用户名: 密码: 验证码:
偶氮分子为连接臂的金属离子探针的设计、合成及光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以偶氮苯为母体,在其两端连接不同的识别基团和荧光团,得到了一系列性质各异的金属离子探针,用荧光光谱和紫外光谱研究了这类探针对不同金属离子的识别能力。
     在连接臂上分别引入O、N和S原子等作为识别基团,合成了侧链中不含荧光团的偶氮类化合物,测定了在紫外光照射下金属离子对光致异构化的影响。发现侧链基团的给电子能力越强,达到异构化平衡的时间越长,顺式异构体的比例也越大。同时发现一种对Cu~(2+)有紫外响应的偶氮化合物,通过研究其紫外和荧光光谱变化,证实该化合物与Cu~(2+)络合形成1:2的络合物。
     当偶氮苯两侧为9-蒽甲硫基时,得到了一类Hg~(2+)荧光增强型探针,该类探针为典型的PET荧光探针。在该体系中,除了S原子参与的PET过程外,还首次发现了偶氮分子的共轭π电子体系参与的PET过程。基于此机理,我们设计合成了以二甲胺基为供电基的含蒽的荧光探针,研究证明,后者不仅对Hg~(2+)的识别具有专一性和高灵敏性,而且加入Hg~(2+)后紫外光谱发生明显红移,颜色由黄色变成红色。
     以萘为荧光团时,分别用含S和N原子的侧链连接,得到了完全不同的识别效果。当侧链为亚丙二硫基连接时,得到的偶氮化合物对Cu~(2+)有专一性识别作用,且连接位置的改变对识别能力有很大的影响。我们用GAUSSIAN 03程序计算了该类化合物与Cu~(2+)的配位结构,发现偶氮分子中的N原子和侧链上的S原子都参与了配位,与Cu~(2+)形成1:1络合物,通过荧光滴定实验证实了该推论的正确性。以N原子代替S原子时,得到的偶氮类化合物对金属离子没有明显的选择性识别,同样以计算化学手段研究了这种识别能力的差异性,为今后设计合成荧光探针提供了理论基础。
A series of novel fluorescent probes for metal ions with different receptors were designed and synthesized based on the azobenzene.
     The UV-visible and fluorescence properties of azobenzene derivatives with non-fluorescent groups in the receptors were investigated. O, N and S atoms were introduced into the receptors respectively as a ligand of metal ions. The cis/trans ratios of these compounds under irradiation of a high-pressure Hg-lamp equipped with a color filter (λ<360 nm), as well as and the effects of metal ions on photoisomerization were studied. The probe A6 was designed to exhibit selectivity to Cu~(2+).
     Two novel fluorescent probes (C1 and C2) with a receptor containing anthracene group were designed and synthesized for recognition of heavy metal ions. It was found that C1 and C2 show a pronounced fluorescence enhancement response to Hg~(2+), respectively. Theπelectrons of the azobenzene probes exhibit photoinduced electron transfer (PET) effects to the fluorescent anthracene group as well as atom S, which was firstly reported in this paper. C4 was designed based on the above studies and it has higher selectivity to Hg~(2+) than C1 and C2.
     The naphthyl group was also introduced to the azobenzene derivatives connected with 1,3-bis(methylthio)propane and N,N’-dimethylpropane-1,3-diamine, respectively. The fluorescent probe E2 show fluorescence enhancement response to Cu~(2+). The mechanism of this selectivity was proposed with the aid of computational chemistry (program of GAUSSIAN 03).
引文
[1]黄晓峰,张远强,张英起,荧光探针技术,北京:人民军医出版社,2004, 1–3.
    [2]许金钩,王尊本,荧光分析法,北京:科学出版社,2006, 6–7.
    [3]陈国珍等,荧光分析法,北京:科学出版社,1990, 1–3.
    [4] Schulman, S. G. Fluorescence and Phosphorescence Spectroscopy, Physicochemical Principles and Practice. New York: Oxford, 1977.
    [5]张华山,王红,赵媛媛,分子探针与检测试剂,北京:科学出版社,2002, 163–165.
    [6]许金钩,王尊本,荧光分析法,北京:科学出版社,2006, 21–36.
    [7]西川泰治,平木敬三,分析化学译刊,1987, 5–6, 157.
    [8] Berlman, I. B. Handbook of Fluorescence Spectra of Aromatic Molecules. New York: Acad. Press, 1965.
    [9] Markuszewski, R.; Diehl, H. Talanta., 1987, 34, 739.
    [10] Ates, S; Yildiz, Y. et al. J. Chem. Soc. Farady Trans. I., 1983, 79, 2857.
    [11]刘育,尤长城,张衡益,超分子化学—合成受体的分子识别与组装,天津:南开大学出版社,2002, 3–4.
    [12] Cram, D. J.; Cram, J. M. Host–Guest Chemistry, Science, 1974, 183, 803–809.
    [13]罗晓兰,吡啶脲基化合物的合成、分子识别及配位化学研究:[天津大学硕士学位论文],天津:天津大学,2006, 1–3.
    [14] Wehry, E. L. Ed. Modern Fluorescence Spectroscopy. Vol. 1. New York: Plenum Press, 1976.
    [15] Lakowicz, J. R. Principles of Fluorescence Spectroscopy. New York: Plenum Press, 1983.
    [16] Lakowicz, J. R. Topics in Fluorescence Spectroscopy: Probe Design and Chemical Sensing. Vol. 4. New York: Plenum Press, 1994.
    [17] Baeyens, W. R. G.; De Keukeleire, D.; Korkidis, K. Luminescence Techniques in Chemical and Biochemical Analysis. New York: Marcel Dekker, 1991.
    [18] Wolfbeis, O. S. Fluorescence Spectroscopy: New Methods and Applications. Berlin Heidelberg: Springer-Verlag, 1993.
    [19]郭尧君,荧光实验技术及其在分子生物学中的应用,北京:科学出版社,1983, 16–20.
    [20]赵文峰,陈朗星,何锡文,杯芳烃荧光识别试剂研究进展,化学试剂,2006, 28(5), 269–273.
    [21] Trautwein, A. X. Bioorganic Chemistry, Wiley-VCH, Weinheim, 1997.
    [22] Merian, E. Metals and Their Compounds in the Environment, Wiley-VCH, Weinheim, 1991.
    [23] Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; Sandanayake, K. R. A. S. Molecular fluorescent signaling with“fluor–spacer–receptor”systems: approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev., 1992, 21, 187–195.
    [24] Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Teaching old indicators new tricks. Acc. Chem. Res., 2001, 34, 963–972.
    [25] Cram, D. J. The design of molecular hosts, guests and their complexes. Angew. Chem., Int. Ed. Engl., 1988, 27, 1009–1020.
    [26] Hartley, J. H.; James, T. D.; Ward, C. J. Sythetic receptors. J. Chem. Soc., Perking Trans. I, 2000, 3155–3184.
    [27] Inouye, M. Artificial-signaling receptors for biologically important chemical species. Coord. Chem. Rev., 1996, 148, 265–283.
    [28] Linton, B.; Hamilton, A. D. Formation of artificial receptors by metal–templated self–assembly. Chem. Rev., 1997, 97, 1669–1680.
    [29] Wong, C. H. Mimics of complex carbohydrates recognized receptors. Acc. Chem. Res., 1999, 32, 376–385.
    [30] Lavigne, J. J.; Anslyn, E. V. Sensing a paradigm shift in the field of molecular recognition from selective to diferential receptors. Angew. Chem., Int. Ed. Engl., 2001, 40, 3118–3130.
    [31] Gale, P. A.; Anzenbacher, J. P.; Sessler, J. L. Calixpyrroles II. Coord. Chem. Rev., 2001, 222, 57–102.
    [32] Kovbasyuk, L.; Kramer, R. Allosteric supermolecular recptors and catalysts. Chem.Rev., 2004, 104, 3161–3187.
    [33] Nishikiori, S. I.; Yoshikawa, H.; Sano, Y. et al. Inorganic–organic hybrid molecular architectures of cyanometalate host and organic guest systems: specific behavior of the guests. Acc. Chem. Res., 2005, 38, 227–234.
    [34] Ueno, A. Review of fluorescent cyclodextrins for molecular sensing. Supramolecular Science, 1996, 3, 31–36.
    [35]吴寿昌,冠醚化学,北京:科学出版社,1992。
    [36]小田良平,庄野利之,田夫盐夫,冠醚化学,北京:原子能出版社,1985。
    [37] Bradshaw, J. S.; Izat, R. M. Crown ethers: the search for selective ion ligating agents. Acc. Chem. Res., 1997, 30, 338–345.
    [38] Schmidtchen, F. P.; Berger, M. Artificial organic host molecules for anions. Chem. Rev., 1997, 97, 1609–1646.
    [39] Beer, P. D. Transition–metal receptor systems for the selective recognition and sensing of anionic guest species. Acc. Chem. Res., 1998, 31, 71–80.
    [40] Tobey, S. L.; Anslyn, E. V. Synthetic receptors for anion recognition. Am. Chem. Soc. Natl. Meet. Chicago, USA, Aug., 2001, 26–31.
    [41] Beer, P. D.; Gale, P. A. Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem., Int. Ed. Engl., 2001, 40, 486–516.
    [42] Schmidtchen, F. P. Artificial host molecules for the sensing of anions. Top. Curr. Chem., 2005, 255, 1–29.
    [43] Stibor, I. Chiral recognition of anions. Top. Curr. Chem., 2005, 255, 31–63.
    [44] Lhotlah, P. Anion receptors based on calixarenes. Top. Curr. Chem., 2005, 255, 65–95.
    [45] Beer, P. D.; Bayly, S. R. Anion sensing by metal–based receptors. Top. Curr. Chem., 2005, 255, 125–162.
    [46] Suksai, C.; Tuntulani, T. Chromogenic anion sensors. Top. Curr. Chem., 2005, 255, 163–198.
    [47] Book, R. J. T.; Tobey, S. L.; Anslyn, E. V. Abiotic guanidinium receptors for anion molecular recognition and sensing. Top. Curr. Chem., 2005, 255, 199–229.
    [48] Zhang, X. X.; Bradshaw, J. S.; Lzatt, R. M. Enantiomeric recognition of amine compounds by chiral macrocyclic receptors. Chem. Rev., 1997, 97, 3313–3361.
    [49] Ogoshi, H.; Mizutani, T. Multifunctional and chiral porphyrins: model receptors for chiral recognition. Acc. Chem. Res., 1998, 31, 81–89.
    [50] Yang, D.; Li, X.; Fan, Y. F. et al. Enantioselective recognition of carboxylates: a receptor derived fromα-aminoxy acids functions as a chiral shift reagent for carboxylic acids. J. Am. Chem. Soc., 2005, 127, 7996–7997.
    [51] de Silva, A. P.; Gunatame, H. Q. N.; Gunnlauggson T. et al. Signaling recognition events with fluorescent sensors and switches. Chem. Rev., 1997, 97, 1515–1565.
    [52] Rurack, K. Flipping the light switch‘ON”–the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim. Acta A., 2001, 57, 2161–2195.
    [53] Tsien, R. Y. In optical methods in cell physiology. New York: Wiley, 1986.
    [54] Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 1985, 260, 3440–3450.
    [55] Harootunian, A. T.; Kao, J. P.; Eckert, B. K.; Tsien, R. Y. Fluorescence ratio imaging of cytosolic free Na + in individual fibroblasts and lymphocytes. J. Biol. Chem., 1989, 264, 19458–19467.
    [56] Minta, A.; Tsien, R. Y. Fluorescent indicators for cytosolic sodium. J. Biol. Chem., 1989, 264, 19449–19458.
    [57] Raju, B.; Murphy, E.; Levy, L. A.; Hall, R. D.; London, R. E. A fluorescent indicator for measuring cytosolic free magnesium. Am. J. Physiol. Cell Physiol. 1989, 256, C540–C548.
    [58] Maruyama, S.; Kikuchi, K.; Hirano, T. et al. A novel, cell-permeable, fluorescent probe for ratiometric imaging of Zinc ion. J. Am. Chem. Soc., 2002, 124, 10650–10651.
    [59] Kolimannsberger, M.; Rurack, K.; Resch-Genger, U. et al. Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes. J. Phys.Chem. A, 1998, 102, 10211–10220.
    [60] Delmond, S; Letard, J. F.; Lapouyade, R. et al. Cation-triggered photoinduced intramolecular charge transfer and fluorescence red-shift in fluorescence probes. New J. Chem., 1996, 20, 861–869.
    [61] Shionoya, M.; Furuta, H.; Lynch, V.; Harriman, A.; Sessler, J. L. Diprotonated sapphyrin: a fluoride selective halide anion receptor. J. Am. Chem. Soc., 1992, 114, 5714–5722.
    [62] Ramachandram, B.; Joseph, R. L.; Chris, D. G. Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction. J. Am. Chem. Soc., 2005, 127, 3635–3641.
    [63] Sandanayake, K. R. A. S.; Imazu, S.; James, T. D.; Mikami, M.; Shinkai, S. Molecular fluorescence sensor for saccharides based on amino coumarin. Chem. Lett., 1995, 24, 139–140.
    [64] Strothkamp, K. G.; Strothkamp, R. E. Fluorescence measurements of ethidium binding to DNA. J. Chem. Educ., 1994, 71, 77–78.
    [65] Yoshio, S.; Kenji, Y. Design and Synthesis of intramolecular charge transfer-based fluorescent reagents for the highly-sensitive detection of proteins. J. Am. Chem. Soc., 2005, 127, 17799–17802.
    [66] MacQueen, D. B.; Schanze, K. S. Cation-controlled photophysics in a rhenium(I) fluoroionophore. J. Am. Chem. Soc., 1991, 113, 6108–6110.
    [67] Shen, Y.; Sullivan, B. P. A versatile preparative route to 5-substituted- 1,10-phenanthroline ligands via 1,10-phenanthroline 5,6-epoxide. Inorg. Chem., 1995, 34, 6235–6236.
    [68] Yoon, D. I.; BergBrennan, C. A.; Lu, H.; Hupp, J. J. Synthesis and preliminary photophysical studies of intramolecular electron transfer in crown-linked donor- (chromophore-) acceptor complexes. Inorg. Chem., 1992, 31, 3192–3194.
    [69] Beer, P. D.; Kocian, O.; Mortimer, R. J.; Ridgway, C. Syntheses, coordination, spectroscopy and electropolymerisation studies of new alkynyl and vinyl linked benzo- and aza-crown ether–bipyridyl ruthenium(II) complexes. Spectrochemicalrecognition of group IA/IIA metal cations. J. Chem. Soc., Chem. Commun., 1991, 20, 1460–1463.
    [70] Rettig, W. Top. Curr. Chem., 1994, 169, 253.
    [71] Grabowski, Z. R.; Dobkowski, J. Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure, Pure Appl. Chem., 1983, 55(2), 245–252.
    [72] Rettig, W. Charge seperation in excited states of decoupled system-TICT compounds and implications regarding the development of new laser dyes and the primary processes of vision and photosynthesis. Angew. Chem. Int. Ed. Engl., 1986, 25, 971–988
    [73] Létard, J. F.; Delmond, S.; Lapoyyade, S. P. et al. New Intrinsic Fluoroionophores with Dual Fluorescence: DMABN-Crown-4 and DMABN-Crown-5. Rec. Trav. Chim. Pays-Bas., 1995, 114, 517–521.
    [74] Kim, J. S.; Quang, D. T. Calixarene-derived fluorescent probes. Chem. Rev., 2007, 107, 3780–3799.
    [75] Marcus, R. A. Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Angew. Chem., Int. Ed. Engl., 1993, 32, 1111–1121.
    [76] Grampp, G. The marcus inverted region from theory to experiment. Angew. Chem., Int. Ed. Engl., 1993, 32, 691–693.
    [77] Wasielewski, M. R. Photoinduced electron transfer in supremolecular systems for artificial photosynthesis. Chem. Rev., 1992, 92(3), 435–461.
    [78] Kavarnos, G. J. Fundamental of photoinduced electron transfer. New York: VCH; Weinheim, 1993.
    [79] Kavarnos, G. J.; Turro, N. J. Photosensitization by reversible electron transfer: theories, experimental evidence, and example. Chem. Rev., 1986, 86(2), 401–449.
    [80] Shizuka, H.; Nakamura, M.; Morita, T. Intramolecular fluorescence quenching of phenylalkylamines. J. Phys. Chem., 1979, 83, 2019–2024.
    [81] Wang, Y. C.; Morawetz, H. Studies of intramolecular excimer formation in dibenzyl ether, dibenzylamine, and its derivatives. J. Am. Chem. Soc., 1976, 98, 3611–3615.
    [82] Selinger, B. K. Fluorescence quenching of excited state donor-acceptor pairs in surfactant micelles during a pH titration. Aust. J. Chem., 1977, 30, 2087–2090.
    [83] Nakaya, T.; Tomomoto, T.; Imoto, M. Plastic scintillators. III. the synthesis of some anthracene derivatives as wavelength shifters in plastic scintillators. Bull. Chem. Soc. Jpn., 1966,39, 1551–1556.
    [84] de Silva, A. P.; de Silva, S. A. Fluorescent signalling crown ethers;“switching on”of fluorescence by alkali metal ion recognition and binding in situ. J. Chem. Soc., Chem. Commun., 1986, 23, 1709–1710.
    [85] Nishida, H.; Katayama, Y.; Katsuki, H.; Nakamura, H.; Tagaki, M.; Ueno, K. Fluorescent crown ether regent for alkali and alkaline earth metal ions. Chem. Lett., 1982, 1853–1854.
    [86] Bourson, J.; Pouget, J.; Valeur, B. Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers. J. Phys. Chem., 1993, 97, 4552–4557.
    [87] Akkaya, E. U.; Huston, M. E.; Czarnik, A. W. Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution. J. Am. Chem. Soc., 1990, 112, 3590–3593.
    [88] Beeby, A.; Parker, D.; Williams, J. A. G. Photochemical investigations of functionalised 1,4,7,10-tetraazacyclododecane ligands incorporating naphthyl chromophores. J. Chem. Soc., Perkin Trans. 2, 1996, 8, 1565–1579.
    [89] Kubo, K.; Sakurai, T. Synthesis and properties of N,N′-bis(1-pyrenylmethyl)- 1,4,10,13-tetraoxa-7,16-diaza-cyclooctadecane. Metal ion-indused monomer and excimer emission enhancement. Chem. Lett., 1996, 25, 959–960.
    [90] Parker, D.; Williams, J. A. G. Luminescence behaviour of cadmium, lead, zinc, copper, nickel and lanthanide complexes of octadentate macrocyclic ligands bearing naphthyl chromophores. J. Chem. Soc., Perkin Trans. 2, 1995, 7, 1305–1314.
    [91] de Silva, A. P.; Sandanayake, K. R. A. S. Fluorescence off-on signalling upon linear recognition and binding ofα,ω-alkanediyldiammonium ions by 9,10-Bis {(1-aza-4,7,10,13,16-pentaoxacyclooctadecyl)methyl}anthracene. Angew. Chem., Int.Ed. Engl., 1990, 29, 1173–1175.
    [92] Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Kotzyba-Hibert, F.; Lehn, J.-M.; Prodi, L. Supramolecular photochemistry and photophysics. A cylindrical macrotricyclic receptor and its adducts with protons, ammonium ions, and a Pt(II) complex. J. Am. Chem. Soc., 1994, 116, 5741–5746.
    [93] de Silva, A. P.; Gunaratne, H. Q. N.; McVeigh, C.; Maguire, G. E. M.; Maxwell, P. R. S.; O’Hanlon, E. Fluorescent signalling of the brain neurotransmitterγ–aminobutyric acid and related amino acid zwitterions. Chem. Commun. 1996, 18, 2191–2192.
    [94] James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine. J. Chem. Soc., Chem. Commun., 1994, 4, 477–478.
    [95] James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. A glucose-selective molecular fluorescence sensor. Angew. Chem., Int. Ed. Engl., 1994, 33, 2207–2209.
    [96] James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Nature 1995, 374, 345.
    [97] Jayaraman, S.; Verkman, A. S. Quenching mechanism of quinolinium-type chloride-sensitive fluorescent indicators. Biophys. Chem., 2000, 85, 49–57.
    [98] Geddes, C. D.; Apperson, K.; Karolin, J.; Birch, D. S. Chloride-sensitive fluorescent indicators. Anal. Biochem., 2001, 293, 60–66.
    [99] Amendola, V.; Fabbrizzi, L.; Monzani, E. A concave fluorescent sensor for anions based on 6-Methoxy-1-methylquinolinium. Chem. Eur. J., 2004, 10, 76–82.
    [100] Gunnlaugsson, T.; Davis, A. P.; Glynn, M. Fluorescent sensing of pyrophosphate and bis-carboxyates with charge neutral PET chemosensors. Org. Lett., 2002, 4, 2449–2452.
    [101] Coper, C. R.; Spencer, N.; James, T. D. Selective fluorescence detection of fluoride using boronic acids. Chem,Commun., 1998, 13(2), 1365–1366.
    [102] de Silva, S. A.; Zavaleta, A.; Baron, D. E. A fluorescent PET sensor for cations with an“off–on–off”proton switch. Tetra. Lett., 1997, 38(18), 2237–2240.
    [103] Iwata, S.; Tanaka, K. A noval cation and anion recognition host having pyridyl, 2:1, 2-imidazo-4,5-bipyrazine as the fluorophore. Chem, Commun., 1995, 15, 1491–1492.
    [104] Kakizawa, Y.; Akita, T.; Nakamura, H. Syntheses and complexing behavior of new fluorescent reagents for alkaline earth metal ions. Chem. Lett., 1993, 22, 1671–1674.
    [105] Yang, J. S.; Lin, C. S.; Hwang, C. Y. Cu2+-Induced blue shift of the pyrene excimer emission: a new signal transduction mode of pyrene probes. Org. Lett., 2001, 3, 889–892.
    [106] Takakusa, H.; Kikuchi, K.; Urano, Y. et al. Design and synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonance energy transfer. J. Am. Chem. Soc., 2002, 124, 1653–1657.
    [107] Kumar, G. S.; Neckers, D. C. Photochemistry of azobenzene containing polymers. Chem. Rev., 1989, 89(8), 1915–1925.
    [108]李志良,石乐明,李梦龙,俞汝勤,荧光分析中偶氮试剂的研究进展,分析化学,1990, 18, 780–790.
    [109]西川泰治,分析化学(日),1958, 7, 549.
    [110] Hiraki, K. Metal chelates of aromatic o,o′-Dihydroxyazo compounds. I. The fluorescence properties of the metal chelates of o,o′-Dihydroxyazobenzene and their use in fluorometry. Bull. Chem. Soc. Jpn., 1973, 46, 2438–2443.
    [111]陈景山,潘家吉,高振衡,高等学校化学学报,1987, 8, 325.
    [112] Shinkal, S.; Amki, K.; Shihm, J. et al. Autoaccelerative diazo coupling with calyx [4] arene: substituent effected on the unusual co-operativity of the OH group. J. Chem. Soc., Perkin Trans.1, 1990, 12, 3333–3337.
    [113] Nomura, E.; Tanlguchi, H.; Otsuji, Y. Binding properties of p-(phenylazo)- calixarenes for metal ions. Bull. Chem. Soc. Jpn., 1993, 66, 3797–3801.
    [114]刘新刚,冯亚青,李飞,王维,李祥高,新型偶氮卟啉荧光化合物的合成、表征及光谱性质,天津大学学报,2006, 39, 400–403.
    [115] Beveridge, D. L; Jaffe, H. H. The electronic structure and spectra of cis- and trans-azobenzene. J. Am. Chem. Soc., 1966, 88, 1948–1953.
    [116] Brode, W. R.; Gold, J. H.; Wyann, G. M. The relation between the absorption spectra and the chemical constitution of dyes. XXV. Phototropism and cis-trans isomerism in aromatic azo compounds. J. Am. Chem. Soc., 1952, 74, 4641–4646.
    [117] Shinkai, S.; Nakaji, T.; Nishida, Y.; Ogawa, T.; Manabe, O. Photoresponsive crown ethers. 1. Cis-trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers. J. Am. Chem. Soc., 1980, 102, 5860–5865.
    [118] Shinkai, S.; Nakaji, T.; Ogawa, T.; Shigematsu, K.; Manabe, O. Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion. J. Am. Chem. Soc., 1981, 103, 111–115.
    [119] Shinkai, S.; Shigematsu, K.; Kusano, Y.; Manabe, O. Photoresponsive crown ethers. Part 3. Photocontrol of ion extraction and ion transport by several photofunctional bis(crown ethers). J. Chem. Soc., Perkin Trans.1, 1981, 3, 3279–3283.
    [120] Shinkai, S.; Honda, Y.; Minami, T.; Ueda, K. et al. Photoresponsive crown ethers. 9. Cylindrical and phane crown ethers with azobenzene segments as a light-switch functional group. Bull. Chem. Soc. Jpn., 1983, 56, 1700–1704.
    [121] Shinkai, S.; Shigematsu, K.; Honda, Y.; Manabe, O. Photoresponsive crown ethers. 13. Synthesis of photoresponsive NS O crown ethers and application of the Cu(I) complexes to O -binding. 22 Bull. Chem. Soc. Jpn., 1984, 57, 2879–2884.
    [122] Shinkai, S.; Nakamura, S; Nakashima, M.; Manabe, O.; Iwamoto, M. Photoregulated ion-binding to azobenzene-linked ethylenediamines and iminodiacetic acids. Bull. Chem. Soc. Jpn., 1985, 58, 2340–2347.
    [123] Anzai, J.; Sasaki, H.; Ueno, A.; Osa, T. Photoinduced membrane potential changes. Poly(vinyl chloride) membranes entrapping a photoresponsive bis- (15-crown-5) derivative. J. Chem. Soc., Perkin Trans. 2, 1985, 7, 903–907.
    [124] Anzai, J.; Sasaki, H.; Ueno, A.; Osa, T. Poly(vinyl chloride) azobenzene-linked bis-(15-crown-5) membranes. Photoinduced potential changes across asymmetric membranes. Chem. Lett., 1984, 13, 1205–1208.
    [125] Husain, M.; Bhattacharjee, S. S.; Lal, R. A.; Askari, H. Zinc-ammonia reduction of nitrobenzenes: a simple method for the synthesis of azobenzenes. Indian J. Chem., 1989, 28B, 1077–1078.
    [126] Jousselme, B.; Blanchard, P. et al. Photomechanical control of the electronic properties of linearπ-conjugated systems. Chem. Eur. J., 2003, 9, 5297–5306.
    [127] Ameerunisha, S.; Zacharias, P. S. Characterization of simple photoresponsive systems and their applications to metal ion transport. J. Chem. Soc., Perkin Trans. 2, 1995, 17, 1679–1682.
    [128] Okahata, Y.; Lim, H.; Hachiya, S. Bilayer coated capsule membranes. Part 2. Photoresponsive permeability control of sodium chloride across a capsule membrane. J. Chem. Soc. Perkin Trans. 2, 1984, 6, 989-994.
    [129] Ward, K. The chlorinated ethylamines--a new type of vesicant. J. Am. Chem. Soc., 1935, 57, 914–916.
    [130] Leffler, M. T.; Adams, R. Aminophenyl-2-oxazolines as local anesthetics. J. Am. Chem. Soc., 1937, 59, 2252–2258.
    [131] Zimmerman, H. E. Apparatus for quantitative and preparative photolysis: The Wisconsin blackbox. Mol. Photochem., 1971, 3, 281–292.
    [132] Horspool, W. M. Synthetic organic photochemistry. New York: Plenum Press, 1984.
    [133] Shinkai, S.; Kouno, T.; Kusano, Y.; Manabe, O. Photoresponsive crown ethers. Part 7. Proton and metal ion catalyses in the cis–trans isomerisation of azopyridines and an azopyridine-bridged cryptand. J. Chem. Soc., Perkin Trans.1, 1982, 4, 2741–2747.
    [134] Fedorova, O. A.; Strokach, Y. P.; Gromov, S. P. et al. Effect of metal cations on the photochromic properties of spironaphthoxazines conjugated with aza-15(18)-crown-5(6) ethers. New J. Chem., 2002, 1137–1145.
    [135] Islam, M.; Khanin, M.; Sadik, O. A. Fluorescent chelates for monitoring metal binding with macromolecules. Biomacromolecules, 2003, 4(1), 114–121.
    [136] Morozumi, T.; Anada, T.; Nakamura, H. New fluorescent "off-on" behavior of 9-anthryl aromatic amides through controlling the twisted intramolecular charge transfer relaxation process by complexation with metal Ions. J. Phys. Chem. B., 2001, 105(15), 2923–2931.
    [137]王腾凤,杨世柱,艾小红,新型带荧光基团蒽的偶氮双酚类杯芳烃的合成研究(II),华南师范大学学报(自然科学版),2000, 4, 59–62.
    [138] Ostaszewski, R.; Prodi, L.; Montalti, M. The synthesis and complexation studies of thia-anthracene receptors. Tetrahedron, 1999, 55, 11553–11562.
    [139] de Silva, A. P.; Gunnlaugsoon, T.; Rice, T. E. Recent evolution of luminescent photoinduced electron transfer sensors. A review. Analyst, 1996, 12, 1759–1762.
    [140] Czarnik, A. W. Chemical communication in water using fluorescent chemosensors. Acc. Chem. Res., 1994; 27(10), 302–308.
    [141] James, T. D.; Linnane, P.; Shinkai, S. Fluorescent saccharide receptors: a sweet solution to the design, assembly and evaluation of boronic acid derived PET sensors. J. Chem. Soc., Chem. Commun., 1996, 3, 281–288.
    [142] Ostaszewski, R.; Wolszczak, M.; Wolczynska, E. The synthesis of a new type of anthracene DNA intercalator. Bioorg. Med. Chem. Lett., 1998, 8, 2995–2996.
    [143] Draxler, S.; Lippitsch, M. E. Time-resolved fluorescence spectroscopy for chemical sensors. 1996, 35, 4117–4123.
    [144] Lee, Y. J.; Seo, D. et al. Anthracene derivatives bearing sulfur atoms or selenium atoms as fluorescent chemosensors for Cu and Hg : different selectivity induced from ligand immobilization onto anthracene. Tetrahedron, 2006, 62, 123402+ 2+–12344.
    [145] Dipple, A. Model studies for azo dye carcinogenesis. J. Chem. Soc., Perkin Trans.1, 1972, 447–449.
    [146] Newton, B. N. Iodine-containing organic carbonates as investigative radiopaque compounds. J. Med. Chem., 1976, 19(12), 1362–1366.
    [147] Fieser, H. 9-Anthraldehyde; 2-Ethoxy-1-naphaldehyde. Org. Synth., 1955, 3, 98.
    [148] Kornfeld, E. C.; Barney, P.; Blankley, J.; Faul, W. Triptycene derivatives as medicinal agents. J. Med. Chem., 1965, 8(3), 342–347.
    [149] Bullpitt, M.; Kitching, W.; Doddrell, D.; Adcock, W. Substituent effect of the bromomethyl group. Carbon-13 magnetic resonance study. J. Org. Chem., 1976, 41(5), 760–766.
    [150] Ciganek, E. Intramolecular diels-alder additions. 1. Additions to anthracene and acridine. J. Org. Chem., 1980, 45, 1497–1505.
    [151] Burdette, S. C.; Walkup, G. C.; Spingler, B.; Tsien, R. Y.; Lippard, S. J. Fluorescent sensors for Zn based on a fluorescein platform: synthesis, properties and intracellular distribution.2+J. Am. Chem. Soc., 2001, 123, 7831–7841.
    [152] Fahrni, C. J.; Yang, L.; VanDerveer, D. G. Tuning the photoinduced electron-transfer thermodynamics in 1,3,5-triaryl-2-pyrazoline fluorophores: X-ray structures, photophysical characterization, computational analysis, and in vivo evaluation. J. Am. Chem. Soc., 2003, 125, 3799–3812.
    [153] de Silva, S. A.; Kasner, M. L.; Whitener, M. A.; Pathirana, S. L. A computational study of a fluorescent photoinduced electron transfer (PET) sensor for cations. Int. J. Quantum Chem., 2004, 100, 753–757.
    [154] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; GAUSSIAN 03, Revision B.05, Gaussian, Inc., Pittsburgh, PA, 2003.
    [155] Zeynizadeh, B.; Behyar, T. Wet THF as a suitable solvent for a mild and convenient reduction of carbonyl compounds with NaBH4. Bull. Chem. Soc. Jpn., 2005, 78, 307–315.
    [156] Gilman, H.; Kirby, J. E. Some rearrangement reactions of alpha-naphthylmethylmagnesium chloride. J. Am. Chem. Soc., 1929, 51(11), 3475–3478.
    [157] Adams, H.; Bucknall, R. M.; Fenton, D. E.; Garcia, M.; Oakes, J. Self association inthe structures of two copper (II)–Azo-dye complexes. Polyhedron, 1998, 17, 4169–4177.
    [158] Speier, G.; Csihony, J.; Whalen, A. M.; Pierpont, C. G. Studies on aerobic eeactions of ammonia/3,5-di-tert-butylcatechol schiff-base condensation products with copper, copper(I), and copper(II). Strong copper(II)-radical ferromagnetic exchange and observations on a unique N-N coupling reaction. Inorg. Chem., 1996, 35(12), 3519–3524.
    [159] Dhara, P. K.; Pramanik, S.; Lu, T. H.; Drew, M.G. B.; Chattopadhyay, P. Copper(II) complexes of new tetradentate NSNO pyridylthioazophenol ligands: synthesis, spectral characterization and crystal structure. Polyhedron, 2004, 23, 2457–2464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700