J].Microchem.J.,1998,60(2):122-133
    [69]Zareh MM,Ghoneim AK,Abd EI-Aziz MH.Effect of presence of 18-crown-6on the response of 1-pyrrolidine dicarbodithioate-based lead selective electrode[J].Talanta,2001,54(6):1049-1057
    [70]Amini MK,Mazloum M,Ensafi AA.Lead selective membrane electrode using cryptand(222) neutral carrier[J].Fresenius'J.Anal.Chem.,1999,364(8):690-693
    [71]Ganjali MR,Hosseini M,Basiripour F,et al.Novel coated-graphite membrane sensor based on N,N'-dimethylcyanodiaza-18-crown-6 for the determination of ultra-trace amounts of lead[J].Anal.Chim.Acta.,2002,464(2):181-186
    [72]魏显有.铅镉-邻菲啰啉-溴化钾配合物的吸附波及其应用[J].分析测试学报,1991,10(6):68-71.
    [73]徐斌,张海丽,叶永康,等.铅-茜素紫-邻菲罗啉体系的极谱行为及应用[J].分析试验室,2001,20(2):67-70.
    [74]谢明勇,温辉梁.用全反射X射线荧光法及氢化物发生原子吸收对福建乌龙茶进行元素分析[J].食品科学,2000,21(1):51-54.
    [75]Izumi Y,Nagamori H,Kiyotaki F,Masih D,et al.X-ray absorption fine structure combined with X-ray fluorescence spectrometry,lmprovement of spectral resolution at the absorption edges of 9-29 keV[J].Anal.Chem.,2005,77:6969-6975.
    [76]王军,赵墨田.同位素稀释质谱法测定国际比对水样中的铅[J].分析化学,1998,26(4):418-421.
    [77]彭秀红,倪师军,尹观,等.海相化学碳酸盐沉积中的铅同位素测定[J].矿物岩石地球化学通报,2001,20(1):66-68.
    [78]王少芬,魏建谟.超临界流体色谱在金属络合物和金属有机化合物中的分析应用[J].分析化学,2001,29(6):725-730.
    [79]Owens G,Ferguson VK,Mclaughlin MJ,Singleton I,Reid RJ,Smith FA.Determination of NTA and RDTA and speciation of their metal complexes in aqueous solution by capillary electrophoresis[J].Environ.Sci.Technol.,2000,34:885-891.
    [80]董绍俊,车广礼,谢远武。化学修饰电极[M]。北京:科学出版社,2003:1-629.
    [81]刘有芹,颜芸,沈含熙.化学修饰电极的研究及其分析应用[J].化学研究与应用,2006,18(4):337-343.
    [82]董绍俊,车广礼,谢远武。化学修饰电极[M]。北京:科学出版社,2003:1-629.
    [83]汪尔康主编。生命分析化学[M]。北京:科学出版社,2006:231-243。
    [84]鞠熀先。电分析化学与生物传感技术[M]。北京:科学出版社,2006:342-451.
    [85]罗国安,王宗花,王义明。生物兼容性电极构置及应用[M]。北京:科学出版社,2006:85-161.
    [86]Palecek E,Fojta M.Differential-pulse voltammetric determination of RNA at the picomole level in the presence of DNA and nucleic-acid[J].Anal.Chem.,1994,66(9):1566-1571.
    [87]Wang J,Cai XH,Rivas G,et al.DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus[J].Anal.Chem.,1996,68(15):2629-2634.
    [88]Marrazza G,Chianella I,Mascini M.Disposable DNA electrochemical biosensors for environmental monitoring[J].Biosens.Bioelectron.,1999,14(1):43-51.
    [89]Moser I,Schalkhammer T,Pittner F,et al.Surface techniques for an electro- chemical DNA biosensor[J].Biosens.Bioelectron.,1997,12(8):729-737.
    [90]刘有芹,沈含熙.氯化血红素修饰玻碳电极的制备及其作用机理[J].分析化学,2004,32(1),41-45.
    [91]Shigehara K,Oyama N,Anson FC.Electrochemical responses of electrodes coated with redox polymers-evidence for control of chargetransfer rates across polymeric layers by electron exchange between incorporated redox sites[J].J.Am.Chem.Soc.,1981,103(10):2552-2558.
    [92]Oke A,Solnick J,Adams RN.Catecholamine distribution patterns in rat thalamus[J].Brain Res.,1983,290(2):390-394.
    [93]董绍俊,车广礼,谢远武。化学修饰电极[M]。北京:科学出版社,2003:571-592。
    [94]Nuzzo RG,Allarra DL.Adsorption on bifunctional organic disulfides on gold surfaces[J].J Am Chem Soc,1983,105(13):4481-4483.
    [95]黄菲。吩噻嗪衍生物在硫醇与碳纳米管修饰金电极上的伏安行为及测定[D]。武汉大学分析化学专业硕士学位论文,2004,1-3.
    [96]杨生荣,任嗣利,张俊彦,张绪寿。自组装单分子膜的结构及其自组装机理[J]。高等学校化学学报,2001,22(3):470-476.
    [97]Hahner G,Woll C H,Buck M,Grunze M.Investigation of intermediate steps in the self-assembly of n-alkanethiols on gold surfaces by soft X-ray spectroscopy[J].Langmuir,1993,9(8):1955-1958.
    [98]李景虹,程广金,董绍俊。一种新型有序超薄有机膜-自组膜[J].化学通报,1995,10:11-18。
    [99]杨玉霞.吩噻嗪衍生物和肾上腺素在硫醇自组装膜修饰金电极上的电化学行为[D]。武汉大学分析化学专业硕士学位论文,2003,3-4.
    [100]杨生荣,任嗣利,张俊彦,张绪寿.自组装单分子膜的结构及其自组装机理[J].高等学校化学学报,2001,22(3):470-476.
    [101]Ulman A.An Introduction to Organic Ultra Thin Films[M].Boston:Academic Press,1991:237.
    [102]杨生荣,任嗣利,张俊彦,张绪寿。自组装单分子膜的结构及其自组装机理[J]。高等学校化学学报,2001,22(3):470-476.
    [103]董绍俊,车广礼,谢远武。化学修饰电极[M]。北京:科学出版社,2003:571-592.
    [104]Shepard VR,Armstrong NR.Electrochemical and photoelectrochemical studies of copper and cobalt phthalocyanine-tin oxide electrodes[J].J.Phys.Chem.,1979,83(10):1268 - 1276.
    [105]Millan KM,Mikkelsen SR.Sequence-selective biosensor for DNA-based on electroactive hybridization indicators[J].Anal.Chem.,1993,65(17):2317-2323.
    [106]刘盛辉,何品刚,方禹之.在石墨电极上脱氧核糖核酸与米托葸醌嵌入作用的电化学研究[J].分析化学,1996,24(11):1301-1304.
    [107]Yang MS,Kong RYC,Kazmi N,et al.Covalent immobilization of oligonucleotides on modified glass/silicon surfaces for solid-phase DNA hybridization and amplification[J].Chem.Left.,1998,(3):257- 258.
    [108]Yoon HC,Kim HS.Multilayered assembly of dendrimers with enzymes on gold:thickness-controlled biosensing interface[J].Anal.Chem.,2000,72(5):922 - 926.
    [109]Diaz AF,kanazawa KK,Gardini GP.Electrochemical polymerization of pyrrole[J].J.Chem.Soc.Chem.Commum.1979(14):635 - 640.
    [110]Karyakin AA,Strakhova AK,Yatsimirsky AK.Self-doped polyanilines electrochemically active in neutral and basic aqueous-solutionselectropolyerization of substituted anilines[J].J.Electroanal.Chem.1994,371(1-2):259-265.
    [111]Skompska M,Kudelski A.Electrochemical activity of poly(N-vinylcarbazole) films in acetonitrile solution and in acetonitrile plus water mixtures-Correlation between spectroelectrochemical and EPR results[J].J.Electroanal.Chem.,1996,403(1-2):125-132.
    [112]Oyama N,Anson FC.Polymeric ligands as anchoring groups for the attachement of metal-complexes to graphite electrode surfaces[J].J.Am.Chem.Soc.,1979,101(13):3450-3456.
    [113]Dong SJ,Li FB.Researches on chemically modified electrodes.15.preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode[J].J.Electroanal.Chem.1986,210(1):31-44.
    [114]刘有芹,金松子,刘六战,等.铁氰化锰修饰玻碳电极的制备及其电化学行为[J].分析化学,2004,32(7):847-851.
    [115]刘有芹,沈含熙.钴氢氧化物修饰玻碳电极的镀膜/循环伏安法制备及其电化学行为[J].化学学报,2004,62(20):2067-2072.
    [116]刘有芹,刘六战,沈含熙.氢氧化钴修饰玻碳电极的制备及其电化学行为[J].分析测试学报,2004,23(6):9-13.
    [117]Bocarsly AB,Galvin SA,Sinha S.Properties of chemically derivatized nickel electrodes-the synthesis of an electrocatalytic interface[J].J.Electrochem.Soc.,1983,130(6):1319-1325.
    [118]Halbert MK,Baldwin RP.Electrocatalytic and analytical response of cobalt phthalocyanine containing carbon paste electrodes toward sulfhydryl compounds[J].Anal.Chem.1985,57(3):591-595.
    [119]Millan KM,Saraullo A,Mikkelsen SR.Voltammetric DNA biosensor for cystic-fibrosis based on a modified carbon-paste electrode[J].Anal.Chem.1994,66(18):2943-2948.
    [120]Matuszewski W,Trojanowicz M.Graphite paste-based enzymatic glucose electrode for flow-injection analysis[J].Analyst,1988,113(5):735-738.
    [121]Dong SJ,Wang YD.Anodic-stripping voltammetric determination of trace lead with a nafion crown-ether film electrode[J].Talanta,1988, 35(10):819-821.
    [122]Price JF,Baldwin RP.Preconcentration and determination of ferrocene- carboxaldehyde at a chemically modified platinum-electrode [J].Anal.Chem.,1980,52(12):1940-1944.
    [123]Turyan I,Mandler D.Self-assembled monolayers in electroanalytical chemistry-Application of omega-mercaprocarboxylic acid monolayers for electro- chemical determination of ultralow levels of cadmium(Ⅱ)[J].Anal Chem,1994,66(1):58-63.
    [124]董绍俊.化学修饰电极在分析化学中的应用[J].分析化学,1988,16(10):951-956.
    [125]李凤斌,董绍俊.抗坏血酸在普鲁士蓝薄膜修饰电极上的电催化氧化[J].化学学报,1990,48(7):653-659.
    [126]Zhang HM,Li NQ,Zhu ZW.Electrocatalytic response of dopamine at a self-assembled DL-homocysteine gold electrode[J].Microchem J.,2000,64(3):277-282.
    [127]张玉忠,赵红,袁倬斌。阿魏酸聚合修饰玻碳电极的制备及其对NADH的催化氧化[J]。高等学校化学学报,2003,24(10):1765-1769.
    [128]张玉忠,赵红,袁倬斌。大黄酸玻碳修饰电极对血红蛋白的催化还原[J]。高等学校化学学报,2003,23(3):391-393.
    [129]金利通,叶建山,史占玲,等.Nafion-汞膜化学修饰电极测定GPT的研究[J].高等学校化学学报,1994,22(5):672-674.
    [130]Yabuki S,Mizutani F,Hirata Y.Preparation of a microperoxidase and ferrocene-immobilized polyion complex membrane for the detection of hydrogen peroxide[J].J.Electroanal.Chem.1999,468(1):117-120.
    [131]Yamamoto K,Ohgaru T,Torimura M,et al.Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidaseimmobilized electrode and its application to clinical chemistry[J].Anal.Chim.Acta,2000,406(2):201-207.
    [132]Gerard M,Chaubey A,Malhotra BD.Application of conducting polymers to biosensors[J].Biosens Bioelectron,2002,17(5):345-359.
    [133]周伟良,孙向英,金利通,等.对苯胺类聚合物修饰电极及其pH响应的机理研究[J].分析化学,1990,18(2):120-130.
    [134]Zhang YZ,Jin GY,Yang ZS,Zhao H.Determination of dopamine in the presence of ascorbic acid using a poly(amidosulfonic acid) modified glassy carbon electrode[J].Microchim Acta,2004,147(4):225-230.
    [135]Zhao H,Zhang YZ,Yuan ZB,Poly(isonicotinic acid) modified glassy carbon electrode for electrochemical detection of norepinephrine[J].Anal Chim Acta,2002,454(1):75-81.
    [136]Hickman JJ,Ofer D,haibinis PE,Whitesides GM,Wrighton MS.Molecular self-assembly of 2-terminal,voltammetric microsensors with internal references[J].Science,1991,252(5006):688-691.
    [137]Chi Q,Dong S.Electrocatalytic oxidation of reduced nicotinamide coenzymes at organic dye-modified electrodes[J].Electroanalysis,1995,7(2):147-153.
    [138]Stefan RI,van Staden JF,Aboul-Enein HY.Amperometric biosensors/sequential injection analysis system for simultaneous determination of S- and R- captopril[J].Biosens.Bioelectron.,2000,15(1-2):1-5.
    [139]Patel NG,ErlenkEtter A,Cammann K,et al.Fabrication and characterization of disposable type lactate oxidase sensors for dairy products and clinical analysis[J].Sensors and Actuators B,2000,67(1- 2):134 - 141.
    [140]Shu HC,Wu NP.A chemically modified carbon paste electrode with D-lactate dehydrogenase and alanine aminotranferase enzyme sequences for D-lactic acid analysis[J].Talanta,2001,54(2):361 - 368.
    [141]Ottova AL,Tien HT.Self-assembled bilayer lipid membranes:from mimicking biomembranes to practical applications[J].Bioelectrochem.Bioenerg.1997,42(2):141 - 152.
    [142]Tien HT,Wurster SH,Ottova AL.Electrochemistry of supported bilayer lipid membranes:Background and techniques for biosensor development[J].Bioelectrochem.Bioenerg.1997,42(1):77-94.
    [143]Wang LG,Li YH,Tien HT.Electrochemical transduction of an immunological reaction via S-BLMS[J].Bioelectrochem.Bioenerg.1995,36(2):145-147.
    [144]金松子,王韬,张春煦,等.血红蛋白在磷脂一月桂酸修饰的玻碳电极上的电化学行为及其分析应用[J].化学学报,2002,60(7):1269-1273.
    [145]金松子,田文莉,沈含熙,等.双层类脂修饰玻碳电极研究去甲肾上腺素电化学行为及其分析应用[J].分析测试学报,2004,23(2):1-4.
    [146]金松子,刘六战,沈含熙.肌红蛋白在磷脂-月桂酸修饰的玻碳电极上的电化学行为及其分析应用[J].分析化学,2004,32(10):1314-1316.
    [147]Zhang YL,Zhang CX,Shen HX.Studies on electrocatalytically kinetic behavior of horseradish peroxidase at salt bridge supported bilayer lipid membrane[J].Anal.Lett.,2000,33(12):2425-2439.
    [1]Liu TZ,Lai D,Osterloh JD.Indium as internal standard in square wave anodic stripping analysis of lead in blood with microelectrode arrays[J].Anal.Chem.,1997,69(17):3539-3543.
    [2]Jaenicke S,Sabarathinam RM,Fleet B,Gurasingham H.Determintaion of lead in blood by hydrodynamic voltammetry in a flow injection system with wall-jet detector[J].Talanta,1998,45(4):703-711.
    [3]Brainina K,Schafer H,Ivanova A,Khanina R.Determination of cepper,lead and cadmium in whole blood by stripping voltammetry with the use of graphite electrodes[J].Anal.Chim.Acta,1996,330(2-3):175-181.
    [4]Joseph W,Baomin T.Screen-printed stripping voltammetric/potentiometric electrodes for decentralized testing of trace lead[J].Anal.Chem.,1992,64(15):1706-1709.
    [5]Desmond D,Lane B,Alderman 5,Hill M,Arrigan DWM,Glennon JD.An environmental monitoring system for trace metals using stripping voltammetry[J].Sens.Actuator B-Chem.,1998,48(1-3):409-414.
    [6]Feldman BJ,D' Alessandro A,Osterloh JD,Hata BH.Electrochemical determination of low blood lead concentration with a disposable carbon microarray electrode[J].Clin.Chem.,1995,41(4):557-563.
    [7]Wang J.Stripping Analysis,Principles,Instrumentation,and Application[M].Dearfield Beach FI:VCH Publishers,Inc,1995.
    [8]邓家祺,林义祥.溶出伏安法在环境、医学、食品上的应用[M].北京:人民卫生出版社出版,1986.
    [9]Albery WJ,Cass AEG,Mangold BP,Shu ZX.Inhibited enzyme electrodes.3.A sensor for low-levels of H_2S and HCN[J].Biosensors &Bioelectronics,1990,5(5):397-413.
    [10]Almestrand L,Betti M,Hua C,Jagner D,Renman L.Determination of lead in whole-blood with a simple flow-injection system and computerized stripping potentiometry[J].Anal.Chim.Acta.,1988,209(1-2):339-343.
    [11]Baum P,Czok R.Enzymatische bestimmung yon ionisiertem magnesium im plasma [J]. Biochem. Z.,1959,332(2):121-130.
    
    [12] Botre C, Botre F, Jommi G, Signorini R. Synthesis and inhibitory activity on carbonic-anhydrase of some new sulpiride analogs studies by means of a new method [J]. J. Med. Chem., 1986, 29(10):1814-1820.
    
    [13] Chemical and Engineering News, page 17, Oct. 14, 1991.
    
    [14] Fair BD, Jamieson AM. Studies of protein adsorption on polystryrene latex surfaces [J]. J.Colloid Interface Sci., 1980, 77(2):525-534.
    
    [15] Guilbault GG, Brignac P, Zimmer M. Homovanillic acid as a fluorometric substrate for oxidative enzymes-analytical applications of peroxidase glucose oxidase and xanthine oxidase systems [J]. Anal.Chem. ,1968, 40(1): 190-196.
    
    [16] Guilbault GG. "Enzymatic Methods of Analysis"[M], Pergamon Press,1970.
    
    [17] Gunasingham H, Delangin RR, Fleet B, Narayanan B, Tang TF.Instruments for Science [M]. Cole-Palmer Instrument Company, Chicago,IL, 1989.
    
    [18] Holleck GL. Reduction of chlorine on carbon in AlCl_3-KCl-NaCl melts [J]. J. Electrochem. Soc.,1972,119(9):1158-1161.
    
    [19] Kamata S, Onoyama K. Lead-selective membrane-electrode using methylene bis(diisobutyldithiocarbamate) neutral carrier [J].Anal.Chem., 1991, 63(13):1295-1298.
    
    [20] Linde HW. Estimation of small amounts of fluoride in body fluids [J]. Anal. Chem., 1959, 31(12):2092-2094.
    
    [21] Mealor D, Townshend A. Applications of enzyme-catalysed reactions in trace analysis. I. Determination of mercury and silver by their inhibition of invertase [J].Talanta, 1968, 15(8):747-751.
    
    [22] Morrissey BW, Smith LE, Stromberg RR, et al. Ellipsometric investigation of effect of potential on blood protein conformation and adsorbance [J]. J. Colloid Interface Sci., 1976, 56(3):557-563.
    
    [23] Sheikh RA, Townshend A. Applications of enzyme-catalyzed reactions in trace analysis. 7. Determination of lead and indium by their inhibition of isocitrate dehydrogenase [J]. Talanta, 1974, 21(6):401-409.
    
    [24] Smit MH, Cass AEG. Cyanide detection using a substrate-regenerating,peroxidase-based biosensor [J]. Anal. Chem., 1990, 62(22):2429-2436.
    
    [25] Toren EC, Burger FJ. Trace determination of metal ion inhibitors of glucose-glucose oxidase system [J]. Mikrochimica Acta, 1968,(3): 5389-545.
    
    [26] Tran-Minh C, Pandey PC, Kumaran S. Studies on acetylcholine sensor and its analytical application based on the inhibition of cholinesterase [J].Biosensors & Bioelectronics, 1990, 5(6):461-471.
    [1]Albery W J,Cass A E G,Mangold B P,et al.Inhibited enzyme electrodes.Part 3:A sensor for low levels of H_2S and HCN[J].Biosensors and Bioelectronics,1990,5(5):397-413.
    [2]Almestrand L,Betti M,Hua C,et al.Determination of lead in whole blood with a simple flow-injection system and computerized stripping potentiometry[J].Analytica Chimica Acta,1988,209:339-343.
    [3]徐云斌,许风华,张启生.石墨炉全自动原子吸收法测定血铅[J].中国公共卫生,2004,20(10):1158.
    [4]Botre C,Botre F,Jommi G,et al.Synthesis and inhibitory activity on carbonic anhydrase of some new sulpiride analogs studied by means of a new method[J].Journal of Medicinal Chemistry,1986,29(10):1814-1820.
    [5]Fair B D,Jamieson A M.Studies of protein adsorption on polystyrene latex surfaces[J].Journal of Colloid and Interface Science,1980,77(2):525-534.
    [6]Guilbault G G,Brignac P Jr,Zimmer M.Homovanillic acid as a fluorometric substrate for oxidative enzymes.Analytical applications of the peroxidase,glucose oxidase,and xanthine oxidase systems[J].Analytical Chemistry,1968,40(1):190-196.
    [7]王伟,黄福模,吴小平,等.消化血铅的微分电位溶出分析法[J].中国职业医学,2002,29(6):39-40.
    [8]Matson.Testing reagent[P].United States Patent:4374041,Feberary 15,1983
    [1] Jagner D, Josefson M, Westterlund S. Determination of zinc, cadmium,lead and copper in sea water by means of computerized potentiometric stripping analysis [J]. Anal. Chim. Acta., 1981, 129(AUG), 153-161.
    
    [2] Hoyer B, Florence TM, Batley GE. Application of polymer-coated glassy carbon electrodes in anodic stripping voltammetry [J]. Anal. Chem.,1987, 59 (13): 1608-1614.
    
    [3] Turyan I, Mandler D. Electrochemical determination of trace amounts of gold (III) by anodic stripping voltammetry using a chemically modified electrode [J]. Anal. Chem., 1993, 65(15):2089-2092.
    
    [4] Feldman BJ, Osterloh JD, Hata BH, Dalessandro A. Determination of Lead in Blood by Square Wave Anodic Stripping Voltammetry at a Carbon Disk Ultramicroelectrode [J]. Anal. Chem.,1994,66(13):1983-1987.
    
    [5] Wu HP. Dynamics and Performance of Fast Linear Scan Anodic Stripping Voltammetry of Cd, Pb, and Cu Using In Situ-Generated Ultrathin Mercury Films [J]. Anal. Chem., 1996, 68(9):1639-1645.
    
    [6] Brainina KZ, Bond AM. Characterization of thick-layer graphite disposable voltammetric electrodes [J]. Anal.Chem. ,1995, 67(15) : 2586-2591.
    
    [7] Gao ZQ, Siow KS. Determination of trace amounts of iron by catalytic-adsorptive stripping voltammetry [J]. Talanta. 1996.43(5): 727-733.
    
    [8] Gao ZQ, Siow KS, Ng A. Catalytic voltammetric determination of molybdenum at a chemically modified carbon paste electrode [J].Electroanalysis, 1996.8(12):1183-1187.
    
    [9] Heppeler F, Sander S, Henze G. Determination of tin traces in water samples by adsorptive stripping voltammetry [J]. Anal. Chim. Acta. 1996.319(1-2) : 19-24.
    
    [10] Locatelli C, Vasca E, Bighi C, Fagioli F, Garai T. Determination of metals in a multicomponent system by differential pulse and alternating current anodic stripping voltammetry [J]. Electroanalysis. 1996.8(2): 165-170.
    
    [11] Brainina KZ, Neyman E. Electroanalytical Stripping Methods[M], New York: J. Wiley and Sons. 1993.
    
    [12] Richter P, Toral MI, Abbott B. Anodic stripping voltammetric determination of mercury in water by using a new electrochemical flow through cell [J]. Electroanal., 2002, 14(18):1288-1293.
    
    [13] Odashima K, Kotato M, Sugawara M, Umezawa Y. Voltammetric study on a condensed monolayer of a long alkyl cyclodextrin derivative as a channel mimetic sensing membrane [J]. Anal. Chem., 1993, 65(7):927-936.
    
    [14] Godinez LA, Lin J, Mufioz M, Coleman W, Rubin S, Parikh A, Zawodzinski TA, Loveday D, Ferraris JP, Karifer EA. Multilayer self-assembly of amphiphilic cyclodextrin hosts on bare and modified gold substrates:Controlling aggregation via surface modification [J]. Langmuir, 1998,14(1): 137-144.
    
    [15] Khan AR, Forgo P, Stine KJ, D' Souza VT. Methods for selective modifications of cyclodextrins [J]. Chem. Rev., 1998, 98(5):1977-1996.
    
    [16] Belyakova LA, Kazdobin KA, Belyakov VN, Ryabov SV, de Namor AFD,Supramolecular structures on silica surfaces and their adsorptive properties [J]. J Colloid Interf Sci, 2005, 283(2):488-494.
    
    [17] Raj CR, Ramaraj R. Electrochemical study of the cyclodextrin encapsulation of a macrocyclic nickel complex [J]. Electrochim. Acta.1999, 44(16): 2685-2691.
    
    [18] Harata K, Structural aspects of stereodifferentiation in the solid state [J]. Chem. Rev., 1998, 98(5) : 1803-1827.
    
    [19] Roa G, Ramirez-Silva MA, Romero-Romo MA, Galicia L. Determination of lead and cadmium using a polycyclodextrin-modified carbon paste electrode with anodic stripping voltammetry [J]. Anal. Bioanal. Chem.,2003, 377(4):763-769.
    
    [20] Yabe A, Kawabata Y, Niino H, Tanaka M, Ouchi A, Takahashi H, Tamura S, Tagaki W, Nakahara H, Fukuda K. Cis-trans isomerization of the azobenzenes included as guests in Langmuir-blodgett films of amphiphilic beta-cyclodextrin [J]. Chem. Lett. 1988, (1):1-4.
    
    [21] Odashima K, Kotato M, Sugawara M, Umezawa Y. Voltammetric study on a condensed monolayer of a long alkyl cyclodextrin derivative as a channel mimetic sensing membrane [J]. Anal. Chem. 1993, 65(7):927-936.
    
    [22] G. Nelles, M. Weisser, R. Back, P. Wohlfart, G. Wenz, S. Mittler-Neher,J. Am. Chem. Soc. 1996, 118, 5039
    
    [23] Rojas MT, Koniger R, Stoddart JF, Kaifer AE. Supported monolayers containing preformed binding-sites-synthesis and interfacial binding-properties of a thiolated beta-cyclodextrin derivative [J]. J.Am. Chem. Soc., 1995, 117(1):336-343.
    
    [24] Henke C, SteinemC, Janshoff A, Steffan G, Luftmann H, Sieber M, Galla HJ. Self-assembled monolayers of monofunctionalized cyclodextrins onto gold: A mass spectrometric characterization and impedance analysis of host-guest interaction [J]. Anal. Chem. 1996, 68(18):3158-3165.
    
    [25] Szejtli J. Introduction and general overview of cyclodextrin chemistry [J]. Chem. Rev., 1998, 98(5):1743-1753.
    
    [26] Yan JC, Dong SJ. Self-assembly of the pre-formed inclusion complexes between cyclodextrins and alkanethiols on gold electrodes [J]. Journal of Electroanalytical Chemistry 1997, 440(1-2): 229-238.
    
    [27] Feng XJ, Feng L. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J]. Journal of the American Chemical Society 2004, 126(1): 62-63.
    
    [28] Kitano H, Taira Y, Yamamoto H. Inclusion of phthalate esters by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode [J]. Anal. Chem. 2000, 72(13) :2976-2980.
    
    [29] Petter RC, Salek JS, Sikorski CT, Kumaravel G, Lin FT. Cooperative binding by aggregated mono-6-(alkylamino)-beta-cyclodextrins [J]. J. Am.Chem. Soc, 1990, 112(10):3860-3868.
    [30]Odashima K,Kotato M,Sugawara M,Umezawa Y.Voltammetric study on a condensed monolayer of a long alkyl cyclodextrin derivative as a channel mimetic sensing membrane[J].Anal.Chem.1993,65(?):927-936.
    [31]Kitano H,Taira Y,Yamamoto H.Inclusion of phthalate esters by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode [J].Anal.Chem.2000,72(13):2976-2980.
    [32]Yan XP,Sperling M,Welz B.Application of a macrocycle immobilized silica gel sorben to flow injection on-line microcolumn preconcentration and separation coupled with flame atomic absorption spectrometry for interference-free determination of trace lead in biological and environmental samples[J].Anal.Chem.,1999,71(19):4216-4222
    [33]申宝剑,童林荟,张宏伟,等.环糊精2位碳仲羟基的选择性磺酰化[J].有机化学,1991,11(3):265
    [34]Maeda Y,Fukuda T,Yamamoto H,Kitano H.Regio- and stereoselective complexation by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode[J].Langmuir,1997,13(16):4187-4189.
    [1]Miller LL,Vandemark MR.Electrode surface modification via polymer adsorption[J].J.Am.Chem.Soc.,1978,100(2):639-640.
    [2]Merz A,Bard AJ.Stable surface modified platinum-electrode prepared by coating with electroactive polymer[J].J.Am.Chem.Soc.,1978,100(10):3222-3223.
    [3]Doblhofer K,Nolte D,Ulstrup J.Polymer-film covered electrodes of stable electrochemical performance[J].Berichte der bunsen-gesellschaft-physical chemistry chemical physics,1978,82(4):403-408.
    [4]Nowok R,SchultzFA,Umana M,Abruna H,Murray RW.Chemically modified electrodes.14.attachment of reagents to oxide-free glassy carbon surfaces - electroactive rf polymer-films on carbon and platinum-electrodes[J].J.Electroanal.Chem.,1978,94(3):219-225.
    [5]Murray RW.Polymer modification of electrodes[J].Ann.Rev.Mater.Sci.,1984,14,145-169.
    [6]董绍俊.应用化学,1986,3(6):1.
    [7]Doblhofer K,Armstrong RD.Membrane-type coatings on electrodes[J].Electrochimica Acta,1988,33(4):453-460.
    [8]Chidsey CED,Murray RW.Electroactive polymers and macromolecular electronics[J].Science,1986,231(4733):25-31.
    [9]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,1995:296-350.
    [10]Dong SJ,Sun ZH,Lu ZL.A New kind of chemical sensor based on a conducting polymer film[J].Journal of the chemical society-chemical communications,1988,(15):993-995.
    [11]John R,Wallace GG.The use of microelectrodes as substrates for chemically modified sensors - a comparison with conventionally sized electrodes[J].J.Electroanal.Chem.,1990,283(1-2):87-98.
    [12]York F,Barendrecht E.Application and characterization of polypyrrole-modified electrodes with incorporated pt particles[J].Synthetic metals,1989,28(1-2):C121-C126.
    [13]Kuwabata S,Ito S,Yoneyama H.Copolymerization of pyrrole and thiophene by electrochemical oxidation and electrochemical-behavior of the resulting copolymers[J].J.Electrochem.Soc.,1988,135(7):1691-1695.
    [14]Naoi K,Ueyama K,Osaka T,Smyrl WH.Impedance analysis of ionic transport in polypyrrole-polyazulene copolymer and its charge-discharge characteristics[J].J.Electrochem.Soc.,1990,137(2):494-499.
    [15]Geissler U,Hallensleben ML,Toppare L.Conductive polymer composites and copolymers of pyrrole and n-vinylcarbazole[J].Synth.Met.,1991,40(2):239-246.
    [16]Yan JC,Dong SJ.Self-assembly of the pre-formed inclusion complexes between cyclodextrins and alkanethiols on gold electrodes[J].Journal of Electroanalytical Chemistry,1997,440(1-2):229-238.
    [17]Feng XJ,Feng h.Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J].Journal of the American Chemical Society 2004,126(1):62-63.
    [18]Kavallieratos K,Rosenberg JM,Bryan JC.Pb(Ⅱ) Coordination and Synergistic Ion-Exchange Extraction by Combinations of Sulfonamide Chelates and 2,2'-Bipyridine[J].Inorg.Chem.,2005,44(8):2573-2575.
    [19]Amundsen LH.The Benzenesulfonyl Derivatives of o-Nitroaniline and o-Phenylenediamine[J].J.Am.Chem.Soc.,1937,59(8):1466-1467.
    [20]Dubey PK,Kulkarni SM,Kumar RV.Studies on aroylation of o-phenylenediamine and subsequent reactions with electrophiles[J].Indian J.Chem.Sec B:Org.Chem.2002,41(6):1305-1309.
    [21]王箴.化工词典(第四版)[M].北京:化学工业出版社,2000:804.
    [22]汪尔康,卢小泉,康敬万.21世纪电分析化学[M].郑州:甘肃文化出版社,2002:196.
    [23]赵凤林,王亚婷,刘芳芳,李克安.桑色素-铝离子-核酸三元体系的研究 及其分析应用[J].北京大学学报(自然科学版),2001,37(6):741.
    [24]Sastry CSP,Rao KE,Vijaya D,Rao AR,Rao MV.Spectrophotometric methods or the determination of morin,quercetin,tannin and chlorogenic acid[J].J.Food Sci.rechnol.,1998,25(3):156-157.
    [25]林辉概,戈早川,李志良,俞汝勤.表面活性剂用于黄酮药物的薄层色谱分离鉴定的研究[J].药学学报,199l,26(6):471-474.
    [26]刘国根,黄宋献,邱冠周,胡岳华.钼一桑色素配合物的极谱波研究与应用[J].中南工业大学学报,1995,26(5):688-692.
    [27]黄菲,曾百肇,赵发琼,杨玉霞.桑色素在L一半胱氨酸自组装膜修饰金电极上的电化学行为研究[J].分析科学学报,2004,20(2):125-128.
    [28]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,1995:533:
    [29]Haeussling L,Ringsdorf H,Schmitt FJ,Knoll W.Biotinfunctionalized self-assembled monolayers on gold:surface Plasmon optical studies of specific recognition reactions[J].Langmuir,1991,7(9):1837-1840.
    [30]Tarlov MJ.Silver metalization of octadecanethiol monolayers self-assembled on gold[J].hangmuir,1992,8(1):80-89.
    [31]Zeng BZ,Ding XG,Zhao FQ,Yang YX.Electrochemical determination of copper(Ⅱ) by gold electrode modified with N-acetyl-h-cysteine[J].Anal.Lett.,2002,35(14):2246-2258.
    [32]Wang HS,Ju HX,Chert HY.Voltammetric behavior and detection of DNA at electrochemically pretreated glassy carbon electrode[J].Electroanal.,2001,13(13):1105-1109
    [33]Zeng BZ,Huang F.Electrochemical behavior and determination of fluphenazine at multi-walled carbon nanotubes/(3-mercaptopropyl)trimethoxysilanebilayermodifiedgold electrodes[J].Talanta,2004,64(2):380-386.
    [34]朱延松,许兵,邵会波,pH对半胱胺自组装膜在Fe(CN)_6~(3-/4-)溶液中的循环伏安的影响[J].首都师范大学学报(自然科学版).2005,26(4):49-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700