用户名: 密码: 验证码:
手性希夫碱类稀土配合物的合成及其在不对称催化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文设计并合成了5种Schiff碱及其稀土配合物,研究了配合物在催化环氧氯丙烷的立体选择性水解动力学拆分和不对称Biginelli反应中的应用。一、配体及其配合物的合成与表征
     以自制的胺为主体,合成并表征了5种手性Schiff碱配体:L1:(+)-(R)-1, 1'-联二萘-2, 2’-二胺-3, 5-二叔丁基水杨醛希夫碱; L2:二((R)-联二萘-2, 2’-二羟基-3-亚胺甲基)-二甘醇二胺希夫碱;L3:二((+)-(R)-1, 1'-联二萘-2, 2’-二羟基-3-亚甲胺基)-1, 2-环己二胺希夫碱;L4:(1R, 2R)-环己二亚氨甲基-吡啶希夫碱;L5:二((+)-(R, R, R, R,)-1, 1'-联二萘-2, 2’-二羟基-3-亚胺甲基)-1, 2-二苯基乙二胺希夫碱。其中配体L2为首次合成,同时得到了L4的晶体并测定了其晶体结构。在配合物的合成中,选用了廉价易得苦味酸盐。首次将苦味酸稀土盐配合物引入不对称催化。
     二、环氧氯丙烷的水解动力学拆分
     将合成的5种手性Schiff碱及其苦味酸的稀土配合物用于催化水解动力学拆分环氧氯丙烷。通过对催化剂、反应时间和反应温度的优化,得到了最佳催化条件。在对金属中心的筛选过程中,首次提出了金属离子半径大小对催化反应的影响。本文首次采用配体-金属盐体系直接作为催化剂,简化了实验操作。合成了一种双核金属催化剂,取得了令人满意的立体选择性拆分结果(产率49%,ee值>99%)。稀土配合物用于催化环氧氯丙烷水解动力学拆分为首次应用。
     三、不对称催化Biginelli反应
     将合成的5种手性Schiff及其配合物用于催化不对称的Biginelli反应。首先,对反应催化剂、溶剂、反应时间和反应温度优化,得到了最佳的催化Biginelli反应的条件;同时,研究了催化剂的回收效果;对反应的底物进行了扩展:所有产物的产率都达到了令人满意的效果;在水杨醛做底物的Biginelli反应中,产物是一种稠环结构,对其可能发生的反应做了探讨并找到了相关文献依据。把L3引入到反应当中,也得到很好的收率和ee值,这说明设计合成的两种手性催化剂L2和L3都具有不对称催化Biginelli的效果(其中L2催化的反应产率81%,ee值99%,L3催化反应产率80%)。催化剂回收两次效果最佳。我们在不对称催化过程中得到了一种新的物质,由此提出了Biginelli反应的新机理:是一种基于[4+2]环加成的反应。
In this paper, five Schiff bases and their rare earth complexes were synthesized and characterized, and the application of the complexes in catalyst for hydrosis kinetic resolution (HKR) of Epichlorohydrin and asymmetric Biginelli reaction were studied.
     1. Synthesis and characterization of ligands and their complexes The Schiff bases and their rare earth complexes was synthesized and characterized:
     L~1: (+)-(R)-2,2'-bis(3,5-di-tert-butyl-2-hydroxybenzylideneamino)- 1,1'-binaphthyl;
     L~2: N,N’-Bis[3-methylene-(R)-1’1’-bi-2-naphthol]-3-oxa-1,5-diaminopentane;
     L~3: (+)-(R,R,R,R)-Diaminocyclohexane-BINOL-salen;
     L~4: N,N’-Bis(2-methylenepyridine)-1,2-diaminocyclohexane;
     L~5: (+)-(R,R,R,R)-Diamino-1,2-diphenylethane-BINOL-salen.
     The ligand L2 was firstly reported and ligand L4 was characterized by X-ray single crystal diffraction analysis. During the synthesis of the complexes, we chose the lanthanide picrates (Ln=La, Sm, Yb) because of their cheapness and accessibility, which is firstly reported in the asymmetric catalyst.
     2. Catalyst for hydrosis kinetic resolution (HKR) of Epichlorohydrin
     The chiral Schiff base rare earth complexes are applied in catalyst for hydrosis kinetic resolution (HKR) of Epichlorohydrin. We developed the efficient conditions such as catalyst, time and temperature in HKR. The influence of atomic radius to catalystic activity was firstly proposed. The operation of HKR is simplified using the ligand-lanthanide picrate system and obtained the satisfying results (49% yield, 99% e.e.). At the same time, the excellent result (49% yield, >99% e.e.) was obtained by the firstly synthesized heterobimetal complex. Moreover, rare earth complexes using in HKR was firstly reported.
     3. Catalyst for asymmetric Biginelli reaction
     The chiral Schiff bases rare earth complexes were applied in asymmetric catalyst Biginelli reaction. The excellent reaction conditions were obtained by optimizing catalysts, solvents, time and temperature. At the same time, we studied the recycling of catalyst. The excellent results were also obtained by using ligand L3 (yield 80%) in the asymmetric catalyst. Finally, substrates were expanded and excellent results were obtained. It was found that the structure of products was tricycle compounds in which the salicylaldehyde served as substrate.
引文
[1]Ojima I, Catalytic Asymmetric synthesis, VCH: Weinheim, 2000
    [2]Jacoben E N, Pfaltz A, Yamamoto H, Comprehensive catalysis, Springer: Berlin, 1999
    [3] Noyori R, Asymmetric catalysis in organic synthesis. Wiley: New York, 1994
    [4]Nozaki H, Moriuti S, Takaya H, Asymmetric induction in carbenoid reaction by means of a dissymmetric copper chelate, Tetrahedron Lett., 1966, 7: 5239~5241
    [5] Tang W, Zhang X, New chiral phosphorusligands for enantioselective Hydrogenation, Chem. Rev., 2003, 103: 3029
    [6](a)Yamada T, Imagawa K, Nagata T, eds, Enantioselective epoxidation of unfunctionalized olefins with molecular oxygen and aldehyde catalyzed by optically active manganese(III) Complexes, Chem. Lett,. 1992, 21: 2231~2234 (b) Mukiyama T, Yamada T, Nagata T, eds, Asymmetric aerobic epoxidation of unfunctionalized olefins catalyzed by optically activeα-Alkoxycarbonyl, Chem. Lett., 1993, 22: 327~330 (c)Imagawa K, Nagata T, Yamada T, Mukiyama T, N-Alkyl imidazoles as effective axial ligands in the aerobic asymmetric epoxidation of unfunctionalized olefins catalyzed by optically active Manganese(III)-salen-type complex, Chem. Lett.1994, 23: 527~530 (d)Laurent G, Fethi B, First example of electroassisted biomimetic activation of molecular oxygen by a (salen)Mn epoxidation catalyst in a room-temperature ionic liquid, Chem. Commun., 2001, 1458~1459 (e)Adam W, Roschmann K J, Saha M, eds, Cis-Stilbene and (1,2,3)-(2-Ethenyl-3-methoxycyclopropyl)benzene as mechanistic probes in the MnIII(salen)-catalyzed epoxidatio
    n: influence of the oxygen source and the counterion on the Diastereoselectivity of the competitive concerted and radical-type Oxygen Transfer, J. Am. Chem. Soc., 2002, 124: 5068~5073
    [7]程晓丽,胡乃梁,李健,杂大环化合物的合成及应用,安徽教育学院学报,2005, 23, 86~89
    [8]Guerriero P, Casellato U, Tamburini S, eds, Lanthanide complexes with compartmental schiff bases, Inorg. Chim. Acta, 1987, 129: 127~138
    [9]李冬成,沈联芳等,稀土元素与3,4—二羟基苯甲醛缩邻氨基苯甲酸配合物的合成和表征,化学学报,1993,51:8~11
    [10]杜向东,俞贤达,非对称Schiff碱过渡金属配合物模拟酶催化烯烃环氧化(Ⅰ),高等学校化学学报, 1997, 18: 567~570
    [11]Elder R C, Tridentate and unsymmetrical tetradentate Schiff base ligands from salicylaldehydes and diamines: Their monomeric and dimeric nickel(II) complexes, Aust. J. Chem.,1978,31;35~45
    [12]Atkins R, Brewer G, Kokot G, eds, Copper(II) and nickel(II) complexes of unsymmetrical tetradentate Schiff base ligands, Inorg. Chem., 1985; 24: 127~134.
    [13]陈红卫,朱志昂,张智慧等.空间不对称席夫碱铜配合物的合成及其与金属卟啉的反应,无机化学学报,1996, 68~72
    [14]孟庆金,王瑞雪,游效曾,新的不对称双Schiff碱镍配合物高等学校化学学报,1990,11: 86~88
    [15]姚克敏,周文,鲁桂等,一种新的不对称Schiff碱与稀土配合物合成机理及波谱,中国科学(B辑),1999, 68~72
    [16](a)Seiji I, Hiroyuki M, Kohei N, eds, A highly enantioselective 1,3-dipolar cycloaddition reaction in alcoholic media: Ni(II)-pybox-tipsom catalyst, Tetrahedron, 2002, 58: 8281~8287 (b)Hisao N, Shinobu Y, Manabu K, eds, Electronic substituent effect of nitrogen ligands in catalytic asymmetric hydrosilylation of ketones: chiral 4-substituted bis(oxazolinyl)pyridines, J. Org. Chem., 1992, 57: 4306~4309
    [17]Hisao N, Soon-Bong P. and Kenji I., Stereoselectivity in hydrosilylative reduction of substituted cyclohexanone derivatives with chiral rhodium-bis(oxazolinyl)pyridine catalyst, Tetrahedron: Asymmetry, 1992, 3: 1029-1034
    [18]自国甫,尹承烈,铱(Ⅰ)联萘胺Schiff碱(BPMBNDI)配合物催化苯乙酮的不对称氢转移反应,化学学报,1998,70~74
    [19]Quang T., Nguyen, Jong H J, Synthesis and X-ray structure of a Cu(II) complex of N,N′-bis(2-pyridylmethylidene)-(R,R)-1,2-diaminocyclohexane and its catalytic application for asymmetric Henry reaction, Polyhedron, 2006, 25: 1787~1790
    [20]Zeng Z., Zhao G., Gao P., Tang H., eds, Synthesis of a novel chiral Schiff base of (R,R)-11,12-diamino-9,10-dihydro-9,10-ethanonanthracene and its application as ligand in Ti(IV) complex catalyzed asymmetric silylcyanation of aldehydes, Cata. Comm., 2007, 8: 1443~1446
    [21]Reetz M T, H aderiein G, Angermund K, Chiral Diketimines as Ligands in Pd-Catalyzed Reactions: Prediction of Catalyst Activity by the AMS Model, J. Am. Chem. Soc., 2000,122: 996~997
    [22]Ahn K H, Park S W, Choi S, eds, Enantioselective epoxidation of olefins catalyzed by new sterically hindered salen–Mn(III) complexes Tetrahedron Letters, 2001,42: 2485~2488
    [23]Ishitani H, Achiwa K, Synthesis of an Axially Dissymmetric Biphenylcarboxylate Ligand, BDME, and Asymmetric Cyclopropanation of Olefins with Diazoacetate Catalyzed by Its Dirhodium(II) Complex, Synlett, 1997,781~782
    [24]Niimi T, Uchida T, Irie R, eds, Co(II)–salen-catalyzed highly cis- andenantioselective cyclopropanation, Tetrahedron Lett., 2000, 41: 3647~3651
    [25]Yu C Y, Cohn O M, A concise synthesis of homochiral sedamines and related alkaloids. A new reductive application of Jacobsen's catalyst Tetrahedron Lett., 1999, 40: 6665~6668
    [26]Kasai N, Suzuki T, Furukawa Y, Chiral C3 epoxides and halohydrins: Their preparation and synthetic application, J. Mol. Cata. B: Enzymatic, 1998, 4: 237~252
    [27]Suzuki T, Kasai N,Generation of optically active glycerol derivatives by microbial resolution, Trend. Glycosci. Glycotech.,2003, 15: 329~349
    [28]Zhang W, Loebach J L, Wilson S R, eds, Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes, J. Am. Chem. Soc., 1990, 112: 2801~2803
    [29]Schaus S E, Branalt J, Jacobsen E N, Asymmetric Hetero-Diels-Alder Reactions catalyzed by chiral (Salen) Chromium(III) Complexes, J. Org. Chem., 1998, 63: 403~405
    [30]Jacobsen E N, Kakiuchi F, Konsler R G, eds, Enantioselective catalytic ring opening of epoxides with carboxylic acids, Tetrahedron Lett., 1997, 38: 773~776
    [31](a)Tokunaga M,Larrow J F,Jacobsen E N,eds, Asymmetric catalysis with water:Efficient inetic resolution of terminal epoxides by means of catalytic hyd mLysis, Science,1997,277: 936~938 (b)Schaus S E, Brandes B D, Larrow J F, eds, Catalyzed by Chiral (salen)CoIII Complexes. Practical Synthesis of Enantioenriched Terminal Epoxides and 1,2-Diols, 2002, 124: 1307~1315
    [32]Commercialization of the hydrolytic kinetic resolution of racemic epoxides: toward the economical large-scale production of enantiopure epichlorohydrin, Tetrahedron: Asymmetry, 2003, 14: 3589~3592
    [33]Annis D A, Jacobsen E N, A polymer-supported chiral Co(Salen) complexes: synthetic applications and mechanistic investigations in the Hydrolytic Kinetic Resolution of terminal epoxides, J. Am. Chem. Soc., 1999, 121: 4147~4154
    [34]Kim G J, Lee H, Kim S J, Catalytic activity and recyclability of new enantioselective chiral Co-salen complexes in the hydrolytic kinetic resolution of epichlorohydrine, Tetrahedron Letters, 2003, 44: 5005~5008
    [35]Cavazzini M, Quici S, Pozzi G, Hydrolytic kinetic resolution of terminal epoxides catalyzed by fluorous chiral Co(salen) complexes, Tetrahedron, 2002, 58: 3943~3949
    [36]Shepperson I, Quici S, Pozzi G, eds, Fluorous biphasic hydrolytic kinetic resolution of terminal epoxides, J. Fluorine Chem.,2004,125: 175~180
    [37]Jacobsen E N, Asymmetric Catalysis of Epoxide Ring-Opening Reactions, Acc. Chem. Res., 2000, 33:421~431
    [38]Hansen K B, Leighton J L, Jacobsen E N, On the Mechanism of Asymmetric Nucleophilic Ring-Opening of Epoxides Catalyzed by (Salen)CrIII Complexes, J. Am. Chem. Soc., 1996, 118: 10924~10925
    [39]Konsler R G, Karl J, Jacobsen E N, Cooperative Asymmetric Catalysis with Dimeric Salen Complexes, J. Am. Chem. Soc., 1998, 120: 10780~10781
    [40]Ready J M, Jacobsen E N, A practical oligomeric [(salen)Co] catalyst for asymmetric epoxide ring-opening reactions, Angew. Chem. Int. Ed.,2002, 41: 1374~1377
    [41]Nielsen L P C, Stevenson C P, Blackmond D G, eds, Mechanistic Investigation Leads to a Synthetic Improvement in the Hydrolytic Kinetic Resolution of Terminal Epoxides, J. Am. Chem. Soc., 2004, 126: 1360~1362
    [42]Kureshy R I, Khan N H, Abdi S H R,eds, Simultaneous production of chirally enriched epoxides and 1,2-diols from racemic epoxides via hydrolytic kinetic resolution (HKR), J. Mol. Cata. A: Chem., 2002, 179: 73~77
    [43]Song Y M,Yao X Q,Chen H L, eds, Highly enantiosdective resolution of terminal epoxides using polymeric ca mLysts, Tetrahedron Lett., 2002, 43: 6625~6627
    [44]White D E, Jacobsen E N, New oligomeric catalyst for the hydrolytic kinetic resolution of terminal epoxides under solvent-free conditions Tetrahedron: Asymmetry, 2003, 14: 3633~3638
    [45]Kwon M A,KlM G J, Synthesis of polymeric salen complexes and application in the enantioselective hydrolytic kinetic resolution of epoxides as catalysts, Catalysis Today,2003,87: 145~151
    [46]Shin C, Kim B,Kin G J, New chiral cobalt salen complexes containing Lewis acid BF3;a highly reactive and enantioselective catalyst for the hydrolytic kinetic resolution of epoxides, Tetrahedron Lett.,2004,45: 7429~7433
    [47]Schaus S E, Jacobsen E N, Dynamic kinetic resolution of epichlorohydrin via enantioselective catalytic ring opening with TMSN3. Practical synthesis of aryl oxazolidinone antibacterial agents, Tetrahedron Letters, 1996, 44: 7937~7940
    [48]Jacobsen E N, A symmetric catalysis of epoxide ring-opening reactions, Acc. Chem. Res., 2000, 33: 421~431
    [49]Hansen K B, Leighton J L, Jacobsen E N, On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (Salen)CrIII complexes, J. Am. Chem. Soc., 1996, 118: 10924~10925
    [50]Konsler R G, Karl J, Jacobsen E N, Cooperative asymmetric catalysis with dimeric Salen complexes, J. Am. Chem. Soc., 1998, 120: 10780-10781
    [51]Ready J M, Jacobsen E N, A practical oligomeric [(Salen)Co] catalyst for asymmetric epoxide ring-opening reactions, Angew. Chem. Int. Ed., 2002, 41: 1374~1377
    [52]Nielsen L P C, Stevenson C P, Blackmond D G, eds, Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides, J. Am. Chem. Soc., 2004, 126: 1360~1362
    [53] Do mLing A,Ugi I, Multicomponent reactions with isocyanides, Angew. Chem.Int. Ed.,2000, 39: 3168~3210
    [54]Atwal K S, Rovnyak G C, Kimball S D, eds, Dihydropyrimidine calcium channel blockers: 3-substituted-4-aryl-dihydro-6-nrethyl- 5-p-Cmidine cathoxylic acid esters as potent mimics of dihydropyridines, J. Med. Chem.,1990,33:2629~2635
    [55]Kappe C O, 100 years of the Biginelli dihydropyrimidine synthesis, Tetrahedron,1993,49:6937~6963
    [56]杨玲,郭延红,路军等,CoCl2·6H2O催化合成3,4-二氢嘧啶-2-酮衍生物,化学研究与应用,2002,14:7l0~711
    [57]路军,王飞利,百银娟等,NiCl2·6H2O催化的Biginelli反应——一锅法合成3,4-二氢嘧啶-2-酮,有机化学,2002,22(10):788~792
    [58]傅南雁,袁耀锋,庞美丽,等,利用三溴化铟催化的Biginelli反应原位合成3,4-二氢嘧啶-2-酮,高等学校化学学报,2003, 24:84~86
    [59]彭家建,邓友全,室温离子液体催化“一锅法”合成3,4-二氢嘧啶-2-酮,有机化学,2002, 22:77~79.
    [60]张素玲,靳通收.5-甲氧羰基-4-(4-甲氧苯基)-6-甲基-3,4-二氢嘧啶-2-酮的合成,化学试剂,2003,24(1):43~44
    [61]Studer A,Jeger P,Wipf P, eds, Fluorous Synthesis: Fluorous Protocols for the Ugi and Biginelli Multicomponent Condensations, J. Org. Chem., 1997,62:2917~2924
    [62]Hu E H, Sidler D R, Dolling, U H, Unprecedented Catalytic Three Component One-Pot Condensation Reaction: An Efficient Synthesis of 5-Alkoxycarbonyl- 4-aryl-3,4-dihydropyrimidin-2(1H)-ones, J. Org. Chem., 1998, 63: 3454~3457
    [63]Kappe C O, Falsone S F, Polyphosphate Ester-Mediated Synthesis of Dihydropyrimidines. Improved Conditions for the Biginelli Reaction, Synlett, 1998, 718~722
    [64]Franca B, Silvia C, Bettina F, Raimondo M, eds, Revision of the Biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF, Tetrahedron Lett., 1999, 40: 3465~3468
    [65]Kappe, C O, Kumar D V, Rajender S, Microwave-Assisted High-Speed Parallel Synthesis of 4-Aryl-3,4-dihydropyrimidin-2(1H)-ones using a Solventless Biginelli Condensation Protocol, Synthesis, 1999, 1799~1801
    [66]Jauk B, Belaj, F, Kappe, C O, Synthesis and reactions of Biginelli-compounds. Part 14.1 A rhodium-induced cyclization–cycloaddition sequence for the construction of conformationally rigid calcium channel modulators of the dihydropyrimidine type, J. Chem. Soc., Perkin Trans. 1, 1999, 307~314
    [67]Lu, J, Ma, H, Iron(III)-Catalyzed Synthesis of Dihydropyrimidinones. Improved Conditions for the Biginelli Reaction, Synlett, 2000, 63~64
    [68]Lu J, Bai Y, Wang Z, Yang B, eds, One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using lanthanum chloride as a catalyst, Tetrahedron Lett., 2000, 47: 9075~9078
    [69]Ma Y, Qian C, Wang L, eds, Lanthanide triflate catalyzed Biginelli Reaction.One-pot synthesis of dihydropyrimidinones under solvent-free conditions, J. Org. Chem., 2000, 65: 3864~3868.
    [70]Ranu B C, Hajra A, Jana U, Indium(III) Chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and Urea: An Improved Procedure for the Biginelli Reaction, J. Org. Chem., 2000, 65, 6270~6272
    [71] Peng J, Deng Y, Ionic liquids catalyzed Biginelli reaction under solvent-free conditions, Tetrahedron Lett., 2001, 42: 5917~5919
    [72] Kumar K A, Kasthuraia M, Reddy C S, eds, Mn(OAc)3·2H2O-mediated three-component, one-pot, condensation reaction: an efficient synthesis of 4-aryl-substituted 3,4-dihydropyrimidin-2-ones, Tetrahedron Lett., 2001, 42: 7873~7875
    [73]Dondoni A, Massi A, Parallel synthesis of dihydropyrimidinones using Yb(III)-resin and polymer-supported scavengers under solvent-free conditions. A green chemistry approach to the Biginelli reaction Tetrahedron Lett., 2001, 42: 7975~7978
    [74]Stadler, A, Kappe, C O, Automated library generation using sequential microwave-assisted chemistry. Application toward the Biginelli multicomponent condensation, J. Comb. Chem., 2001, 3: 624~630
    [75] Craig K S, Williams D E, Hollander I, eds, Novel sesterterpenoid and norsesterterpenoid RCE-protease inhibitors isolated from the marine sponge Hippospongia sp, Tetrahedron Lett., 2002, 43: 4801~4804
    [76]Xue S, Shen Y C, Li, Y L, eds, Synthesis of 4-Aryl-3,4-dihydropyrimidinones Using Microwave-assisted Solventless Biginelli Reaction, Chin, J, Chem, 2002, 20: 385~388
    [77]Chen R F, Qian C T, One-Pot Syntheses of 3,4-Dihydropyrimidine-2(1H)-thiones Catalyzed by La(OTf)_3, Chin, J, Chem, 2002, 20: 427~428
    [78] Ranu, B C, Hajra, A, Dey, S S, A practical and green approach towards synthesis of dihydropyrimidinones without any solvent or catalyst, Org. Process. Res. Dev., 2002, 6: 817~818
    [79] Li J T, Han J F, Yang J H, eds, An efficient synthesis of 3,4-dihydropyrimidin-2- ones catalyzed by NH2SO3H under ultrasound irradiation, Ultrason. Sonochem., 2003, 10: 119~122
    [80]Sabitha G, Reddy K, Kiran G S, Reddy C V, eds, One-pot synthesis of dihydropyrimidinones using iodotrimethylsilane. facile and new improved protocol for the Biginelli reaction at room temperature, Synlett, 2003, 858~861
    [81] Sabitha G, Reddy G S K, Reddy K B, eds, Vanadium(III) chloride catalyzed Biginelli condensation: solution phase library generation of dihydropyrimidin-(2H)-ones,Tetrahedron Lett., 2003, 44: 6497~6499
    [82] Salehi P, Dabiri M, Zolfigol M A, Silica sulfuric acid: an efficient and reusablecatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones, Tetrahedron Lett., 2003, 44: 2889~2891
    [83]Salehi P, Dabiri M, Fard M A B, Efficient Synthesis of 3,4-dihydropyrinidi-2(1H)-ones over silica sulfuric acid as a Reusable catalyst under solvent-free conditions, Heterocycles, 2003, 60: 2435~2440
    [84] Bose D S, Fatima L, Mereyala, H B, Green Chemistry Approaches to the Synthesis of 5-Alkoxycarbonyl-4-aryl-3,4- dihydropyrimidin-2(1H)-ones by a Three-Component Coupling of One-Pot Condensation Reaction: Comparison of Ethanol, Water, and Solvent-free Conditions, J. Org. Chem., 2003, 68: 587~590
    [85] Choudhary V R, Tillu V H, Narkhede, V S, eds, Microwave assisted solvent-free synthesis of dihydropyrimidinones by Biginelli reaction over Si-MCM-41 supported FeCl3 catalyst, Catal. Commun., 2003, 4: 449~453
    [86] Reddy K R, Reddy C V, Mahesh M, eds, New environmentally friendly solvent free synthesis of dihydropyrimidinones catalysed by N-butyl-N,N-dimethyl-α-phenylethylammonium bromide, Tetrahedron Lett., 2003, 44: 8173~8175
    [87]Maiti G, Kundu P, Guin C, One-pot synthesis of dihydropyrimidinones catalysed by lithium bromide: an improved procedure for the Biginelli reaction, Tetrahedron Lett., 2003, 44: 2757~2758
    [88]Tu S J, Fang F, Miao C B, Jiang H, eds One-pot synthesis of 3,4-dihydro- pyrimidin-2(1H)-ones using boric acid as catalyst, Tetrahedron Lett., 2003, 44: 6153~6155
    [89] Shanmugam P, Annie G, Preumal P T, Synthesis of novel 3,4-dihydropyrimidinones on water soluble solid support catalyzed by indium triflate, J. Heterocycl. Chem., 2003, 40: 879~883
    [90]Shaabani A, Bazgir A, Teimouri F, Ammonium chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions, Tetrahedron Lett., 2003, 44: 857~859
    [91]Paraskar A S, Dewkar G K, Sudalai A, Cu(OTf)2: a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones Tetrahedron Lett., 2003, 44: 3305~3308
    [92]Narsaiah A V, Basak A K, Nagaiah K, Cadmium Chloride: An Efficient Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones, Synthesis, 2004, 1253~1257
    [93]Sun Q, Wang Y Q, Ge Z M, Cheng T M,eds, A highly efficient solvent-free synthesis of dihydropyrimidinones catalyzed by zinc chloride, Synthesis, 2004, 1047~1052
    [94]Bose D S, Kumar R K, Fatima L, A remarkable rate acceleration of the one-pot three-component cyclo-condensation reaction at room temperature: An expedient synthesis of mitotic kinesin Eg5 inhibitor monastrol, Synthesis, 2004, 279~283
    [95]Gina G, Swarupananda M, Arijit C, In(OTf)3-catalysed one-pot synthesis of3,4-dihydropyrimidin-2(lH)-ones, J. Mole. Cata. A: Chem., 2004, 27: 47~50
    [96]Bose A K, Pednekar S, Ganguly S N, eds, A simplified green chemistry approach to the Biginelli reaction using‘Grindstone Chemistry’Tetrahedron Lett., 2004, 45: 8351~8353
    [97]Bhosale R S, Bhosale S V, Bhosale S V, eds, An efficient, high yield protocol for the one-pot synthesis of dihydropyrimidin-2(1H)-ones catalyzed by iodine, Tetrahedron Lett., 2004, 45: 9111~9113
    [98]Jenner G, Effect of high pressure on Biginelli reactions. Steric hindrance and mechanistic considerations, Tetrahedron Lett., 2004, 45: 6195~6198
    [99]Yadav J S, Reddy B V S, Sridhar P, eds, Green Protocol for the Biginelli Three-Component Reaction: Ag3PW12O40 as a Novel, Water-Tolerant Heteropolyacid for the Synthesis of 3,4-Dihydropyrimidinones Eur. J. Org. Chem., 2004, 552~557
    [100] Zhu Y L, Pan Y, Huang S, Trimethylsilyl Chloride: A Facile and Efficient Reagent for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones, Synth. Commun., 3167~3174
    [101] Chari M A, Syamasundar K, Silicagel supported sodium hydrogensulfate as a heterogenous catalyst for high yield synthesis of 3,4-dihydropyrimidin-2 (1H)-ones, J. Mole. Cata. A: Chem., 2004, 221: 137~139
    [102]Gholap A R, Venkatesan K, Daniel T, eds,Ionic liquid promoted novel and efficient one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones at ambient temperature under ultrasound irradiation, Green Chem., 2004, 6: 147~150
    [103]Yarapathi R V, Kurva S, Tamishetti S, Synthesis of 3,4-dihydropyrimidin-2(1H)ones using reusable poly(4-vinylpyridine- co-divinylbenzene)–Cu(II)complex, Cata. Commun. 2004, 5: 511~513
    [104]Gohain M, Prajapati D, Sandhu J S, A Novel Cu-catalysed Three-component One-pot Synthesis of Dihydro-pyrimidin-2(1H)-ones Using Microwaves under Solvent-free Conditions, synlett, 2004, 235~239 ,
    [105]Badaoui H, Bazi F, Sokori S, eds, One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Using ZnCl2, CuCl2, NiCl2 and CoCl2 Doped Hydroxyapatite, 2005, 2: 561~565
    [106]De S K, Gibbs R A, Ruthenium(III) chloride-catalyzed one-pot synthesis of 3,4-dihydro-pyrimidin-2-(1H)-ones under solvent-free conditions, Synthesis ,2005, 1748~1751
    [107]Salehi H, Guo Q X, Efficient magnesium bromide-catalyzed one-pot synthesis of substituted 1,2,3,4-tetrahydropyrimidin-2-ones under solvent-free Conditions, Chin. J. Chem., 2005, 23: 91~97
    [108] Saxena I, Borah D C, Sarma J C, Three component condensations catalyzed by iodine–alumina for the synthesis of substituted 3,4-dihydropyrimidin-2(1H)-ones under microwave irradiation and solvent-free conditions, Tetrahedron Let., 2005, 46:1159~1160
    [109]Sabitha G, Reddy K B, Yadav J S, eds, Ceria/vinylpyridine polymer nanocomposite: an ecofriendly catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones, Tetrahedron Lett., 2005, 46: 8221-8224
    [110]Jiang Z D, Chen R F, Synthesis of 3,4-Dihydropyrimidine-2(1H)-thiones and Quinazolin-4(3H)-ones over Yb(III)-Resin Catalyst Under Solvent-free Conditions, Synth. Commun. 2006, 7: 503~509
    [111]Bose A K, Manhas M S, Pednekar S, eds, Large scale Biginelli reaction via water-based biphasic media: a green chemistry strategy,Tetrahedron Lett., 2005,46: 1901~1903
    [112]Heravi M M, Bakhtiari K, Bamoharram F F, 12-Molybdophosphoric acid: A recyclable catalyst for the synthesis of Biginelli-type 3,4-dihydropyrimidine-2(1H)-ones, Cata. Commun., 2006, 7: 373~376
    [113]Rafiee E, Jafari H, A practical and green approach towards synthesis of dihydropyrimidinones: Using heteropoly acids as efficient catalysts Bio. Med. Chem. Lett., 2006, 16, 2463~2466
    [114]Fazaeli R, Tangestaninejad S, Aliyan, eds, One-pot synthesis of dihydropyrimidinones using facile and reusable polyoxometalate catalysts for the Biginelli reaction, Appl. Cata. A: General, 2006, 309, 44~51
    [115]Russowsky D, Canto R F, Sanches S A, eds, Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: Monastrol, oxo-monastrol and oxygenated analogues. Bioorg. Chem. 2006, 34: 173~182
    [116]Chen W Y, Qin S D, Jin J R, HBF4-catalyzed Biginelli reaction: One-pot synthesis of dihydropyrimidin-2(1H)-ones under solvent-free conditions Cata. Commun., 2007, 8: 123~126
    [117]Reddy V Y, Sambasivudu K, Shekharam T, Synthesis of 3,4-dihydropyrimidin-2(1H)ones using reusable poly(4-vinylpyridineco-divinylbenzene)–Cu(II)complex, Cata. Commun., 2004,5: 511~513
    [118]Martínez S, Meseguer M, Casas L, eds, Silica aerogel-iron oxide nanocomposites: recoverable catalysts in conjugate additions and in the Biginelli reaction, Tetrahedron 2003, 59: 1553~1556
    [119]Dondoni A, Massi A, Parallel synthesis of dihydropyrimidinones using Yb(III)-resin and polymer-supported scavengers under solvent-free conditions. A green chemistry approach to the Biginelli reaction, Tetrahedron Lett., 2001, 42, 7975~7978
    [120]Reddy K R, Reddy C V, Mahesh M, eds, New environmentally friendly solvent free synthesis of dihydropyrimidinones catalysed by N-butyl-N,N-dimethyl-α- phenylethylammonium bromide, Tetrahedron Lett., 2003, 44: 8173~8175
    [121] Salehi P, Dabiri M, Zolfigol M A, eds, Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones,Tetrahedron Lett. 2003, 44: 2889~2891
    [122]Chari M A, Syamasundar K, Silicagel supported sodium hydrogensulfate as a heterogenous catalyst for high yield synthesis of 3,4-dihydropyrimidin-2 (1H)-ones, J. Mole. Cata. A: Chem., 2004, 221, 137~139
    [123]Li W, Lam Y, Solid-Phase Synthesis of 3,4-Dihydro-pyrimidine-2-ones Using Sodium Benzenesulfinate as a Traceless Linker, J. Comb. Chem., 2005, 7: 721~725
    [124] Lengar A, Kappe C O, Tunable Carbon-Carbon and Carbon-Sulfur Cross-Coupling of Boronic Acids with 3,4-Dihydropyrimidine-2-thiones, Org. Lett., 2004, 6: 771~774
    [125]Kang F A.; Kodah J, Guan Q, eds, Efficient Conversion of Biginelli 3,4-Dihydropyrimidin-2(1H)-one to Pyrimidines via PyBroP-Mediated Coupling, J. Org. Chem., 2005, 70: 1957~1960.
    [126]Yamamoto K, Chen Y G, Buono F G, Oxidative Dehydrogenation of Dihydropyrimidinones and Dihydropyrimidines, Org. Lett., 2005, 7: 4673~4676
    [127]Legeay J C, Eynde J J V, Bazureau J P, A new approach to N-3 functionalized 3,4-dihydropyrimidine-2(1H)-ones with 1,2,4-oxadiazole group as amide isostere via ionic liquid-phase technology, Tetrahedron Lett. 2007, 48: 1063~1068
    [128]Khanetskyy B, Dallinger D, Kappe C O, Combining Biginelli Multicomponent and Click Chemistry: Generation of 6-(1,2,3-Triazol-1-yl)-Dihydropyrimidone Libraries, J. Comb. Chem., 2004, 6: 884~892
    [129]Hirose T, Sunazuka T, Shirahata T, eds,Short Total Synthesis of (+)-Madindolines A and B, Org. Lett., 2002, 4: 501~503
    [130] Dallinger D, Gorobets N Y, Kappe C O, High-Throughput Synthesis of N3-Acylated Dihydropyrimidines Combining Microwave-Assisted Synthesis and Scavenging Techniques, Org. Lett., 2003, 5: 1205~1208
    [131](a)Bussolari J C, McDonnell P A, A New Substrate for the Biginelli Cyclocondensation: Direct Preparation of 5-Unsubstituted 3,4-Dihydropyrimidin-2(1H)-ones from aβ-Keto Carboxylic Acid, J. Org. Chem., 2000, 65: 6777~6779 (b) Wang Z T, Xu L W, Xia C G,eds, Novel Biginelli-like three-component cyclocondensation reaction: efficient synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones, Tetrahedron Lett., 2004, 45: 7951~7953 (c) Liang B, Wang X, Wang J X, eds, New three-component cyclocondensation reaction: microwave-assisted one-pot synthesis of 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions, Tetrahedron, 2007, 63: 1981~1986
    [132]Byk G, Gottlieb H E, Herscovici J, eds, New Regioselective Multicomponent Reaction: One Pot Synthesis of Spiro Heterobicyclic Aliphatic Rings J. Comb. Chem., 2000, 2: 732~735
    [133] Byk G, Kabha E, Anomalous Regioselective Four-Member MulticomponentBiginelli Reaction II: One-Pot Parallel Synthesis of Spiro Heterobicyclic Aliphatic Rings, J. Comb. Chem., 2004, 6: 596~603
    [134] Kappe C O, Biologically active dihydropyrimidones of the Biginelli-type—a literature survey, Eur. J. Med. Chem., 2000, 35: 1043~1052
    [135](a) Rovnyak G C, David Kimball S, Beyer B, eds, Calcium Entry Blockers and Activators: Conformational and Structural Determinants of Dihydropyrimidine Calcium Channel Modulators, J. Med. Chem., 1995, 38: 119~129 (b) Mayer, T U, Kapoor T M, Haggarty S J, eds, Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen, Science, 1999, 286: 971~974 (c)Deres K, Inhibition of Hepatitis B Virus Replication by Drug-Induced Depletion of Nucleocapsids, Science, 299: 893~896
    [136](a) Dondoni A, Massi A, Sabbatini S, eds, Three-Component Biginelli Cyclocondensation Reaction Using C-Glycosylated Substrates. Preparation of a Collection of Dihydropyrimidinone Glycoconjugates and the Synthesis of C-Glycosylated Monastrol Analogues, J. Org. Chem., 2002, 67: 6979~6994 (b) Dondoni A, Massi A, Sabbatini S, Improved synthesis and preparative scale resolution of racemic monastrol, Tetrahedron Lett., 2002, 43, 5913~5916 (c)Efficient synthesis of the optically active dihydropyrimidinone of a potentμ-selective adrenoceptor antagonist Can. J. Chem., 2002, 80: 646~652 (d) Schnell B, Strauss U T, Verdino P, eds, Synthesis of enantiomerically pure 4-aryl-3,4-dihydropyrimidin-2(1H)-ones via enzymatic resolution: preparation of the antihypertensive agent (R)-SQ 32926, Tetrahedron: Asymmetry, 2000,11: 1449~1453 (e)Schnell B, Krenn W, Faber K, eds Synthesis and reactions of Biginelli-compounds. Part 23. Chemoenzymatic syntheses of enantiomerically pure 4-aryl-3,4-dihydropyrimidin-2(1H)-ones, J. Chem. Soc., Perkin Trans. 1, 2000, 4382~4390
    [137]Barrow J C, Nantermet P G, Selnick H G, eds, Synthesis and reactions of biginelli compounds ?5: Facile preparation and resolution of a stable 5-dihydropyrimidinecarboxylic acid, Tetrahedron, 1992, 48: 5473~5480
    [138]In vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as potent and selective 1A receptor antagonists for the treatment of benign prostatic hyperplasia, J. Med. Chem., 2000, 43: 2703~2718
    [139]Karnail S A, Brian N S, Steven E U, eds, Dihydropyrimidine calcium channel blockers. 3.3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxyl-ic acid esters as orally effective antihypertensive agents, J. Med. Chem., 1991, 34: 806~811
    [140]George C R, Karnail S A, Anders H S, eds, Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents, J. Med. Chem., 1992, 35: 3254~3263
    [141] Groven G J, Dalonzo A J, Parhm C S, eds, Cardioprotection with the K[ATP]opener cromakalin is not correlated with ischemic myocardial action potential duration, J. Cardiovasc. Pharm., 1995, 26, 145~152
    [142]Schnell B, Krenn W, Faber Kurt, eds, synthesis and reactions of Biginelli-compounds. Part 23. Chemoenzymatic syntheses of enantiomerically pure 4-aryl-3,4-dihydropyrimidin-2(1H)-ones, J. Chem. Soc., Perkin Trans. 1, 2000, 4382~4390
    [143]Schnell B, Struss U T, Verdino P, eds, Synthesis of enantiomerically pure 4-aryl-3,4-dihydropyrimidin-2(1H)-ones via enzymatic resolution: preparation of the antihypertensive agent (R)-SQ 32926 Tetrahedron: Asymmetry, 2000, 11: 1449~1453
    [144]Lewandowski K, Murer P, Svec F, eds, Highly selective chiral recognition on polymer supports: preparation of a combinatorial library of dihydropyrimidines and its screening for novel chiral HPLC ligands, Chem. Commun., 1998, 2237~2238
    [145]Lewandowski K, Murer P, Svec F, eds,A combinatorial approach to recognition of chirality: Preparation of highly enantioselective aryl-Dihydropyrimidine Selectors for Chiral HPLC, J. Comb. Chem., 1999, 1: 105~112
    [146]Kleidernigg O P, Kappe C O,Separation of enantiomers of 4-aryldihydro- pyrimidines by direct enantioselective HPLC. A critical comparison of chiral stationary phases, Tetrahedron: Asymmetry, 1997, 8: 2057~2067
    [147]Wang F, Loughlin T, Dowling T, eds, Enantiomeric separation of enzymatic hydrolysis products of dihydropyrimidinone methyl ester with cationic cyclodextrin by capillary electrophoresis, J. Chromatogr. A, 2000, 872: 279~288
    [148]Lecnik O, Schmid M G, Kappe C. O, eds Chiral separation of pharmacologically active dihydropyrimidinones with carboxymethyl- -cyclodextrin, Electrophoresis, 2001, 22: 3198~3202,
    [149]Krenn W, Verdino P, Uray G, eds,Determination of absolute configuration in 4-aryl-3,4-dihydro-2(1H)-pyrimidones by high performance liquid chromatography and CD spectroscopy, Chirality, 1999, 11: 659~662
    [150]Uray G, Verdino P, Belaj F, eds, Absolute Configuration in 4-Alkyl- and 4-Aryl-3,4-dihydro-2(1H)-pyrimidones: A Combined Theoretical and Experimental Investigation, J. Org. Chem., 2001, 66, 6685~6694
    [151](a) Design and synthesis of new classes of heterocyclic C-Glycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent Reactions (AMCRs) Dondoni A, Massi A, Acc. Chem. Res., 2006; 39(7); 451-463 (b)Kappe C O, Zhu J H, eds, In Multicomponent Reactions, Bienayme,; Wiley-VCH: Weinheim, Germany, 2005, 95 (c)Kappe C O, Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog, Acc. Chem. Res., 2000, 33: 879~888
    [152] Kappe C O, Uray G, Roschger P,eds, Synthesis and reactions of biginelli compounds ?5. Facile preparation and resolution of a stable5-dihydropyrimidinecarboxylic acid, Tetrahedron, 1992,48, 5473~5480
    [153]Dondoni A, Massi A, Sabbatini S, Towards the synthesis of C-glycosylated dihydropyrimidine libraries via the three-component Biginelli reaction. A novel approach to artificial nucleosides, Tetrahedron Lett., 2001, 42: 4495~4497
    [154]Highly Enantioseletive Biginelli Reaction Using a New Chiral Ytterbium Catalyst: Asymmetric Synthesis of Dihydropyrimidines, Huang Y, Yang F, Zhu C, J. Am. Chem. Soc., 2005, 127: 16386~16387.
    [155]Chen X H, Xu X Y, Liu H, eds, Highly Enantioselective Organocatalytic Biginelli Reaction, J. Am. Chem. Soc., 2006, 128: 14082~14083
    [156]Prasad A K, Mukherjee C, Singh S K, eds, Novel selective biocatalytic deacetylation studies on dihydropyrimidinones, J. Mol. Cata. B: Enzymatic, 2006, 40: 93~100
    [157]Dondoni A, Massi A, Minghini E, eds, Model Studies toward the Synthesis of Dihydropyrimidinyl and Pyridyl -Amino Acids via Three-Component Biginelli and Hantzsch Cyclocondensations, J. Org. Chem., 2003, 68: 6172~6183
    [158] Kappe C O, A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for an N-Acyliminium Ion Intermediate, J. Org. Chem., 1997, 62: 7201~7204
    [159]傅南雁,袁耀锋,庞美丽,等,利用三溴化铟催化的Biginelli反应原位合成3,4-二氢嘧啶-2-酮,高等学校化学学报,2003, 24:84~86
    [160]彭家建,邓友全,室温离子液体催化“一锅法”合成3,4-二氢嘧啶-2-酮,有机化学,2002, 22:77~79.
    [161]Franklin A S, Ly S K, Mackin G H, eds,Application of the Tethered Biginelli Reaction for Enantioselective Synthesis of Batzelladine Alkaloids. Absolute Configuration of the Tricyclic Guanidine Portion of Batzelladine B, J. Org. Chem., 1999, 64: 1512~1519.
    [162]Heys L, Moore C G, Murphy P J, The guanidine metabolites of Ptilocaulis spiculifer and related compounds; isolation and synthesis, Chem. Soc. Rev., 2000, 29: 67~68
    [163]Overman L E, Rabinowitz M H, Renhowe P A,Enantioselective Total Synthesis of (-)-Ptilomycalin A, J. Am. Chem. Soc., 1995, 117: 2657~2658
    [164]Cohen F, Overman L E, Ly Sakata S K, Asymmetric Total Synthesis of Batzelladine D, Org. Lett., 1999, 1: 2169~2172
    [165]Cohen F, Collins S K, Overman L E, Assembling Polycyclic Bisguanidine Motifs Resembling Batzelladine Alkaloids by Double Tethered Biginelli Condensations, Org. Lett., 2003, 5: 4485~4488
    [166]Larrow J F, Jacobsen E N, A Practical Method for the Large-Scale Preparation of [N,N-Bis(3,5-di-tert-butylsalicy1idene)-1,2-cyclohexanediamin] manganese (111) Chloride, a Highly Enantioselective Epoxidation Catalyst, J. Org. Chem. 1994,59, 1939~1942
    [167]Brown K J, Berry M S, Murdoch J R., Synthesis of optically active 2,2'-dihalo-1,1'-binaphthyls via stable diazonium salts, J. Org. Chem., 1985; 50: 4345~4349
    [168](a) Atkinson I M, Limdoy L F, Matthews O A, eds, New macrocyclic legends synthetic, crystallographic and computational studies of a new N2O6-Heteroatom Cage, Aust. J. Chem., 1994, 47: 1155~1162 (b)Gamsow O A, kausar A R, Triplett K B, Synthesis and characterization of some bifunctional 2B:2:1 cryptands, J. Heter. Chem.,1981, 18: 297~302 (c) Nair M K M, Radhakrishnar P K, Synthesis and characterization of iodide complexes of Yttrium and Lanthanides with 1, 2-(dimino-4’-antipyrinyl) ethane, Synth React Inorg Met.-Org Chem, 1995,25(7):1077~1089
    [169]Markovac A, Stevens C L, Ash A B, eds, Synthesis of oximes. III. Iodine dimethyl sulfoxide reaction with methylpyridines, J. Org. Chem., 1970, 35: 841~843
    [170]Zupancic, B G, Sopcic M, Preparation of Alkoxymethyl and Alkoxyethoxymethyl Derivatives of Acylanilines using Polyethylene Glycols as Phase Transfer Catalysts, Synthesis, 1982, 942~944
    [171]陈寿山,《金属有机化合物合成手册》,化学工业出版社,北京,1986,30
    [172]Zhang H C, Huang W S, Pu L Biaryl-Based Macrocyclic and Polymeric Chiral (Salophen)Ni(II) Complexes: Synthesis and Spectroscopic Study, J. Org. Chem., 2001, 66: 481~487.
    [173]Matsunaga S, Das J, Roels J, Vogl E M,eds Catalytic Enantioselective meso-Epoxide Ring Opening Reaction with Phenolic Oxygen Nucleophile Promoted by Gallium Heterobimetallic Multifunctional Complexes, J. Am. Chem. Soc, 2000, 122: 2252~2260
    [174](a)Harada T, Hiraoka Y, Kusukawa T, eds, Phenylenebis(ethynyl)-Tethered Bis-BINOL Ligands for Enantioselective Catalyst Based on Dimeric Ti(IV) Aggregate, Org. Lett., 2003, 5: 5059~5062 (b)Chen Y, Yekta S, Martyn L J P, eds, Regioselective Substitution of Fluorine in F8BINOL as a Versatile Route to New Ligands with Axial Chirality, Org. Lett., 2000; 2: 3433~3436 (c)Lee S J, Hu A, Lin W, The First Chiral Organometallic Triangle for Asymmetric Catalysis, J. Am. Chem. Soc., 2002, 124: 12948~12949 (d)Wu C D, Hu A, Zhang L, A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis, J. Am. Chem. Soc., 2005, 127: 8940~8941
    [175]李珺主编,《综合化学实验》,西北大学出版社,1~6
    [176]Pikul S, Corey E J, (1R,2R)-(+)- and (1S,2S)-(-)-1,2-diphen-,1,2-ethylenediamine, Org. Syn., 1993, 71, 22-26
    [177]Hansen K B , Leighton J L , Jacobsen E N, On the Mechanism of Asymmetric Nucleophilic Ring-Opening of Epoxides Catalyzed by (Salen)CrIII Complexes, J. Am.Chem. Soc., 1996, 118: 10924~10925
    [178]Brandes B D, Jacobsen E N, Synthesis of enantiopure 3-chlorostyrene oxide via an asymmetric epoxidation-hydrolytic kinetic resolution sequence, Tetrahedron: Asymmetry, 1997,8: 3927~3933
    [179]Schaus S E , Branalt J , Jacobsen E N. Total Synthesis of Muconin by Efficient Assembly of Chiral Building Blocks, J. Org. Chem.,1998,63: 4876~4877
    [180]Gurjar M K, Sarma B V N B S , Sadalapure K, eds, A Practical Synthesis of (R)- and (S)-Benzylglycidols by Hydrolytic Kinetic Resolution, Synthesis, 1998, 424
    [181]Savle P S , Lamoreaux M J , Berry J F, eds, A convenient resolution of long-chain alkyl epoxides with Jacobsen's salen(Co)III(OAc) catalysts, Tetrahedron: Asymmetry, 1998, 9: 1843~1846
    [182]Hou X L , Li B F , Dai L X, Synthesis of novel and enantiomerically pure epoxypropylamine: a divergent route to the chiralβ-adrenergic blocking agents, Tetrahedron: Asymmetry, 1999, 10, 2319~2326
    [183]Yu Q , Wu Y K, Ding H , Wu Y L. The first total synthesis of 4-deoxyannomontacin, J. Chem. Soc., Perkin Trans. 1, 1999 , 1183~1189
    [184]李连生,吴毓林,手性(salen)Co在不对称催化反应和天然产物合成中的应用,有机化学,2000,20:689~700
    [185](a)Shibasaki M, Sasai H, Arai T, Asymmetric Catalysis with Heterobimetallic Compounds, Angew. Chem. Int. Ed. Eng., 1997, 36, 1236~125 (b)Kim Y S, Matsunaga S, Das J, eds, Stable, Storable, and Reusable Asymmetric Catalyst: A Novel La-linked-BINOL Complex for the Catalytic Asymmetric Michael Reaction, J. Am. Chem. Soc., 2000, 122: 6506~6507 (c)Vogl E M, Matsunaga S, Kanai M, eds, Linking BINOL: C2-symmetric ligands for investigations on asymmetric catalysis, Tetrahedron Lett. 1998, 43, 7917~7920 (d)Helgeson R C, Tarnowski T L, Cram D J, Host-guest complexation. 19. Cyclic, bicyclic, and tricyclic polyether systems, J. Org. Chem.; 1979; 44(14); 2538~2550
    [186] Aldehyde-urea derivatives of aceto-and oxaloacetic acids P Biginelli, Gazz. Chim. Ital, 1893, 23, 360~365
    [187] Atwal K S, Rovnyak G C, Schwartz J, eds, Dihydropyrimidine calcium channel blockers: 2-heterosubstituted 4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines, J. Med. Chem.; 1990; 33(5); 1510~1515.
    [188] Kappe C O, 100 years of the biginelli dihydropyrimidine synthesis, Tetrahedron, 1993, 49, 6937~6963
    [189]Atwal K S, Swanson B N, Unger S E, eds, Dihydropyrimidine calcium channel blockers. 3.3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents, J. Med. Chem., 1991, 34: 806~811.
    [190]Rovnyak G C, Atwal K S, Hedberg A,eds,Dihydropyrimidine calcium channelblockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents, J. Med. Chem., 1992, 35:3254~3263
    [191]Deres K, Schr?der C H, Paessens A, eds, Inhibition of Hepatitis B Virus Replication by Drug-Induced Depletion of Nucleocapsids, Science, 2003, 299: 893~896
    [192]Kappe C O, Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog, Acc. Chem. Res., 2000, 33: 879~888
    [193]Kappe C O, Biologically active dihydropyrimidones of the Biginelli-type—a literature survey, Eur. J. Med. Chem., 2000, 35: 1043~1052
    [194]Researches on Pyrimidines. CXXXV. Uracil-glycol, Johnson T B, Dyer E, J. Am. Chem. Soc., 1933, 55: 3781~3783
    [195]Sweet F, Fissekis J D, Synthesis of 3,4-dihydro-2(1H)-pyrimidinones and the mechanism of the Biginelli reaction, J. Am. Chem. Soc., 1973, 95: 8741~8749
    [196]Kappe C O, A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for an N-Acyliminium Ion Intermediate, J. Org. Chem., 1997, 62: 7201~7204
    [197]Dalton D R, Foley H G, O-Carbamoyl oximes, J. Org. Chem.; 38; 1973; 4200~4203
    [198] Jose B, Miguel T, Alfredo B, A Simple, Regioselective Synthesis of 5,6-Dihydro-1,3,5-triazine-2,4(1H,3H)-dione Derivatives from N-Trimethylsilyl Imines via 1,3-Diazabutadienes, Synthesis, 1989, 3, 228~229
    [199]Fu N Y, Yuan Y F, Cao Z, eds, Indium(III) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction, Tetrahedron, 2002, 58: 4801~4807

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700