用户名: 密码: 验证码:
二硼化镁的形成机理及其成相控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对二硼化镁(MgB2)超导材料研究的不断深入,关于其形成机理及成相控制的研究对高品质MgB2超导材料的制备具有越来越重要的指导意义。本文采用传统的固相烧结和高频感应熔炼的方法分别制备MgB2多晶块体材料及Mg-Cu-B三元合金,并结合显微组织观察、差热分析技术、粉末烧结理论,热力学和动力学分析手段,系统研究了原位烧结过程及深过冷Mg-Cu-B合金熔体中MgB2相的形成规律。另外,在原位烧结过程中,通过对外加和自生纳米MgO颗粒掺杂相自身演化规律和对MgB2相形成过程影响的研究,确定了这些影响与MgB2超导电性之间的必然联系。上述研究包含的主要内容和获得的结论有:
     利用高精度差热分析仪对Mg粉和B粉的混合试样进行烧结处理并同步监控其反应进程,在实验分析的基础上,结合经典烧结理论和多重扫描动力学分析方法,系统研究了原位烧结制备过程中多晶MgB2相的形成过程及成相机理,并确定了最佳烧结工艺。结果表明:Mg粉和B粉在Mg熔化之前便已开始反应,直到1023K时才反应完全并生成多晶MgB2相,因此在略高于1023K烧结得到的样品具有高的超导转变温度。在Mg粉熔化之前,反应属于固-固反应阶段,相互接触的Mg和B颗粒通过原子之间的相互扩散在接触处形成固溶活化区,MgB2相便在该活化区内形成。多重扫描动力学分析结果显示:固-固反应所对应的最概然机理函数为Avrami-Erofeev,表明MgB2相在该阶段受随机形核和随后的瞬时生长方式所控制,生成的MgB2颗粒以纳米尺度存在且很难长大;Mg粉熔化以后,反应进入固-液反应阶段,熔融Mg的渗透和包覆作用促进了Mg和残余B之间的反应,与此同时,MgB2晶粒在该阶段按Ostwald熟化机制迅速长成规则的六边形。
     在上述工作基础上,同样采用热分析的手段,进一步研究了原位烧结过程中纳米Al2O3粉末掺杂对多晶MgB2相形成过程的影响,并确定了该影响与超导电性之间的内在联系。结果表明:在Mg粉和B粉原位烧结反应过程中,纳米Al2O3将与Mg发生反应而生成纳米MgO和单质Al,由此改变了MgB2相的形成进程。纳米MgO颗粒的析出限制了MgB2晶粒的长大,从而有效增加了MgB2多晶体的晶界磁通钉扎作用。同时,纳米MgO颗粒自身也可作为有效的磁通钉扎中心,提高MgB2多晶体的临界电流密度。但随着纳米Al2O3粉末掺杂量的增多,析出的纳米MgO颗粒将发生局部团聚和长大而失去磁通钉扎作用,从而破坏了MgB2多晶体的整体超导电性。Al原子部分取代MgB2晶体结构中Mg原子的位置,从而破坏了它的电子结构而显著降低MgB2多晶体的临界转变温度。
     在原位烧结制备多晶MgB2超导体过程中,MgO作为第二相的析出不可避免。对自生MgO相的形成、演化规律及对超导电性能影响的研究发现:通过调整固-固反应阶段的保温时间可实现自生纳米MgO颗粒的控制析出,并将其保留到固-液反应阶段的大角度MgB2晶界及表面处形成有效的磁通钉扎中心,从而得到高超导电性能的多晶MgB2超导体。
     选取共晶Mg58.0Cu42.0和Cu86.7B13.3作为Mg和B的先驱相,采用高频感应熔炼的方法在常压及较低温度(1100℃)条件下熔配Mg15Cu75B10三元合金。随后,利用循环过热的净化方法得到不同初始过冷度条件下的深过冷Mg15Cu75B10合金,并借助经典形核理论和瞬态形核理论,讨论了Mg15Cu75B10合金组织中MgB2和MgB4相之间竞争形核的热力学和动力学条件,给出了过冷Mg15Cu75B10合金组织中形成MgB2相的临界条件。结果表明:在小过冷度范围内,当过冷度大于某一临界过冷度时,MgB2相比MgB4相具有更低的形核功、更大的形核率和更短的形核孕育时间,因而MgB2相从与MgB4相的竞争形核中胜出,优先从合金熔体中形核并生长。然而,在大的初始过冷度(大于223K)下,MgB2相和MgB4相均具有较小的形核率和较长的形核孕育时间,很难从过冷熔体中形核。
The researches on the formation mechanism and controlling of magnesium diboride (MgB2) have become more and more important for guiding the preparation of high quality MgB2 superconductors by optimzing the prepration process. In the present paper, polycrystalline MgB2 superconductor and Mg-Cu-B ternay alloy were prepared by traditional solid-state sintering method and high frequency induction metling method respectively. Moreover, the evolution mechanisms of MgB2 phase during the in-situ sintering process and in the undercooed Mg-Cu-B alloy melt were systematically explored by means of metallographic analysis, diffrerential thermal analysis, powders sintering theory, thermodynamics and kinetics ananlysis. Additionally, the evolutions of ex-situ and in-situ formed nano-dopants during in-situ sintering process, as well as, the effects on the formation process and superconductivity of polycrystalline MgB2 were clarified. More details were given as follows.
     A high-resolution Differerntial Thermal Analysis (DTA) apparatus was used to sinter the mixture of Mg and B powder and monitor the reaction process. Based on the classical sintering theory and multiple scan kinetic analysis method, the formation process and mechanism of polycrystalline MgB2 during in-situ sintering process were systemticlly investigated and the optimal sintering process was determined. It indicates that the reaction between Mg and B powders starts before Mg melting and not complete until the sintering temperature exceeds to 1023K, which is the best temperature to obtain MgB2 superconductor exhibiting the highest critical transition temperature (Tc). Solid-solid reaction stage (before Mg melting), the solution activated regions formed ahead at the contact areas between Mg and B particles by diffusion of atoms, then MgB2 phase precipitated from these regions. Furthermore, multiple scan kinetic analysis shows that the most probable mechanism function of this solid-solid reaction is Avrami–Erofeev equation, which represents that the formation of MgB2 phase is controlled by a mode of andom nucleation followed by instantaneous growth of nuclei. Therefore, the grains are in nano-scale at this stage. At the solid-liquid reaction stage (after Mg melting), the molten Mg promotes the reaction between Mg and residual B powders under the infilteration and enwrapping effects. Finally, the formed MgB2 grains grow up to regular hexagon morphology rapidly by Ostwald ripening mechanism.
     Based on the above observations, the doping effect of nano-Al2O3 powders on the formation of polycrystlline MgB2 and superconductivites were investigated. The results shows that nano-Al2O3 reacts with Mg to form nan-MgO and Al, which changes the formation sequence of MgB2, during the process of reaction bwteen Mg and B powder. The precipitated MgO particles restrict the growth of MgB2 grains and therefore increase the pinning effect of grain boundary. The MgO particles can also act as pinning centers to improve critical current density of MgB2, however, the pinning effect of MgO particles and superconductivity of MgB2 superconductor are destroyed following the increasement, local agglomeration and growth of MgO particles. Addtionally, Al atoms are partially substituted in the lattice of MgB2 at Mg sites to change the electronic structure of MgB2 and accordingly depress the critical transition temperature.
     The precipitation of MgO as scondary phase is inevitable during in-situ sintering process for preparation of polycrystalline MgB2 superconductor. The formation, evolution and effect on superconductivity of MgO phase were explored. It was found that the precipitation of nano-scale MgO particles can be controlled by adjusting the holding time during the solid-solid reaction stage. These nano MgO particles remain till the solid-liquid stage and act as effective pinning centers on the surfaces and boundaries of large MgB2 grains to improve its superconductivity.
     Eutectic Mg58.0Cu42.0 and Cu86.7B13.3 were adopted as precursors of Mg and B to prepare a ternary Mg15Cu75B10 alloy at a low temperature (1100℃) under ambient atmosphere by means of induce melting. Then, hyper-undercooling Mg15Cu75B10 alloys with different primary undercooling degrees were prepared by using cyclic overheating purification method. Based on the classical nucleation theory and transient nucleation theory, the thermodynamics and the kinetics for the competitive nucleation between MgB2 and MgB4 phase were calculated, and hence a critical condition for the formation of the MgB2 phase in hyper-undercooling Mg15Cu75B10 melt was proposed. The results indicate that MgB2 phase has smaller critical nucleation energy, higher nucleation rate and shorter incubation time comparing with MgB4 phase as the undercooling degree excesses to a critical value at a low undercooling range. Hence, the MgB2 phase nucleates primarily from the melt and grows up. However, in the high undercoolings (more than 223 K) range, both MgB2 and MgB4 phase have low nucleation rate and large incubation periods, so it is difficult for them to nucleate from undercooled melt.
引文
[1] J. Nagamatsu, N. Nakagawa, T. Muranaka et al., Superconductivity at 39K in magnesium diboride[J], Nature, 2001, 410: 63
    [2] W. Meissner and R. Ochsenfeld, Einneuer effect bei eintrit der supraleifahigheit[J], NatureWissenschaften, 1933,21:787
    [3] E. Maxwell, Isotope effect in superconductivity of Mercury[J], Phys. Rev., 1950, 78: 477
    [4] C.A. Reynolds, B. Serin, W.H. Wright et al., Superconductivity of isotopes of Mercury[J], Phys. Rev., 1950, 78: 487
    [5]章立源,张金龙,崔广霁.超导物理学,北京:电子工业出版社,1995,3-4
    [6]章立源.超越自由,神奇的超导体,北京:科学出版社,2005,7:16-27
    [7] J. Hlinka, I. Gregora, J. Pokomy et al., Phonons in MgB2 by polarized Raman scattering on single crystals[J], Phys. Rev. B, 2001, 64: 140503R
    [8] J. Akimitsu and T. Muranaka, Superconductivity in MgB2[J], Physica C, 2003, 388: 98
    [9] J.D. Jorgensen, D.G. Hinks, S. Short, Lattice properties of MgB2 versus temperature and pressure[J], Phys. Rev. B, 2001, 63: 224522
    [10] I.I. Mazin,V.P. Antropov, Electronic structure, electron- phonon coupling and multiband effects in MgB2[J], Physica C, 2003,385: 49
    [11] J. Kortus, I. I. Mazin, K. D. Belashchenko, Superconductivity of Metallic Boron in MgB2[J], Phys. Rev. Lett., 2001, 86: 4656
    [12] C. Buzea and T. Yamashita, Review of the superconducting properties of MgB2[J], Supercond. Sci. Technol., 2001, 14: R115
    [13] S.L. Bud’ko, G.Lapertot, C.Petrovic et al., Boron Isotope Effect in Superconducting MgB2[J], Phys. Rev. Lett., 2001, 86: 1877
    [14] J. Kortus, I.I. Mazin, K.D. Belashchenko et al., Superconduc-tivity of Metallic Boron in MgB2[J], Phys. Rev. Lett., 2001,86: 4656
    [15] B. Lorenz, R.L. Meng, C.W. Chu, High-pressure study on MgB2[J], Phys. Rev. B, 2001, 64: 012507
    [16] D.C. Larbalestier, L.D. Cooley, M.O. Rikel et al., Strongly linked current flow in polycrystalline forms of the superconductor MgB2[J], Nature, 2001, 410: 186
    [17] Y. Bugoslavsky, G.K. Perkins, X. Qi et al., Vortex dynamics in superconducting MgB2 and prospects for applications[J], Nature, 2001, 410: 563
    [18] M. Kambara, N. Hari Babu, E.S. Sadki et al., High intergranular critical currents in metallic MgB2 superconductor[J], Supercond. Sci. Technol., 2001, 14: L5
    [19] H.H. Wen, S.L. Li, Z.W. Zhao, Strong quantum fluctuation of vortices in the new superconductor MgB2[J], Chin. Phys. Lett., 2001, 18: 816
    [20] S.X. Dou, X.L. Wang, J. Horvat et al., Flux Jumping and a Bulk-to-Granular Transition in the Magnetization of a Compacted and Sintered MgB2 Superconductor[J], Physica C, 2001, 361: 79
    [21] B.Q. Fu, Y. Feng, G. Yan et al., Hig transport critical cruuent in MgB2/Fe wire by in situ powder-in-tube process[J], Physica C, 2003, 392-396: 1035
    [22] R.W. Johnson, A.H. Daane, Electron Requirements of Bonds in Metal Borides, J. Chem. Phys., 1963, 38: 425
    [23] H.J. Juretschke, R. Steinitz, Hall effect and electrical conductivity of transition-metal diborides[J], J. Chem. Phys. Solids., 1958, 4: 118
    [24] J.S. Slusky, N. Rogado, K.A. Regan et a1, Loss of supercond-uctivity with the addition of Al to MgB2 and a structural transition in Mg1-xAlxB2[J], Nature, 2001, 410: 343
    [25] S.V. Okatov, A.L. Ivanovskii, Yu.E. Medvedeva, N.I. Medvedeva, The Electronic Band Structures of Superconducting MgB2 and Related Borides CaB2, MgB6 and CaB6[J], phys. stat. sol.(b), 2001, 225: R3
    [26] M.D. Sumption, X. Peng, E. Lee, Transport Current in MgB2 based Superconducting Strand at 4.2 K and Self-Field[J], 2001, arXiv: cond-mat/0102441
    [27]吴怡芳,二硼化镁超导体的组织结构与性能研究:[硕士学位论文],西安;西北工业大学,2005
    [28] K.H.P. Kim, W.N. Kang, M.S. Kim,Origin of the high DC transport critical current density for the MgB2 superconductor[J],2001, arXiv: cond-mat/0103176
    [29] A. Brinkman, A.A. Golubov, H. Rogalla et al., Multiband model for tunneling in MgB2 junctions[J], Phys. Rev. B, 2002, 65: 180517
    [30] A.A. Golubov, A. Brinkman, O.V. Dolgov et al., Multiband model for penetration depth in MgB2[J], Phys. Rev. B, 2002, 66: 054524
    [31] J.C. Hyoung,R. David,S. Hong et a1.,The origin of the anomalous superconducting properties of MgB2[J], Nature,2002,41 8:758
    [32] G. Rubio-Bollinger, H. Suderow, S. Vieira, Tunneling Spectro-scopy in Small Grains of Superconducting MgB2[J], Phys. Rev.Lett., 2001, 86: 5582
    [33] A. Sharoni, I. Felner, O. Millo, Tunneling spectroscopy and magnetization measurements of the superconducting properties of MgB2[J], Phys. Rev. B, 2001,63: 220508
    [34] D.P. Li, B. Rosenstein, Melting of the vortex lattice in high-Tc superconductors[J], Phys. Rev. B, 2001, 65: 220504
    [35] G. Karapetrov, M. Iavarone, W.K. Kwok, G.W. Crabtree, D.G. Hinks, Scanning Tunneling Spectroscopy in MgB2[J], Phys. Rev. Lett., 2001, 86: 4374
    [36] A. Kohen, G. Deutscher, Symmetry and temperature dependence of the order parameter in MgB2 from point contact measurements[J], Phys. Rev. B, 2001, 64: 060506
    [37] T. Takahashi, T. Sato, S. Souma, T. Muranaka and J. Akimitsu, High-Resolution Photoemission Study of MgB2[J], Phys. Rev. Lett., 2001, 86: 4915
    [38] A.Y. Liu, I.I. Mazin and J. Kortus, Beyond Eliashberg Superconductivity in MgB2: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps[J], Phys. Rev. Lett., 2001, 87: 087005
    [39] F. Giubileo, D. Roditchev, W. Sacks et al., Two-Gap State De-nsity in MgB2: A True Bulk Property Or A Proximity Effect[J], Phys. Rev. Lett., 2001, 87: 177008
    [40] P. Sazbo, P. Samuely, J. Kacmarcik et al., Evidence for Two Superconducting Energy Gaps in MgB2 by Point-Contact Spectroscopy[J], Phys. Rev. Lett., 2001, 87: 137005
    [41] J.D. Jorgensen, D.G. Hinks, S. Short, Lattice properties of MgB2 versus temperature and pressure[J], Phys. Rev. B, 2001, 63: 224522
    [42] X.K. Chen, M.J. Konstantinovi?, J.C. Irwin et al., Evidence for Two Superconducting Gaps in MgB2[J], Phys. Rev. Lett., 2001, 87: 157002
    [43] Y.G. Zhao, X.P. Zhang, P.T. Qiao et al., Effect of Li doping on structure and superconducting transition temperature of Mg1?xLixB2[J], Physica C, 2001, 361: 91
    [44] H. Schmidt, J.F. Zasadzinski, K.E. Gray, D.GHinks, Evidence for Two-Band Superconductivity from Break-Junction Tunneling on MgB2[J], Phys. Rev. Lett., 2002, 88: 127002
    [45] M.H. Badr, M. Freamat, Y. Sushko, K.W. Ng, Temperature and field dependence of the energy gap of MgB2/Pb planar junctions[J], Phys. Rev. B, 2002, 65: 184516
    [46] Z.Z. Li, H.J. Tao, Y. Xuan et al., Andreev reflection spectr-oscopy evidence for multiple gaps in MgB2[J], Phys. Rev. B,2002, 66: 064513
    [47] H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, S.G. Loule, The origin of the anomalous superconducting properties of MgB2[J], Nature, 2002, 418: 758
    [48] S. Lee, Z.G. Khim, Y. Chong et al., Measurement of the super-conducting gap of MgB2 by point contact spectroscopy[J], Ph-ysica C, 2002, 377: 202
    [49] S. Tsuda, T. Yokoya, Y. Takano et al., Definitive Experimental Evidence for Two-Band Superconductivity in MgB2[J], Phys. Rev. Lett.,2003, 91: 127001
    [50] H. Schmidt, J.F. Zasadzinski, K.E. Gray, D.G. Hinks, Break-junction tunneling on MgB2[J], Physica C, 2003, 385: 221
    [51] M.H. Badr and K.-W. Ng, Temperature and field dependence of MgB2 energy gaps from tunneling spectra[J], Physica C, 2003, 388-389: 139
    [52] P. Szabó,P. Samuely, J. Ka mar ik et al., Point-contact spectroscopy of MgB2 in high magnetic fields[J], Physica C, 2003, 388, 145
    [53] R.S. Gonnelli, D. Daghero, A. Calzolari et al., Magnetic-field dependence of the gaps in a two-band superconductor: A point-contact study of MgB2 single crystals[J], Phys. Rev. B, 2004, 69: 100504
    [54] D.K. Finnemore, J.E. Ostenson, S.L. Bud’ko et al., Thermodyn-amic and Transport Properties of Superconducting Mg10B2[J],Ph-ys. Rev. Lett., 2001,86: 2420
    [55] P.M. Grant, APS Meeting, Seattle Washington, 2001, 12 March.
    [56] Z.-K. Liu, D.G. Schlom, O. Li et al., Thermodynamics of the Mg-B system: Implications for the deposition of MgB2 thin films[J], Appl. Phys. Lett., 2001, 78: 3678
    [57] L. Rao, E.G. Gillan, R. Kaner, Repid synthesis of transition-metal borides by solid-state metathesis[J], J. Mater. Res.,1995, 10: 353
    [58] E.G. Gillan, R.B. Kaner, Synthesis of Refractory Ceramics via Rapid Metathesis Reactions between Solid-State Precursors[J], Chem. Mater., 1996, 8: 333
    [59] T. Takenobu, T. Ito, D.H. Chi et al., Intralayer carbon sub-stitution in the MgB2 superconductor[J], Phys. Rev. B., 2001, 64: 134513
    [60] P. Kovác, I. Husek, T. Melisek et al., The role of MgO content in ex situ MgB2 wires[J], Supercond. Sci. Technol., 2004, 17: 41
    [61] M. Jones,R. Marsh, The preparation and structure of magnesium boride[J], J. Am. Chem. Soc.,1954,76:1434
    [62] G. Yan, Y.Feng, B.Q. Fu et al., Effect of synthesis temperature on density and microstructure of MgB2 superconductor at ambient pressure[J], J. Mater. Sci., 2004, 4893
    [63] V.N. Narozhnyi, G. Fuchs, A. Handstein et al., Comparative study of dense bulk MgB2 materials prepared by different methods[J], Journal of Superconductivity, 2002, 15(6): 599
    [64] A. Handstein, D. Hinz, G. Fuchs et al., Fully dense MgB2 superconductor textured by hot deformation[J], J. Alloys Compd., 2001, 329: 285
    [65] A. Gümbel, J. Eckert, G. Fuchs et al., Improved superconducting properties in nanocrystalline bulk MgB2[J], Appl. Phys. Lett., 2002, 80: 2725
    [66] Y. Takano, H. Takeya, H. Fujii et al., Superconducting prope-rties of MgB2 bulk materials prepared by high-pressure sint-ering[J], Appl. Phys. Lett., 2001, 78: 2914
    [67] P.C. Canfield, D.K. Finnemore, S.L. Bud’ko,Superconductivity in Dense MgB2 Wires[J], Phys. Rev. Lett., 2001, 86: 2423
    [68] B.A. Glowacki, M. Majoros, MgB2 conductors for dc and ac app-lications[J], Physica C, 2002, 372-376: 1235
    [69] G. Grasso, A. Malagoli, C. Ferdeghini et al., Large transport critical currents in unsintered MgB2 superconducting tapes[J], Appl. Phys. Lett., 2001, 79: 230
    [70] H. Kumakura, A. Matsumoto, H. Fujii et al., Microstructure and superconducting properties of powder-in-tube processed MgB2 tapes[J], Physica C, 2002, 382(1): 93
    [71] B.A. Glowachi, M.Majoros, M. Vickers et a1., Superconductivity of Powder-in-tube MgB2 Wires[J], Supercond. Sci. Technol.,2001,14:193
    [72] C. Beneduce, H.L. Suo, P. Toulemonde et a1., Transport Critical Current,Anisotropy,Irreversibility Fields and Exponential n Factors in Fe Sheathed MgB2 Tapes[J], 2002 , arXiv: cond-mat/0203551
    [73] R. Nast, S. I. Schlachter, S. Zimmer et a1., Mechanically Reinforced MgB2 Wires and Tapes with High Transport Currents[J], Physica C, 2002,(372-376): 1241
    [74] S. Soltanian, X.L. Wang, J. Horvat et al., Improvement of cr-itical current density in the Cu/MgB2 and Ag/MgB2 supercondu-cting wires using the fast formation method[J], Physica C, 2002, 382(2-3): 187
    [75] S. Jin, H. Mavoori, C. Bower et al., High critical currents in iron-clad superconducting MgB2 wires[J], Nature, 2001, 411: 563
    [76] W. Goldacker, S.I. Schlachter, S. Zimmer et al., High transport currents in mechanically reinforced MgB2 wires[J], Supercond. Sci. Technol., 2001, 14: 787
    [77] K. Ueda, M. Naito, As-grown superconducting MgB2 thin films prepared by molecular beam epitaxy[J], Appl. Phys. Lett., 2001, 79: 2046
    [78] W. Jo, J.-H. Huh, T. Ohnishi et al., In situ growth of super-conducting MgB2 thin films with preferential orientation bymolecular-beam epitaxy[J], Appl. Phys. Lett., 2002, 80: 3563
    [79] X. Zeng, A. J. Pogrebnyakov, A. Kotcharov et al., In situ ep-itaxial MgB2 thin films for superconducting electronics[J],Nature Mater., 2002,1:35
    [80] A. Saito, A. Kawakami, H. Shimakage, Z. Wang, As-grown MgB2 thin films deposited on Al2O3 substrates with different crystal planes[J],Supercond. Sci. Technol., 2002,15:1325
    [81] O. Sakata, S. Kimura, M. Takata et al., High-quality as-grown MgB2 thin-film fabrication at a low temperature using an in-plane-lattice near-matched epitaxial-buffer layer[J], J. Appl. Phys., 2004, 96: 3580
    [82] H. Kitaguchi, A. Matsumoto, H. Kumakura et al., MgB2 films with very high critical current densities due to strong grain boundary pinning[J], Appl. Phys. Lett., 2004, 85: 2842
    [83] H.Y. Zhai, H.M. Christen, L. Zhang et al., Superconducting magnesium diboride films on Si with Tc=24K grown via vacuum annealing from stoichiometric precursors[J], Appl. Phys. Lett., 2001, 79: 2603
    [84] Z. Mori, T. Doi, K. Eitoku et al., Two-step in situ annealing effects on sputter-deposited MgB2 thin films[J], Supercond. Sci. Technol., 2004, 17: 47
    [85] W.N. Kang, E.-M. Choi, H.-J. Kim et al., Growth of supercond-ucting MgB2 thin films via postannealing techniques[J], Physica C, 2003, 385: 24
    [86] S. H. Moon, J. H. Yun, H. N. Lee et al., High critical current densities in superconducting MgB2 thin films[J], Appl. Phys. Lett., 2001, 79: 2429.
    [87] M. Paranthaman, C. Cantoni, H.Y. Zhai et al., High critical current densities in superconducting MgB2 thin films[J], Appl. Phys. Lett., 2001, 78: 3669
    [88] H. Ohkubo, M. Akinaga, Fabrication of as-grown superconducting MgB2 thin films[J], Physica C, 2004, 408-410: 898-899
    [89] M. Xu, H. Kitazawa, Y. Takano et al., Anisotropy of superconductivity from MgB2 single crystals[J], App. Phys. Lett., 2001, 79:2279
    [90] Y. Machida, S. Sasaki,Ambient-pressure synthesis of single crystal MgB2 and their superconducting anisotropy[J], Phys. Rev. B, 2003, 67: 094507
    [91] K.H.P. Kim, J.H. Choi et al., Superconducting properties of well-shaped MgB2 single crystals[J], Phys. Rev. B, 2002, 65: 100510
    [92] D. Wei, X. Dong, Z. Hongbin et al., Single crystal growth of MgB2 by using Mg-self-flux method at ambient pressure[J], J. Crys. Grow., 2004, 268: 123
    [93] Y.C. Cho, S.E. Park, S.Y. Jeong et al., Properties of superc-onducting MgB2 single crystal grown by a modified flux meth-od[J], Appl. Phys. Lett., 2002, 80: 3569
    [94] D. Souptel,G. Behr,W. Loser et al., Crystal growth of MgB2 from Mg-Cu-B melt flux and superconducting properties[J], J. Alloys Compd., 2003, 349: 193-200
    [95] S. Lee, A. Yamamoto, H. Mori et al., Single crystals of MgB2 superconductor grown under high-pressure in Mg-B-N system[J], Physica C, 2002, 378-381: 33
    [96] J. Karpinski, S.M. Kazakov, J. Jun et al., Single crystal growth of MgB2 and thermodynamics of Mg-B-N system at high pressure[J], Physica C, 2003, 385: 42
    [97] J. Karpinski, M. Angst, J. Jun et al., MgB2 single crystals: high pressure growth and physical properties[J], Supercond. Sci. Technol., 2003, 16: 221
    [98] K.H.P. Kim, C.U. Jung, B.W. Kang et al., Microstructure and superconductivity of MgB2 single crystals[J], Current Applied Physics, 2004, 4: 272
    [99] C.H. Cheng,Y. Zhao,X.T. Zhu et al., Chemical doping effect on the crystal structure and superconductivity of MgB2[J], Physica C,2003,386:588
    [100] J.S. Slusky,N. Rogado,K.A. Regan et al., Loss of supercond-uctivity with the addition of Al to MgB2 and a structural t-ransition in Mg1-x AlxB2[J], Nature,2001,410:343
    [101] J.Y. Xiang,D.N. Zheng,J.Q. Li et al., Effects of Al doping on the superconducting and structural properties of MgB2[J], Physica C,2003,386:611
    [102] Y.G. Zhao,X.P. Zhang,P.T. Qiao et al., Effect of Li doping on structure and superconducting transition temperature of Mg1?xLixB2 [J], Physica C,2001,361:91
    [103] M. Küherger, G. Gritzner.Effects of Sn, Co and Fe on MgB2[J], Physica C,2002,370:39
    [104] C.H. Cheng,Y. Zhao,L. Wang et al., Preparation,structure and superconductivity of Mg1-xAgxB2[J], Physica C,2002,378-381:244
    [105] S. Kazakov,M. Angst, J. Karpinski et al., Substitution effect of Zn and Cu in MgB2 on Tc and structure[J], Solid State Communications,2001,119:1
    [106] M.J. Mehl, D.A. Papaconstantopoulos, D.J. Singh et al., Effects of C, Cu, and Be substitutions in superconducting MgB2[J], Phys. Rev. B,2001,64:140509
    [107] H.R. Zhang,J.Y. Zhao and L. Shi, The charge transfer induced by Cr doping in MgB2[J], Physica C,2005,424:79
    [108] W. Mickelson,J. Cumings,W.Q. Hang et al., Effects of carbon doping on superconductivity in magnesium diboride[J], Phys. Rev. B,2002,65:052505
    [109] A. Bharahti,S. Temima,S.T. Balaselvi et al., Carbon solubility and superconductivity in MgB2[J], Physica C,2002,370:211-218
    [110] R.A Tibeiro,S.L. Bud’ko,C. Petrovic et al., Carbon doping of superconducting magnesium diboride[J], Physica C,2003,384:227
    [111] D.K. Finnemore,J.E. Ostenson, S.L. Bud’ko et al., Thermodyn-amic and Transport Properties of Superconducting MgB2[J]. Phys Rev Lett.,2001,86:2420
    [112] M. Kambara, B.N. Hari, E.S. Sadki et al., High intergranular critical currents in metallic MgB2 superconduceor[J], Supercond.Sci.Techno.,2001,14:L5
    [113] A.Serquis, Influence of microstrutures and crystalline defects on the superconductivity of MgB2[J].J. Appl. Lett.,351:200292
    [114] Y. Takano, H. Takeya, H. Fujii et al., Superconducting prope-rties of MgB2 bulk materials prepared by high-pressure sint-ering[J], Appl. Phys. Lett.,2001,78:2914
    [115] Y. Bugoslavsky, L.F. Cohen, G.K. Perkins et al., Enhancement of the high-magnetic-field critical current density of superconducting MgB2 by proton irradiation[J], Nature,2001,411:561
    [116] M. Eisterer, M. Zehetmayer, S. Tonies et al., Neutron irradi-ation of MgB2 bulk superconduceors[J], Supercond. Sci. Technol.,2002,15:L9
    [117] R. Giri, H.K. Singh, R.S. Tiwari et al., Effect of cationic size in Hg(Ti/Bi)Ba2Ca2Cu3O8+δon superconducting and microstructural characteristics[J], Bull. Mater. Sci.,2001,24:523
    [118] P.C. Canfield, S.L. Bud’ko, D.K. Finnemore et al., An overview of the basic physical properties of MgB2[J],Physica C,2003,385:1
    [119] S. Jin, H. Mavoori, C. Bower et al., High critical currents in iron-clad supercoducting MgB2 wires[J], Nature,2001,411:563
    [120] Y. Zhao, C.H. Cheng, Y. Feng et al., Ti doping on the flux pinning and chemical stability against water of MgB2 bulk material[J], Physica C,2003,386:581
    [121] N.E. Anderson, W.E. Straszheim, S.L. Bud’ko et al., Titanium additions to MgB2 conductors[J],Physica C,2003,390:11
    [122] Y.B. Zhu, J.W. Xiong, S.F. Wang et al., Preparation of YBCO superconducting thick films on MgO substrates by modified melt growth process [J], J Superconductivity,2004,17:397
    [123] S. Chandra, R. Giri, R.S. Tiwari et al., Effect of La doping on microstruction and critical current density of MgB2[J], Supercond. Sci. Technol.,200518:1210
    [124] S.X. Dou, S. Soltanian, J. Horvat et al., Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping[J], Appl. Phys. Lett.,2002,81:3419
    [125] A. Matsumoto, H. Kumakura, H. Kitaguchi et al., Effect of SiO2 and SiC doping on the powder-in-tube processed MgB2 tapes[J], Supercond. Sci. Techno.,2003,16:926
    [126] X.F. Rui,J. Chen,X. Chen et al., Doping effect of nano-alumina on MgB2[J],Physica C,2004,412:312
    [127] M.E. Jones and R.E. Marsh, The Preparation and Structure of Magnesium Boride[J], J. Am. Chem. Soc.,1953,76:1434
    [128] V. Russell, R. Hirs, F.A. Kanda et al., An X-ray study of the magnesium borides[J], Acta Cryst., 1953, 6: 870
    [129] L.Ya. Markovskii, Yu.D. Kondrashev, G.V. Kaputovskaya, The composition and the chemical properties of magnesium borides[J], Zhur. Obsch. Khim.,1955, 25: 433
    [130] P. Duhart, Superconducting MgB2 and related compounds: synthesis, properties and electronic structure[J], Ann. Chim., 1962, 7: 339
    [131] R.Naslain, A.Guette, M.Barret, Sur le diborure et letétraborure de magnésium. Considérations cristallochimiques sur les tétraborures[J], J. Sold. State. Chem., 1973, 8: 68
    [132] A. Guette, R. Nalain, P. Hagenmuller et a1. Crystal structure of magnesium heptaboride Mg2B14[J], J. Less-Comm. Met., 1981, 82: 325
    [133] A.A. Nayeb-Hashemi, J.B. Clark, Phase Diagrams of Binary Mg -Alloys[M], Materials Park, Oh: ASM International, 1988, 43
    [134] S. Brutti, M. Colapietro, G. Balducci et a1, Synchrotron powder diffraction Rietveld refinement of MgB20 crystal structure[J], Intermetallics, 2002, 10: 811
    [135] Z.K. Liu, D.G. Schlom, L.Qi et al.,Thermodynamics of the Mg-B system: Implications for the deposition of MgB2 thin films[J], App. Phys. Lett., 2001, 78(23): 3678
    [136] S. BruRi, A. Ciccioli, G. Balducci et a1, Vaporization thermodynamics of MgB2 and MgB4[J], Appl. Phys. Lett., 2002, 80(16): 2892
    [137] O. Perner, J. Eckert, W. Hafller et a1, Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2[J], J. App. Phys., 2005, 97: 056105
    [138] V.Z. Turkevich, O.G. Kulik, P.P. Itsenko et a1, Phase diagram of the Mg-B system at high pressures[J], Journal of Superhard Materials, 2003, 25(1): 6
    [139] D. Souptel, G. Behr, W. Loser et a1, Crystal growth of MgB2 from Mg–Cu–B melt flux and superconducting properties[J], J. Alloys Compd., 2003, 349(1-2): 193
    [140] J. Karpinski, S.M. Kazakov, J. Jun et a1, ngle crystals of MgB2 superconductor grown under high-pressure in Mg-B-N system[J], Physica C, 2002, 378-381: 33
    [141] S. Vyazovkin, Kinetic concepts of thermally stimulated react-ions in solids: a view from a historical perspective[J], In-t. Reviews in Physical Chemistry, 2000, 19(1): 45
    [142] J.H. Flynn, Thermal analysis kinetics - past, present and future[J], Thermochim. Acta, 1992, 203(1): 519
    [143] T.P. Prasad, S.B. Kanungo, H.S. Ray, Non-isothermal kinetics: some merits and limitations[J], Thermochim. Acta, 1992, 203(1): 503-514
    [144]闫果,实用化MgB2超导材料的制备与性能研究:[博士学位论文],沈阳;东北大学,2005
    [145] C.X. Cui, D.B. Liu, J.B. Sun et al., Nanoparticles of the superconductor MgB2: structural characterization and in situ study of synthesis kinetics[J], Acta Materialia, 2004, 52: 5757
    [146] D.M. Herlach, Non–equilibrium solidification of undercooled metallic melts[J], Mater. Sci. Eng.,1994, R12: 177
    [147] B. Wei, G.C. Yang, Y.H. Zhou et al., High undercooling and s-olidification of Ni-32.5% eutectic alloy[J], Acta metal. Mater., 1991, 39: 1249
    [148] J.F. Li, Y.C. Liu, Y.L. Lu et al., Structural evolution of undercooled Ni–Cu alloys[J], J. Crys. Grow., 1998, 192: 462
    [149] Y.P. Lu, G.C. Yang and Z.Z. Xi, Directional solidification of highly undercooled eutectic Ni78.6Si21.4 alloy[J], Mater. Lett., 2005, 59: 1558
    [150] I.A. Wagner and P.R. Sahm, Autonomous Directional Solidifica-tion (ADS), A Novel Casting Technique for Single Crystal Co-mponents[J], Superalloys, 1996, 497
    [151] F. Liu, X.F. Guo and G.C. Yang, Dendrite growth in Undercooled DD3 Single Crystal Superalloy[J], Mater. Res. Bull., 2001, 36: 181
    [152] J.H. Perepezko, Kinetic processes in undercooled melts[J], Mater. Sci. Eng., 1997, A226-228: 374
    [153] D.M. Herlach, Non-equilibrium solidification of undercooled melts[J], Mater. Sci. Eng., 1994, R12(4-5): 177
    [154] M.C. Flemings, Solidification of undercooled melts[J], Mater. Sci. Eng., 1984, 65: 157
    [155] D.M. Herlach, Solidification from undercooled melts[J], Mater. Sci. Eng, 1997, A226-228: 348
    [156] J.H. Perepezko, Nucleation reactions in undercooled liquids[J],Mater. Sci. Eng., 1984, 65: 125
    [157] B. Wei,G. Yang,Y. Zhou, High undercooling and rapid solidi-fication of Ni-32.5%Sn eutectic alloy[J], Acta Met. Mater.,1991, 39: 1249
    [158] G. Yang,B. Wei and Y. Zhou, Denucleation and substantial un-dercooling of Ni-B-Si alloys[J], Cast Metals, 1991, 4: 2
    [159] J.J. Valencia, C. Mccullough, C.G. Levi, et al., Solidification microstructure of supercooled Ti-Al alloys containing intermetallic phases[J], Acta Metallurgica et Materialia, 1989, 37: 2517
    [160] K. Ecker, D.M. Herlach, Measurements of dendrite growth velo-cities in undercooled pure Ni-melts some new results[J], Mater. Sci. Eng. A, 1994, 178: 159
    [161] D. Li, K. Ecker, D.M. Herlach, Undercooling crystal growth and grain structure of levitation melted pure Ge and Ge-Sn alloys[J], Acta Mater., 1996, 44: 2437
    [162] R. Goetzinger, M. Barth, D.M. Herlach et al., Disorder trapping in Ni3(Al,Ti) by solidification from the undercooled melt[J], Mater. Sci. Eng. A, 1997, 226-228: 415
    [163] K. Ecker, F. Gartner, H. Assadie et al., Phase selection, growth and interface kinetics in undercooled Fe-Ni melt droplets[J], Mater. Sci. Eng. A, 1997, 226-228: 410
    [164] C. Voltz, J. Bletry, M. Audier, Drop tube solidification of Al-Cu-Fe quasicrystalline phases[J], Physica, 1998, 77: 1351
    [165] D.L. Li, G.C. Yang, Y.H. Zhou, A new approach to prepare three dimensional amorphous alloys[J], Materials Letters, 1992, 11: 1033
    [166]郭学峰,吕衣礼,杨根仓,Cu-Ni-Fe合金在特殊涂层中的深过冷及遗传性[J],材料研究学报,1998,12:598
    [167]郭学峰,吕衣礼,杨根仓,获得Cu-Ni-Fe熔体深过冷的烧结坩埚涂层[J],西北工业大学学报,1999,17:48
    [168] B. Vonnegut, C.B. Moore, Processes causing electrification of ice crystals in thunderclouds[J], Atmo. Res., 1985, 28: 563
    [169] D. Turnbull and R.E. Cech, Microscopic observation of the Solidification of small Metal Droplets[J], J. App. Phys., 1950, 21: 804
    [170] D. Turnbull and R.E. Cech, Kinetics of solidification of supercooled liquid mercury droplets[J], J. Chem. Phys., 1952, 20: 41
    [171] J.H. Perepezko, Solidification of highly supercooled liquid metals and alloys[J], Journal of Non-crystalline Solids, 1993, 156-158: 463
    [172] J.H. Perepezko, Nucleation in undercooled liquids[J], Mater. Sci. Eng., 1984, 65: 125
    [173] J.H. Perepezko, T.B. Massalski, Nucleation during continuous cooling-application to massive transformation[J], Acta Met., 1974, 22: 879
    [174] D.G. Macisaac, Grain Refinment in Casting and Welds, PA: The Metallurgical Society of AIME, 1983: 87
    [175] M. Barth, B. Wei, Rapid solidification of undercooled nickel-aluminium melts, Mater. Sci. Eng. A, 1994, 178: 305
    [176] M.C. Flemings, Solidification of undercooled melts, Mater. Sci. Eng., 1984, 65: 157
    [177] G.A. Colligan, B.J. Bayles, Dendrite growth velocity in undercooled nickel melts, Acta Met., 1962, 10: 895
    [178] J.Karpinski, MgB2 and Mg1-xAlxB2 single crystals: high pressure growth and physical properties[J], Physica C, 2004, (408-410): 81
    [179] H.Y. Wang, Structrual and elastic properties of MgB2 under high pressure[J], Phys. Rev. B, 2005, 72: 172502
    [180] G. Yan, Y. Feng, B.Q. Fu et al., Effect of synthesis temperature on density and microstructure of MgB2 superconductor and ambient pressure[J], J. Mater. Sci., 2004, 39: 4893
    [181] Q.R. Feng, Study on the formation of MgB2 phase[J], Physica C, 2004, 1: 41
    [182]果世驹,粉末烧结理论,北京:冶金工业出版社,1998:25~37
    [183] R.J. Brook, Pore-Grain Boundary Interactions and Grain Growth [J], J. Am. Ceram. Soc., 1969, 52: 56
    [184] N. Rogado, M.A. Hayward, K.A. Regan et al., Low temperature synthesis of MgB2[J], J. Appl. Phys., 2002, 91: 274
    [185] S. Brutti, A. Ciccioli, G. Balducci et al., Vaporization the-rmodynamics of MgB2 and MgB4[J], Appl. Phys. Lett., 2002, 80:2892
    [186] G.K. Perkins, Post deadline session on MgB2, APS 2001-March Meeeting, Seattle, Washington: Washington state convention center, 2001, 1
    [187]胡荣祖,史启祯,热分析动力学,北京.科学出版社,2001:8~9
    [188] S. Arrhenius, On the Dissociation of Substances Dissolved in Water[J],Zeitschrift fur physikalische Chemie, 1887:I, 631
    [189] C.D. Doyle, Kinetic analysis of thermogravimetric data[J], J. Appl. Polymer. Sci., 1961, 5(15): 285
    [190] C. Popescu, Integral method to analyze the kinetics of heter-ogeneous reactions under non-isothermal conditions A varian-t on the Ozawa-Flynn-Wall method[J], Thermochim. Acta, 1996,285: 309
    [191]刘志存,微小电阻测量方法及关键技术[J],物理测试,2005,23(1):34
    [192] D.C. Larbalestier,L.D. Cooley,M.O. Rikel et al., Strongly linked current flow in polycrystalline forms of the superconductor MgB2[J],Nature,2001,410:186
    [193] X.F. Rui,J. Chen,X. Chen et al.,Doping effect of nano-alumina on MgB2[J], Physica C,2004,412-414:312
    [194] I.A. Ansari, M. Shahabuddin, K. Ziq, The effect of nano-alumina on structural and magnetic properties of MgB2 superconductors[J], Supercond. Sci. Technol., 2007, 20: 827-831
    [195] C.P. Chen, Zhou Z J, Phase formation of polycrystalline MgB2 at low temperature using nanometer Mg powder[J] . Solid State Communications,2004,131:275
    [196]赵倩,MgB2的成相过程及反应机理[D].天津:天津大学,2007
    [197] J. Bardeen, L.N. Cooper, J.R. Schriefer, Theory of Supercond-uctivity[J], Phys. Rev., 1957, 108: 1175
    [198] J. Kortus, I.I. Mazin, K.D. Belashchenko et al., Superconduc-tivity of Metallic Boron in MgB2[J], Phys. Rev. Lett., 2001,86(20): 4656
    [199] J.M. An, W.E. Pickett, Superconductivity of MgB2: Covalent Bonds Driven Metallic[J], Phys. Rev. Lett., 2001, 86(19): 4366
    [200] J.S. Slusky, N. Rogado, K.A. Regan et al., Loss of supercond-uctivity with the addition of Al to MgB2 and a structural t-ransition in Mg1-xAlxB2[J], Nature, 2001, 410: 343
    [201] J.Q. Li, F.M. Liu, C. Dong, Superconductivity and Aluminum Ordering in Mg1-xAlxB2[J],2001, arXiv: cond-matt/0104320
    [202] M. Tikham, Introduction to Superconductivity[J], McGrow-Hill, New York, 1985, p.184
    [203] H.D. Yang, H.L. Liu, J.-Y. Lin et al., Order Parameter of MgB2: A Fully Gapped Superconductor[J], Phys. Rev. Lett., 2001, 87: 167003
    [204] C.P. Bean, Magnetization of Hard Superconductors[J], Phys. Rev. Lett., 1962, 8: 250
    [205] C. Tarantini, H.U. Abersold, V. Braccini et al., Effects of neutron irradiation on polycrystalline MgB2[J], 2006, Phys. Rev. B, 73: 134518
    [206] S.X. Dou, S. Soltanian, J. Horvat et al., Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping[J], Appl.Phys. Lett., 2002, 81: 3419
    [207] A. Gümbel, J. Eckert, G. Fuchs et al., Improved superconducting properties in nanocrystalline bulk MgB2[J], Appl. Phys. Lett., 2002, 80: 2725
    [208] Y. Zhao, Y. Feng, C.H. Cheng et al., Improved irreversibility behavior and critical current density in MgB2-diamond nanocoposites[J], Appl. Phys. Lett., 2003, 83: 2916
    [209] R.H.T. Wilke, S.L. Bud’ko, P.C. Canfield et al., Systematic Effects of Carbon Doping on the Superconducting Properties of Mg(B1-xCx)2[J], Phys. Rev. Lett., 2004, 92: 217003
    [210] S.K. Chen, M. Wei and J.L. MacManus-Driscoll, Strong pinning enhancement in MgB2 using very small Dy2O3 additions[J], Appl. Phys. Lett., 2006, 88: 192512
    [211] J.H. Kim, W.K. Yeoh, M.J. Qin et al., Enhancement of in-field Jc in MgB2/Fe wire using single and multiwalled carbon nanotubes[J], Appl. Phys. Lett., 2006, 89: 122510
    [212] G. Yan,Y. Feng,B.Q. Fu et al.,eEffect of synthesis temperature on density ahd microstructure of MgB2 superconductor at ambient pressure[J].J.Mater.Sci.,2004,39:4893
    [213] H. Fang, Y.Y. Xue, Y.X. Zhou et al., Densification of MgB2 cores in iron-clad tapes[J], Supercond. Sci. Technol., 2004, 17: L27
    [214] J.S. Slusky, N. Rogado, K.A. Regan et al., Loss of supercond-uctivity with the addition of Al to MgB2 and a structural t-ransition in Mg1-xAlxB2[J], 2001, Nature, 410:343
    [215] J.Y. Xiang,D.N. Zheng,J.Q. Li et al., Effects of Al doping on the superconducting and structural properties of MgB2[J],Physica C,2003,386:611
    [216] Z.Y. Fan, D.G. Hinks, N. Newman, J.M. Rowell, Experimental study of MgB2 decomposition[J], Appl.Phys. Lett., 2001, 79: 87
    [217] Y. Yin, G. Zhang, Y. Xia,Synthesis and Characterization of MgO Nanowires Through a Vapor-Vapor Precursor Method[J], Adv. Funct. Mater., 2002,12: 293
    [218] D. Yang, H.W. Sun, H.X. Lu, Experimental study on the oxidation of MgB2 in air at high temperature[J], Supercond. Sci. Technol., 2003, 16: 576
    [219] J.H. Kim, S.X. Dou, J.L. Wang et al., The effects of sintering temperature on superconductivity in MgB2/Fe wires[J], Supercond. Sci. Technol., 2007, 20: 448
    [220] A. Handstein, D. Hinz, G. Fuchs et al., Fully dense MgB2 sup-erconductor textured by hot deformation[J], J. Alloy Compd.,2001,329: 285
    [221] O. Perner, W. H?βler, J. Eckert et al., Effects of oxide pa-rticle addition on superconductivity in nanocrystalline MgB2bulk samples[J], Physica C, 2005, 432: 15
    [222] C.H. Jiang, H. Hatakeyama, H. Kumakura, Effect of nanometer MgO addition on the in situ PIT processed MgB2-Fe tapes[J], Physica C, 2005, 423: 45
    [223] Z.K. Liu, Y. Zhong, D.G. Schlom, Q. Li, X.X. Xi, CALPHAD: Comput. Coupling Phase Diagrams Thermochem[J], 2001, 25: 299
    [224] Y.J. Liang, Y.C. Che, Data Handbook of Mineral Thermodynamics China: Northeastern University Press, 1993
    [225] Y.S. Yuan, M.S. Wong, S.S. Wang, Solid-state processing and phase development of bulk (MgO)w/BPSCCO high-temperature superconducting composite[J], J. Mater. Res., 1996, 11(1): 8
    [226] X.F. Duan, C.M. Lieber, General Synthesis of Compound Semico-nductor Nanowires[J], Adv. Mater., 2000, 12: 298
    [227] X. Chen, J. Li, Y. Cao et al., Carbon Nanotube Templated Self Assembly and Thermal Processing of Gold Nanowires[J], Adv. Mater., 2000, 12: 1432
    [228] Y. Cui, L.J. Laucoln, M.S. Gudiksen et al., Diameter-controlled synthesis of single-crystal silicon nanowires[J], Appl. Phys. Lett., 2001, 78: 2214
    [229] C.C. Chen, C.C. Yeh, C.H. Chen et al., Catalytic Growth and Characterization of Gallium Nitride Nanowires[J], J. Am. Chem. Soc., 2001,123: 2791
    [230] C.-C. Chen, C.-C. Yeh, Larger-scale catalytic of crystalline gallium nitride nanowires[J], Adv. Mater., 2000, 12: 738
    [231] P.X. Gao, Z.L. Wang, Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst[J], Nano Lett., 2003, 3: 1315
    [232] Y. Ding, P.X. Gao, Z.L. Wang, Catalyst-nanostructure inte-rfacial lattice mismatch in determining the shape of VLS grownnanowires and nanobelts: A case of Sn/ZnO[J], J. Am. Chem. Soc., 2004, 126: 2066
    [233] Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang, Molten Gallium as a catalyst for the large-scale growth of highly aligned silica nanowires[J], J. Am. Chem. Soc., 2002, 124: 1817
    [234] M.K. Sunkara, S. Sharma, R. Miranda et al., Bulk synthesis of silicon nanowires using a low temperature vapor-liquid-solid method[J], Appl. Phys. Lett., 2001, 79: 1546
    [235] Y.J. Chen, J.B. Li, Y.S et al., The effect of Mg vapor source on the formation of MgO whiskers and sheets[J], J. Cryst. Grow., 2002, 245: 163
    [236] V.M. Bakulina., S.A. Tokareva, E.I. Latysheva, I.I. Vol’nov, X-ray diffraction study of magnesium superoxide Mg(O2)2[J], J. Struct. Chem., 1970, 11(1): 150
    [237] H.Y. Dang, J. Wang, S.S. Fan, The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres[J], Nanotechnology, 2003, 14: 738
    [238] E.A. Stach, P.J. Pauzauskie, T. Kuykendall et al., Watching GaN Nanowires Grow[J], Nano Lett., 2003, 3: 867
    [239] J.K. Jian, C. Wang, Z.H. Zhang et al., Necktie-like ZnO nanobelts grown by a self-catalytic VLS process[J], Mater. Lett., 2006, 60: 3809
    [240] A.P. Levitt, Whisker Technology, Massachusetts, New York, London: Army Materials and Mechanics Research Center Watertown,1997, p 37
    [241] A. Yamamoto, J. Shimoyama, S. Ueda, Effects of sintering con-ditions on critical current properties and microstructures of MgB2 bulks[J], Physica C, 2005, 426-431: 1220
    [242] A. Yamamoto, J. Shimoyama, S. Ueda, Improved critical current properties observed in MgB2 bulks synthesized by low-temperature solid-state reaction[J], Supercond. Sci. Technol., 2005, 18: 116
    [243] A. Yamamoto, J. Shimoyama, S. Ueda, Crystallinity and flux p-inning properties of MgB2 bulks[J], Physica C, 2006, 445-448: 806
    [244] A. Yamamoto, J. Shimoyama, S. Ueda et al., Synthesis of high Jc MgB2 bulks with high reproducibility by a modified powder-in-tube method[J], Supercond. Sci. Technol., 2004, 17: 921
    [245] B. Jansson, B. Sundman, J. Agren, The thermo calc project[J], Thermochimica Acta, 1993, 214: 93
    [246] X.X. Xi, X.H. Zeng, A. Soukiassian et al., Thermodynamics and thin film deposition of MgB2 superconductors[J], Supercond. Sci. Technol., 2002, 15: 451
    [247] C.P. Flynn, Constraints on the growth of metallic superlatti-ces[J], J. Phys. F, 1988, 18: L195
    [248] Z.-K. Liu, D.G. Schlom, O. Li et al., Thermodynamics of the Mg-B system: Implications for the deposition of MgB2 thin films[J], Appl. Phys. Lett., 2001, 78: 3678
    [249] J. Karpinskia, S.M. Kazakov, J. Jun et al., Single crystal growth of MgB2 and thermodynamics of Mg-B-N system at high pressure[J], Physica C, 2003, 385: 42
    [250] T.B. Massalski, P.R. Subramanian, H.O. Kamoto et al., 2nd Edition, Binary Alloy Phase Diagrams, vols.1-3, New York: ASM International, Materials Park, 1990: 237
    [251] I. Barin, Thermochemical Data of Pure Substances 3rdedn, Weinheim: Federal Republic of Germany, 1995: 619
    [252] J.D. Jorgensen, D.G. Hinks, S. Short, Lattice properties of MgB2 versus temperature and pressure[J], Phys. Rev. B, 2001, 63: 224522
    [253] A. Guette, R. Naslain, P. Hagenmuller, Crystal chemistry of some boron-rich phases[J], J. Less-Comm. Met., 1976, 47: 1
    [254] M. Volmer, Order from Infotrieve[J], Z. Phys. Chem., 1926, 119: 227
    [255] R. Becker, W. D?ring, W. Doring, Kinetische Behandlung der Keimbildung inübers?ttigten D?mpfen[J], Annals of Physics, 1935, 24: 719
    [256] D. Tumbull, Rate of Nucleation in Condensed Systems[J], J. Chem. Phys., 1949, 17: 71
    [257] F. Spaepen, Calculation on the interfacial energy of the bcc and fcc crystal structure[J], Acta Materialia, 1975, 23: 729
    [258] J.H. Perepezko, Nucleation in undercooled liquids[J], Materials Science and Engineering, 1984, 65: 125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700