用户名: 密码: 验证码:
含蒽荧光团金属离子探针的设计、合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光分子开关作为超分子化学的重要组成部分,近年来得到了快速发展并成为化学家的研究热点。本论文结合蒽荧光受体的研究现状及其发展趋势,在该类物质的功能性分子设计、金属离子识别方面进行了进一步的研究。
     设计并合成了一个二苯砜为连接臂含双蒽基团的钳状受体分子并通过荧光和紫外-可见光谱实验研究了其对阳离子识别的性质,发现该化合物对Hg~(2+)有一定的荧光增强作用,对Cu~(2+)有一定荧光淬灭作用。
     设计、合成了六种新的含硫识别基团的蒽类荧光分子探针。通过金属离子滴定试验,发现该类探针对Cu~(2+)和Hg~(2+)离子具有明显的识别作用。特别是在此基础上设计的9,10-二(4-硝基苄硫甲基)蒽对Hg (Ⅱ)离子络合促进荧光增强429倍,该探针具有高度的专一性,是典型的PET体系。
     设计并合成了两个以二硫代氨基甲酸基为识别基团的荧光分子。发现Hg~(2+)与二硫代氨基甲酸基配位抑制了PET效应,主体荧光得以恢复,发射强度增加。该类主体分子对Hg~(2+)有较高的选择性。
     设计、合成了七种新的由不同识别基团相连接的含双蒽酰胺基荧光基团分子探针。通过金属离子滴定试验,发现含硫原子探针对Cu~(2+)和Hg~(2+)离子具有明显的荧光淬灭作用,并且这些离子分别和主体分子形成了1:1的络合物。
     在以上研究的基础上,设计、合成了两个新的由不同识别基团相连接的双芘环荧光团的荧光探针。发现以3,6-二硫杂-1,8-辛二胺为连接基团和识别基团的含双芘环荧光团分子探针对Cd~(2+), Cu~(2+), Ag+和Hg~(2+)具有选择性识别作用。
As an important component of the supermolecular chemistry, the fluorescence molecular switch has developed rapidly and become interest of the chemists. In this dissertation the functional design and the molecular recognition of anthracene fluorescent receptors were studied deeply according to the trend in this field.
     A fluorescent probe with two anthracene groups linked by diphenyl sulfone was designed. It was found that this probe exhibit fluorescence enhancement response to Hg~(2+) and fluorescence quenching to Cu~(2+).
     In order to recognize the transition and the heavy metal ions, six of anthracene fluorescent probes with sulphur containing receptors were synthesized. The titration experiments indicated that the fluorescent probes are highly selective to Cu~(2+) and Hg~(2+). As a result, 9,10-bis(4-nitrobenzylthiomethyl)anthracene was designed and a 429-folds fluorescence enhancement response to Hg~(2+) was found. It was proposed that the enhancement mechanism is a typical PET-suppressed process.
     Two fluorescent probes with each having two dithiocarbamates groups as receptors were designed. The titration experiment indicated that these probes are highly selective to Hg~(2+), which shows a pronounced fluorescence enhancement. It was also found that the response to Hg~(2+) is a typical PET-suppressed process.
     Seven of bisanthracene fluoresent probes linked by different heterochain receptors were designed. The titration experiment indicates that only the sulfur containing fluorescent probes show evident fluorescence quenching upon additional Cu~(2+) and Hg~(2+). The stoichiometry of the probe-metal ion complex was estimated to be 1:1 by a nonlinear curve fitting of the fluorescence titration.
     Two heterochain linked bispyrene fluorescent probes were synthesized. It is found that when 3,6-dithia-l,8-diaminooctane is used as spacer and acceptor, the probe can recognize Cd~(2+), Cu~(2+), Ag+ and Hg~(2+) respectively.
引文
[1] Cram, D .J.; Cram, J .M. Host-Guest Chemistry, Science, 1974, 183, 803-809.
    [2] Lehn, J. M.; Sauvage, J. P. Cryptates. XVI. [2]-Cryptates. Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes, J. Am. Chem. Soc., 1975, 97(23): 6700-6707.
    [3]吴世康,超分子光化学前景,感光科学与光化学,1994, 12(4): 332-341.
    [4] Lehn, J. M. Supramolecular chemistry, Science, 1993, 260, 1762-1763.
    [5] Baker, M. D.; Godber, J.; Ozin, G. A. Watching silver clusters grow in zeolites: direct probe Fourier transform-far-infrared spectroscopy of the red form of fully silver ion exchanged zeolite A, J. Phys. Chem., 1985, 89(11): 2299-2304.
    [6] Müller, A.; Reuter, H.; Dillinger S. Supramolecular Inorganic Chemistry: Small Guests in Small and Large Hosts, Angew. Chem. Int. Ed. Engl., 1995, 34, 2328-2361.
    [7] Baizani, V.; Scandola, F. Supramolecular Photochenistry. New York: Ellis Horwood, I990.
    [8] Lehn, J. M. Supramolecular chemistry-Concept and Perspective. Germany: VCH, 1995.
    [9]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装,天津:南开大学出版社, 2001.
    [10] de Silva, A. P.; Gunatatne, H. Q. N.; Gunnlauggson, T. et al., Signaling Recognition events with fluorescent sensors and switches. Chem. Rev., 1997, 97(5): 1515-1566.
    [11] Balzani, V. Supermolecular photochemistry-Forword, New J. Chem., 1996, 20, 723-724.
    [12] Ramamurthy, V.; Schanze, K. S. Optical Sensors and Switches, Molecular and Supermolecular Photochemistry, New York, Marcel Dekker, Inc., 2001.
    [13] Trautwein, A. X. Bioorganic chemistry, Wiley-VCH, Weinheim, 1997.
    [14] Merian, E. Metals and their compounds in the environment, Wiley-VCH, Weinheim, 1991.
    [15] Haugland, R. P. Handbook of Fluorescent Probes and Research Products, Ninth Edition, Molecular Probes, Inc. 2002, 827-848.
    [16] Klein, G.; Kaufmann, D.; Schürch, S. et al. A fluorescent metal sensor based on macrocyclic chelation, Chem. Commun., 2001, 561-562.
    [17] Valeur, B.; Leray, I. Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev., 2000, 205, 3-40.
    [18] de Silva, A. P.; de Silva, S. A. Fluorescent signaling crown ethers;‘switching on’of fluorescence by alkali metal ion recognition and binding in situ, J. Chem. Soc. Chem. Comm., 1986, 1709-1710.
    [19] de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T. et al. Molecular photoionic switches with an internal reference channel for fluorcsent pH sensing applications, New J. Chem., 1996, 20, 871-880.
    [20] De Santis, G.; Fabbrizzi, L.; Licheili. M. et al. A fluorescent chemosensor for the copper(II) ion, Inorg. Chim. Acta., 1997, 257, 69-76.
    [21] Delmond, S.; Létard, J. F.; Lapouyade, R. et al. Cation-triggering intramolecular charge transfer and fluorescence red-shift in intrinsic fluorescence probes, New J. Chem., 1996, 20, 861-869.
    [22] Rurack, K.; Danel, A.; Rotkiewicz, K. et al., 1,3-Diphenyl-1H-pyrazolo [3,4-b] quinoline: A Versatile Fluorophore for the Design of Brightly Emissive Molecular Sensors, Org. Lett., 2002, 4(26): 4647-4650.
    [23] Kolimannsberger, M.; Rurack, K.; Resch-Genger, U. et al., Ultrafast charge transfer in amino- substituted boron dipyrromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes, J. Phys. Chem. A., 1998, 102, 10211-10220.
    [24] Grabowski, Z. R.; Dobkowski, J. Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure, Pure Appl. Chem., 1983, 55(2): 245-252.
    [25] Rettig, W. Charge seperation in excited states of decoupled system-TICT compounds and implications regarding the development of new laser dyes and the primary processes of vision and photosynthesis, Angew. Chem. Int. Ed. Engl. 1986, 25, 971-988.
    [26] Létard, J. F.; Delmond, S.; Lapoyyade, S. P. et al. New Intrinsic Fluoroionophores with Dual Fluorescence: DMABN-Crown-4 and DMABN-Crown-5, Rec. Trav. Chim. Pays-Bas., 1995, 114, 517-521.
    [27] Collins, G. E.; Choi, L. -S.; Callahan, J. H. Effect of Solvent Polarity, pH, and Metal Complexation on the Triple Fluorescence of 4-(N-1, 4, 8, 11-tetraazacyclotetradecyl) benzonitrile, J. Am. Chem. Soc., 1998, 120, 1474-1478.
    [28] Parker, D.; Willams, J. A. G. Luminescence behaviour of cadmium, lead, zinc, copper, nickel and lanthanide complexes of octadentate macrocyclic ligands bearing naphthyl chromophores, J. Chem. Soc., Perkin Trans. 2, 1995, 7, 1305-1314.
    [29] Kakizawa, Y.; Akita, T.; Nakamura, H. Syntheses and Complexing Behavior of New Fluorescent Reagents for Alkaline Earth Metal Ions, Chem. Lett., 1993, 10, 1671-1672.
    [30] Kubo, K.; Kato, N.; Sakurai, T. Synthesis and Complexation Behavior ofDiaza-18-crown-6 Carrying Two Pyrenylmethyl Groups, Bull. Chem. Soc. Jpn., 1997, 70, 3041-3046.
    [31] Speiser, S. Photophysics and mechanisms of intramolecular electron energy transfer in bichromophoric molecular systems: solution and supersonic jet studies, Chem. Rev., 1996, 96, 1953-1976.
    [32] Wang, P.; Wu, S. Design of a new molecular Fluorescent signalling system acting via both electron and energy transfer, J. Photochem. Photobio. A: Chem., 1998, 118, 7-9.
    [33] Hennrich, G.; Walther, W.; Resch-Genger, U. et al. Cu(II)- and Hg(II)-Induced Modulation of the Fluorescence Behavior of a Redox-Active Sensor Molecule, Inorg. Chem., 2001, 40, 641-644.
    [34] Zhang,G. X.; Zhang, D. Q.; Yin, S. W. et al. 1,3-Dithiole-2-thione derivatives featuring an anthracene unit: new selective chemodosimeters for Hg(II) ion, Chem. Commun., 2005, 16, 2161-2163.
    [35] Krauss, R.; Weinig, H.-G.; Seydack, M. et al. Molecular Signal Transduction through Conformational Transmission of a Perhydroanthracene Transducer, Angew. Chem. Int. Ed., 2000, 39, 1835-1837.
    [36] Hirano, T.; Kikuchi, K.; Urano, Y. et al., Novel zinc fluorescent probes excitable with visible light for biological applications, Angew. Chem. Int. Ed., 2000, 39, 1052-1054.
    [37] Walkup, G. K.; Burdette, S. C.; Lippard, S. J. et al., A new cell-permeable fluorescent probe for Zn2+, J. Am. Chem. Soc., 2000, 122, 5644-5645.
    [38] Amaresh, M. Cyanines during the 1990s: A review, Chem. Rev., 2000, 100, 1998-2011.
    [39] Chang, S. C.; Utecht, R. E.; Lewis, D. E. Synthesis and bromination of 4-alkylamino-N-alkyl-1,8-naphthalimides, Dyes and Pigm., 1998, 43, 83-94.
    [40] Tao, Z.-F.; Qian, X. Naphthalimide hydroperoxides as photonucleases: substituent effects and structural basis, Dyes and Pigm., 1999, 43, 139-145.
    [41] Treibs, A.; Kreuzer, F.-H. Difluorboryl-Komplexe von Di- und Tripyrrylmethen, Liebigs, Ann. Chem., 1968, 718, 208-223.
    [42] Cao, Y.; He, X.; Gao, Z. et al. Fluorescence energy transfer between Acridine Orange and Safranine T and its application in the determination of DNA, Talanta, 1999, 49, 377-383.
    [43] Vogtle, F.; Gestermann, S.; Kauffmann, C. et al. Coordination of Co2+ Ions by poly(propylene amine)-dendrimers containing fluorescent dansyl units at the periphery, J. Am. Chem. Soc., 2000, 122, 10398-10404.
    [44] Lytton, S. D.; Mester, B.; Libman, J. et al. Monitoring of iron(III) removal from biological sources using a fluorescent siderophore, Anal. Bioche., 1992, 205, 326-333.
    [45] Jiwan, J.-L. H.; Branger, C.; Souumillion, J. P. et al. Ion-responsive fluorescent compounds V. Photophysical and complexing properties of coumarin 343 liked to monoaza-15-crown-5, J. Photochem. Photobio. A Chem., 1998, 116, 127-133.
    [46] Martinez-Manez, R.; Sancenon, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions, Chem. Rev., 2003, 103(11): 4419-4476.
    [47] Stuhlmann, F.; Jaschke, A. Characterization of an RNA Active: Interactions between a Diels-Alderase R ibozyme and Its Substrates and Products, J. Am. Chem. Soc., 2002, 124(13): 3238-3244.
    [48] Lygo, B.; Andrews, A. I. Asymmetric Phase-Transfer Catalysis Utilizing Chiral Quaternary Ammonium Salts: Asymmetric Alkylation of Glycine Imines. Acc. Chem. Res., 2004, 37 (8): 518-525.
    [49] Koshland, D. E. Application of a Theory of Enzyme Specificity to Protein Synthesis, Proc. Natl. Acad. Sci., 1958, 44, 98-104.
    [50] Cram, D. J. Preorganization-From Solvents to Spherands, Angew. Chem. Int. Ed. Engl., 1986, 25, 1039-1057.
    [51] Yuan, A.; Zhu, M; Han, S. Supramolecular inclusion complex formation and application of beta-cyclodextrin with heteroanthracene ring cationic dyes, Anal. Chim. Acta., 1999, 389, 291-298.
    [52]吴成泰,冠醚化学,北京:科学出版社, 1992.
    [53] Marquis, D.; Desvergne, J.-P.; Bouas-Laurent, H. Photoresponsive Supramolecular Systems: Synthesis and Photophysical and Photochemical Study of Bis-(9,10-anthracenediyl)coronands AAOnOn, J. Org. Chem., 1995, 60(24): 7984-7996.
    [54] Xu, X. H.; Xu, H.; Ji, H. F. New fluorescent probes for the detection of mixed sodium and potassium metal ions, Chem. Commun., 2001, 20, 2092-2093.
    [55] Akkaya, E. U.; Huston, M.; Czarnik, A. W., Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution, J. Am. Chem. Soc., 1990, 112 (9): 3590-3593.
    [56] Youn, N. J.; Chang, S.-K. Dimethylcyclam based fluoroionophore having Hg2+- and Cd2+-selective signaling behaviors, Tetrahedron Lett., 2005, 46, 125-129.
    [57] Fages, F.; Desvergne, J. P.; Bouas-Laurent, H. et al., Synthesis, Structural, Spectroscopic, and Alkali-Metal Cations Complexation Studies of a Bis-Anthracenediyl Macrotricyclic Ditopic Receptor, J. Org. Chem., 1994, 59(18): 5264-5271.
    [58] Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Taglietti, A. A Zinc(II)-Driven Intramolecular Photoinduced Electron Transfer, Inorg. Chem., 1996, 35(6): 1733-1736.
    [59] Sclafani.; J. A.; Maranto, M. T.; Sisk, T. M. et al. An aqueous ratiometricfluorescence probe for Zn(II), Tetrahedron Lett., 1996, 37 (13): 2193-2196.
    [60] Choi, M.; Kim, M.; Lee, K. D. et al., A New Reverse PET Chemosensor and Its Chelatoselective Aromatic Cadmiation, Org. Lett., 2001, 3(22): 3455-3457.
    [61] Fabbrizzi, L.; Lichelli, M.; Pallavicini, P. et al., A fluorescence sensor for transition metal ions based on anthracene, Angew. Chem. Int. Ed., 1994, 33, 1975-1977.
    [62] de Silva, A. P.; Gunaratne, H. Q. N.; Maguire, G. E. M., Off-on fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photoionic OR logic gates. J. Chem. Soc., Chem. Commun., 1994, 10, 1213-1214.
    [63] Ojida, A.; Mito-oka, Y.; Sada, K. et al. Molecular Recognition and Fluorescence Sensing of Monophosphorylated Peptides in Aqueous Solution by Bis(zinc(II)-dipicolylamine)-Based Artificial Receptors, J. Am. Chem. Soc., 2004, 126(8): 2454-2463.
    [64] De Silva, S. A.; Zavaleta, A.; Baron, D. E. et al. A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switch. Tetrahedron Lett., 1997, 38 (13): 2237-2240.
    [65] De Silva, A. P.; Dixon, I. M.; Gunaratne, H. Q. N. et al., Integration of Logic Functions and Sequential Operation of Gates at the Molecular-Scale, J. Am. Chem. Soc., 1999, 121(6): 1393-1394.
    [66] Kang, J.; Choi, M.; Kwon, J. Y. et al., New Fluorescent Chemosensors for Silver Ion, J. Org. Chem., 2002, 67(12): 4384-4386.
    [67]马会民,马泉莉.杯芳烃光学识别试剂,分析化学,2002, 9, 1137-1142.
    [68] Ji, H. -F.; Dabistani, R.; Brown, G. M. A supramolecular fluorescent probe, activated by protons to detect cesium and potassium ions, mimics the function of a logic gate, J. Am. Chem. Soc., 2000, 122, 9306-9307.
    [69]吴芳英,温珍昌,江云宝.硫脲类阴离子受体的研究进展化学进展,2004, 16(5): 776-784.
    [70] Schmidtchen, F. P.; Berger, M. Artificial Organic Host Molecules for Anions, Chem. Rev., 1997, 97(5): 1609-1646.
    [71] Chen, Q. Y.; Chen, C. F. A new fluorescent as well as chromogenic chemosensor for anions based on an anthracene carbamate derivative, Tetrahedron Lett., 2004, 45, 6493-6496.
    [72] Gunnlaugsson, T.; Davis. A. P.; Glynn, M., Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors, Chem. Commun., 2001, 2556 -2557.
    [73] Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E. et al., Fluorescent Sensing of Pyrophosphate and Bis-carboxylates with Charge Neutral PET Chemosensors, Org. Lett., 2002, 4(15): 2449-2452.
    [74] Zeng, Z. Y.; He, Y.B.; Wu, J. L. et al., Synthesis of Two Branched Fluorescent Receptors and Their Binding Properties for Dicarboxylate Anions, Eur. J. Org. Chem., 2004, 2888-2893.
    [75] Kim, S. K.; Singh, N. J.; Kim, S. J. et al., New Fluorescent Photoinduced Electron Transfer Chemosensor for the Recognition of H2PO4-, Org. Lett., 2003, 5(12): 2083-2086.
    [76] Yoon, J.; Kim, S. K.; Singh, N. J. et al., Highly Effective Fluorescent Sensor for H2PO4-, J. Org. Chem., 2004, 69(2): 581-583.
    [77] Ojida, A.; Park, S.-k.; Mito-oka, Y. et al., Efficient fluorescent ATP-sensing based on coordination chemistry under aqueous neutral conditions, Tetrahedron Lett., 2002, 43(35): 6193-6195.
    [78] Badugu, R.; Lakowicz, J. R.; Geddes, C. D., Cyanide-sensitive fluorescent probes, Dyes Pigments, 2005, 64, 49-55.
    [79] Chang, S. K.; Engen, D.V.; Fan, E. et al., Hydrogen bonding and molecular recognition: synthetic, complexation, and structural studies on barbiturate binding to an artificial receptor, J. Am. Chem. Soc., 1991, 113(20): 7640-7645.
    [80] Naito, M.; Sasaki, Y.; Dewa, T. et al., Effect of Solvation on Induce-Fit Molecular Recognition in Supercritical Fluid to Organic Crystals Immobilized on a Quartz Crystal Microbalance, J. Am. Chem. Soc., 2001, 123(44): 11037-11041.
    [81] Wang, W.; Springsteen, G.; Gao, S. H. et al., The first fluorescent sensor for boronic and boric acids with sensitivity at sub-micromolar concentrations, Chem. Commun., 2000, 14, 1283-1284.
    [82] James, T. D.; Samankumara Sandanayake, K. R. A.; Shinkai, S. Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine, J. Chem. Soc., Chem. Commun., 1994, 4, 477-478.
    [83] Nakata, E.; Nagase, T.; Shinkai, S. et al., Coupling a Natural Receptor Protein with an Artificial Receptor to Afford a Semisynthetic Fluorescent Biosensor, J. Am. Chem. Soc., 2004, 126(2): 490-495.
    [84] Eggert, H.; Frederiksen, J.; Morin, C. et al., A New Glucose-Selective Fluorescent Bisboronic Acid. First Report of Strong -Furanose Complexation in Aqueous Solution at Physiological pH1, J. Org. Chem., 1999, 64(11): 3846-3852.
    [85] Djerassi, C.; Engle. R. R., Oxidations with Ruthenium Tetroxide, J. Am. Chem. Soc., 1953, 75(15): 3838-3840.
    [86] Goswami, S.; Mahapatra, A. K.; Mukherjee, R. Molecular recognition of xanthine alkaloids: First synthetic receptors for theobromine and a series of new receptors for caffeine, J. Chem. Soc. Perkin Trans. 1, 2001, 2717-2726.
    [87] Thomas, J. R.; Liu, X.; Hergenrother, P. J. Size-Specific Ligands for RNA Hairpin Loops, J. Am. Chem. Soc., 2005, 127(36): 12434-12435.
    [88] Campaigne, E.; Archer, W. L. The Use of Dimethylformamide as a Formylation Reagent1, J. Am. Chem. Soc., 1953, 75(4): 989-991. [89 ] Fieser, H. 9-Anthraldehyde; 2-Ethoxy-1-naphaldehyde, Org. Synth., 1955, 3, 98.
    [90] Bair, K. W.; Tuttle, R. L.; Knick, V. C. et al. [(1-Pyrenylmethyl)amino] alcohols, a new class of antitumor DNA intercalators. Discovery and initial amine side chain structure-activity studies, J. Med. Chem., 1990, 33(9): 2385-2393.
    [91] Hunter, W.; Buck, J.; Gubitz, F. et al. A New Sympatholytic Agent, J. Org. Chem., 1956, 21(12): 1512-1512.
    [92] Ciganek, E. Intramolecular Diels-Alder Additions. 1. Additions to Anthracene and Acridine', J. Org. Chem., 1980, 45, 1497-1505.
    [93] Varnes, A. W.; Dodson, R. B.; Wehry, E. L. Interactions of transition-metal ions with photoexcited states of flavines. Fluorescence quenching studies, J. Am. Chem. Soc., 1972, 94(3): 946-950.
    [94] Fedorova, O. A.; Strokach, Y. P.; Gromov, S. P. et al. Effect of metal cations on the photochromic properties of spironaphthoxazines conjugated with aza-15(18)-crown-5(6) ethers, New J. Chem., 2002, 1137-1145.
    [95] Islam, M.; Khanin, M.; Sadik, O. A. Fluorescent Chelates for Monitoring Metal Binding with Macromolecules, Biomacromolecules, 2003, 4(1): 114-121.
    [96] Morozumi, T.; Anada, T.; Nakamura, H. New Fluorescent "Off-On" Behavior of 9-Anthryl Aromatic Amides through Controlling the Twisted Intramolecular Charge Transfer Relaxation Process by Complexation with Metal Ions, J. Phys. Chem. B., 2001, 105(15): 2923-2931.
    [97] Miller, M. W.; Amidon, R. W.; Tawney, P. O. Some meso-Substituted Anthracenes. I. 9,10-Bis-(chloromethyl)-anthracene as a Synthetic Intermediate1, J. Am. Chem. Soc., 1955, 77(10): 2845-2848.
    [98] Chung, Y.; Duerr, B. F.; McKelvey, T. A. et al. Structural effects controlling the rate of the retro-Diels-Alder reaction in anthracene cycloadducts, J. Org. Chem., 1989, 54(5): 1018-1032.
    [99] Ishikawa, J.; Sakamoto, H.; Nakao, S. et al. Silver Ion Selective Fluoroionophores Based on Anthracene-Linked Polythiazaalkane or Polythiaalkane Derivatives, J. Org. Chem., 1999, 64(6): 1913-1921.
    [100] Lee, Y. J.; Seo, D.; Kwon, J. Y. et al. Anthracene derivatives bearing sulfur atoms or selenium atoms as fluorescent chemosensors for Cu2+ and Hg2+: different selectivity induced from ligand immobilization onto anthracene, Tetrahedron, 62(52): 12340-12344.
    [101] Valeur, B.; Pouget, J.; Bourson, J. et al. Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding, J. Phys. Chem., 1992, 96(16): 6545-6549.
    [102] Ng, S.W.; Kumar Das, V. G.; Tiekink, E. R. T. Structural chemistry of organotin carboxylates : VII. Synthesis of triorganostannate esters of dicarboxylic acids. Crystal structure of dicyclohexylammonium 2,6- pyridine dicarboxyl atotributylstannate, J. Organomet. Chem., 1991, 403, 111-117.
    [103] Hersh, E. M.; Brewton, G.; Abrams, D. et al., Ditiocarb sodium (diethyldithiocarbamate) therapy in patients with symptomatic HIV infection and AIDS. A randomized, double-blind, placebo-controlled, multicenter study, J. Am. Med. Assoc., 1991, 265, 1538-1544.
    [104] Cheung, S.-M.; Chan,W.-H. Hg2+ sensing in aqueous solutions: an intramolecular charge transfer emission quenching fluorescent chemosensors, Tetrahedron, 2006, 62(35): 8379-8383.
    [105] Lieber, E.; Orlowski, R. Notes - Hydrazinolysis of 1-(Alkyldithioate)-piperidine, J. Org. Chem., 1957, 22(1): 88-89.
    [106] Latham, H. G.; May, Jr. E. L.; Mosettig, E. Studies in the Anthracene Series. VI. Derivatives of 1,2,3,4-Tetrahydroanthracene, J. Am. Chem. Soc., 1948, 70(3): 1079-1081.
    [107] Nakatsuji, S.; Ojima, T.; Akutsu, H. et al. Anthracene Derivatives and the Corresponding Dimers with TEMPO Radicals, J. Org. Chem., 2002, 67(3): 916-921.
    [108] Bawa, R. A.; Jones, S. Synthesis and Diels-Alder reactions of 9-(4-benzyloxazolin-2-yl) anthracene, Tetrahedron, 2004, 60, 2765-2770.
    [109] Lehn, J. M.; Kenilworth, N. J. Monocyclic Macrocyclic Compounds and Complexes Thereof, 1976, u.s. 3966766.
    [110] Koschabek, R.; Gleiter, R.; Rominger, F. Synthesis and Properties of Cryptands with a Thioether Bridge andπ-Donors -Silver(I) and Copper(I)-Complexes, Eur. J. Inorg. Chem., 2006, 609-620.
    [111] Dwyer, F. P. J.; Lions, F. a Sexadentate Chelate Compound, J. Am. Chem. Soc., 1947, 69(11): 2917-2918.
    [112] Braun, C. E.; Cook, C. D.; Rousseau1, J. E. 9-Nitroanthracene, Org. Synth., 1963, 4, 711.
    [113] House, H. O.; Koepsell, D.; Jaeger, W. Derivatives of 1,8-diphenylanthracene, J. Org. Chem., 1973, 38(6): 1167-1173.
    [114] Hosseini, M. W.; Blacker, A. J.; Lehn, J. M. Multiple Molecular Recognition and Catalysis: Nucleotide Binding and ATP Hydrolysis by a Receptor Molecule Bearing an Anion Binding Site, an Intercalator Group, and a Catalytic Site, J. Chem. Soc., Chem. Commun., 1988, 9, 596-598.
    [115] Hosseini, M. W.; Blacker, A. J.; Lehn, J. M. Multiple Molecular Recognition and Catalysis: A Multifunctional Anion Receptor Bearing an Anion Binding Site, an Intercalating Group, and a catalytic Site for Muleotide Bingding and Hydrolysis, J.Am. Chem. Soc.; 1990; 112(10): 3896-3904.
    [116] Yang, N.-C. C.; Chiang, W.-L.; Leonov, D. et al. Synthesis of aryloxiranes, J. Org. Chem., 1978, 43(17): 3425-3427.
    [117] Sclafani, J. A.; Maranto, M. T.; Sisk, T. M. et al. Terminal Alkylation of Linear Polyamines, J. Org. Chem., 1996, 61(9): 3221-3222.
    [118] Zhang, G. Q.; Yang, G. Q.; Wang, S. Q. et al. A Highly Fluorescent Anthracene-Containing Hybrid Material Exhibiting Tunable Blue-Green Emission Based on the Formation of an Unusual T-Shaped Excimer, Chem. Eur. J. 2007, 13, 3630-3635.
    [119] Wang, C.; Abboud, K. A.; Phanstiel IV, O. Synthesis and Characterization of N1-(4-Toluenesulfonyl)-N1-(9-anthracenemethyl)triamines, J. Org. Chem., 2002, 67(22): 7865-7868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700