用户名: 密码: 验证码:
掺杂ZrO_2电解质的制备、性能及其导电性的DFT研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用高温固溶法和甘氨酸燃烧合成法制备了Yb_2O_3、Sc_2O_3(Dy_2O_3)、Al_2O_3和CaO复合掺杂YSZ固体电解质材料,对其电性能、烧结性、弯曲强度和微结构等进行了实验分析,并采用密度泛函理论(DFT)方法对多元素复合掺杂ZrO_2改性机理进行了研究。此外,采用分子动力学(MD)方法模拟了AFM Ni针尖与Au基体的相互作用过程。
     在ZrO_2中添加适量由Y2O3、Yb_2O_3、Sc_2O_3(Dy_2O_3)组成的复合掺杂剂,可以保持ZrO_2高温立方萤石结构、增大晶格常数及氧空位迁移通道半径(R)、改善材料晶界性质、有效提高试样电导率、延缓材料老化速度。添加复合掺杂剂在8~8.6mol%时,试样电导率得到显著提高(1000℃时达0.19S/cm),且试样在1000℃下连续工作900h,仍具有较高电导率(约0.15S/cm)。继续添加少量Al_2O_3对材料电性能影响较小,添加少量CaO使电导率大幅下降(~50%)。
     DFT计算表明,Y、Yb和Sc在ZrO_2中取代Zr后,阴离子与阳离子间键长产生不均等的变化,使ZrO_2立方结构得以稳定,同时引起ZrO_2晶格畸变、离子电荷发生重新分布,有效调制了电子能带结构中电子轨道的分布和价带与导带的位置,减小了能隙宽度,使材料的导电性提高。差分电荷密度的计算结果表明,多元素掺杂情况下原子间成键差异较大,掺杂阳离子周围产生了电子在局域稀少的电子分布状态。
     AFM Ni针尖与Au基体相互作用过程的MD模拟表明,Ni针尖与A u(001)表面接近至0.23nm时,受范德瓦尔斯引力的作用,Ni针尖与Au基底发生跳接,体系势能显著降低。Ni针尖继续进针,针尖原子与Au(001)表层原子相互作用,产生纳米压痕,部分Au原子粘着在Ni针尖周围,Au基体表层原子发生位移、原子层错和原子面滑移等现象,体系势能有所升高。随后刚性悬臂被提起,Ni针尖连续向上运动,在Ni针尖与Au基体之间发生部分原子交换的同时,形成了以Au为主体的“细颈”,“细颈”逐渐增长直至断裂,这与金属具有的良好延展性相一致。
Yb_2O_3, Sc_2O_3 (Dy_2O_3), Al_2O_3 and/or CaO doped-YSZ electrolyte materials wereprepared by high-temperature solid-state method and combustion synthesis withglycin, respectively. The material properties, including the conductivity, sintering,bending strength and microstructure, were analyzed experimentally. The mechanismof improving material properties by means of doping multi-elements in ZrO_2 wasstudied by the density functional theory (DFT). In addition, the molecular dynamic(MD) simulation was applied to study the interaction of AFM Ni tip and Au (001)substrate.
     Introducing Y2O3, Yb_2O_3 and Sc_2O_3 (Dy_2O_3) in ZrO_2 could build a stable ZrO_2 cubicstructure in room temperature, induce the increase of crystal constants and oxygenvacancy transfer passage radii (R), and improve the grain boundary condition. Itenhanced the high-temperature conductivity and the aging property of samplesremarkably. The conductivity reached 0.19S/cm at 1000℃with the total additives inthe range of 8~8.6mol%. The conductivity (1000℃) remained about 0.15S/cm afterworking for 900h. Adding a little amount of Al_2O_3 into the multi-elements doped ZrO_2materials reduced the conductivity slightly, and less CaO could reduce theconductivity to 50%.
     The results of DFT calculations indicated that the replacement of Zr by Y, Yb andSc in ZrO_2 altered the bond length between the anion and the cation in some extentand the cubic structure of ZrO_2 kept stable, but such replacement led to crystaldistortion and made ionic charge redistributed. Consequently, the position of CB andVB was modulated effectively and the bond gap becomes narrow, the ionicconductivity was improved. The calculation of deformation charge densitydemonstrated that there existed different bonding among the atoms in case of multielementsdoping and there were few electrons in particular areas around doped cation.
     The MD simulation of AFM Ni tip/Au substrate showed that at certain tip-substratedistances (about 0.23nm), the tip jumped to contact the Au (001) by the van der waalsforce and the potential energy of the system decreased obviously, and then thenanoindentation formed after Ni tip contacting Au (001), some Au atoms adhered tothe Ni tip. The atoms layer distortion and slippage were observed on Au (001) substrate surface, and the system potential energy increased gradually. When the Nitip left the substrate, some Ni and Au atoms were exchanged, at the same time, aconnective neck mainly composed of Au formed between the tip and the substrate.The neck continued to increase until fracture occurred, which accorded to the metalgood ductibility.
引文
[1] Raymond George,燃料电池及其发展前景,国际电力,2001,2:24~27
    [2]李瑛,王林山,燃料电池,北京:冶金工业出版社,2000,8~15
    [3]陈舜麟,计算材料科学,北京:化学工业出版社,2005,7~13
    [4]陆天红,孙公权,我国燃料电池发展概况,电源技术,1999,22(4):182~184
    [5]侯丽萍,张暴暴,固体氧化物燃料电池的系统结构及其研究进展,西安工程科技学院学报,2007,27(2):267~278
    [6]张义煌,董永来,江义等,薄膜型中温固体氧化物燃料电池制备及性能考察,电化学,2000,6(1):78~83
    [7]于兴文,黄学杰,陈立泉,固体氧化物燃料电池研究进展,电池,2002,32(2):110~112
    [8] P. Charpentier, P. Fragnaud, D. M. Schleich, et al., Preparation of thin filmSOFCs working at reduced temperature, Solid State Ionics, 2000, 135(1~4):373~380
    [9]谭小耀,于如军,杨乃涛等,中温固体氧化物燃料电池性能的初步研究,山东工程学院学报,2001,15(1):1~3
    [10]程继贵,邓莉萍,孟广耀,燃料电池阳极材料的物理机械性能研究,合肥工业大学学报(自然科学版),2002,25(6):1115~1120
    [11] J. H. Lee, J. W. Heo, D. S. Lee, et al., The impact of anode microstructure on thepower generating characteristics of SOFC, Solid State Ionics, 2003, 158(3~4):225~ 232
    [12] T. Takeda, R. Kanno, Y. Kawamoto, et al., New cathode materials for solidoxide fuel cell Ruthenium Pyrochlores and Perovskites. J. Electrochem. Soc.,1999, 146(4): 1273~1278
    [13]卢自贵,江义,董永来等,锰酸镧和氧化钇稳定的氧化锆复合阴极的研究,高等学校化学学报,2001,22(5):791~795
    [14] T. Ishihara, H. Matsuda, Y. Takita, et al., Doped LaGaO3 perovskite type oxideas a new oxide ionic conductor, J. Am. Chem. Soc., 1994, 116(9): 3801~3803
    [15] M. Lerch, H. Boysen, T. Hansen, High-temperature neutron scatteringinvestigation of pure and doped lanthanum gallate, J. Phys. Chem. Solids, 2001,62: 445~455
    [16] F. Stetano, T. P. Anthony, W. F. Mochael, Free energy and molecular dynamicscalculations for the cubic-tetragonal transition in zirconia, Phys. Rev. B, 2001,63(9): 94~101
    [17] M. Carlos, G. Dionisio, Synthesis, sintering and electrical properties ofYNi0.33Mn0.67O3 perovskite prepared by a polymerized method, J. Eur. Ceram.Soc, 2003, 23: 729~736
    [18] N. I. Robertson, J. N. Michaels, Double layer capacitance of porous platinumelectrodes in zirconia electrochemical cells, J. Electrochem Soc., 1991, 138(5):494~ 499
    [19] V. S. Stocker, R. C. Hink, S. P. Ray, Phase equilibria and ordering in the systemZrO2-Y2O3, J. Am. Ceram. Soc., 1978, 61(1~2): 17~21
    [20] A. Brune, M. Lajavardi, D. Fister, et al., The electrical conductivity of yttriastabilizedzirconia prepared by precipitation from inorganic aqueous solutions,Solid State Ionics, 1998, 106: 89~101
    [21] I. Cachadina, J. D. Solier, R. Doming, et al., Activation entropy and Gibbs freeenergy for conduction in yttria-stabilized-zirconia single crystals, Phys. Rev. B,1995, 52(15): 10872~10876
    [22] J. D. Solier, I. Cachadina, R. Doming, Ionic conductivity of ZrO2-12mol% Y2O3single crystals, Phys. Rev. B, 1993, 48(6): 3704~3712
    [23]韩敏芳,彭苏萍,YSZ电解质电性能研究,中国科学技术大学学报,2002,32:274~278
    [24] J. Kimpton, T. Randle, Investigation of electrical conductivity as a function ofdopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92(M=Nd, Sm, Gd, Ho, Y, Er,Yb, Sc), Solid State Ionics, 2002, 149: 89~98
    [25] H. Masanori, O. TaKayuki, U. Kenji, et al., Effect of Bi2O3 additives in Scstabilized Zirconia electrolyte on a stability of crystal phase and electrolyteproperties, Solid State Ionics, 2003, 158: 215~223
    [26] M. Toshiyuki, I. Takayasu, Y. Hiroshi, et al., Application of a crystallographicindex for improvement of electrolytic properties of the CeO2-Sm2O3 system, J.Electrochem Soc., 1999, 146(12): 4380~4385
    [27] T. Takeuchi, I. Kondoh, N. Tamari, et al., Improvement of mechanical strengthof 8mol% yttria-stabilized ceramics by spark-plasma sintering, J. ElectrochemSoc., 2002, 149(4): 455~461
    [28]李英,谢裕生,垄江宏等,制备工艺对(ZrO2)0.90( Y2O3)0.04(CaO)0.06电解质材料电性能的影响,电源技术,2001,25(5):330~335
    [29] M. Filal, C. Petot, M. Mokchah, et al., Ionic conductivity of yttrium-dopedzirconia and the“composite effect”. Solid State Ionics, 1995, 80(1~2): 27~35
    [30]郭新,袁润章,孙尧卿等,晶界在多晶ZrO2基固体电解质中的作用,物理学报,1996,45(5):860~869
    [31] L. Jongheun, T. Mori, L. Jiguang, et al., Precursor scavenging of resistive grainboundaryin 8mol% ytterbia-stabilized zirconia, J. Electrochem Soc., 2002,149(3): 35~40
    [32] L. Jongheun, T. Mori, L. Jiguang, et al., Improvement of grain-boundaryconductivity of 8mol% yttria-stabilized zirconia by precursor scavenging ofsiliceous phase, J. Eletrochem Soc., 2000, 147(7): 2822~2829
    [33] C. Apple, N. Bonanos, Structural and electrical characterization of silicacontainingyttria-stabilised zirconia, J. Eur. Ceram. Soc., 1999, 19: 847~851
    [34] C. R. Foschini, P. F. Souza, J. A. Varela, AC impedance study of Ni, Fe, Cu, Mnceria stabilized zirconia ceramics, J. Eur. Ceram. Soc., 2001, 21: 1143~1150
    [35] J. H. Lee, S. M. Yoon, B. K. Kim, et al., Electrical conductivity and defectstructure of yttria-doped ceria-stabilized zirconia, Solid State Ionics, 2001, 144:175~184
    [36] Y. Mizutani, M. Tamura, M. Kawai, et al., Development of high-performanceelectrolyte in SOFC, Solid State Ionics, 1994, 72: 271~275
    [37]张亚文,杨宇,金舒等,Al2O3或TiO2掺杂的ScSZ固体电解质纳米晶薄膜的制备及表征,北京大学学报,2001,37(2):200~204
    [38]汤伟,朱定一,关翔锋等,分子模拟在材料科学中的研究进展,材料导报,2004,18:193~196
    [39]杨小震,分子模拟与高分子材料,北京:科学出版社,2004,23~30
    [40] D. Frenkel, B. Smit. Understanding molecular simulation: from algorithms toapplications, Academic Press, 1996, 8~15
    [41] http://www.phys.tsinghua.edu.cn/mobius/intro_lab3.htm
    [42] L. Sham, Density function theory and computational physics, Kluwer AcademicPublishers, 1996, 55~62
    [43] H. Eschrig, G. Seifert, P. Ziesche, Current density functional theory of quantumelectrodynamics, Solid State Commun., 1985, 56(9): 773~775
    [44] K. H. He, G. Zheng, G. Chen, et al., Effects of single oxygen vacancy onelectronic structure and ferromagnetism for V-doped TiO2, Solid State Commun.,2007, 144: 54~57
    [45] M. Zemzemi, M. Hebbache, Ab initio investigation of osmium carbide, Int. J.Refract. Met. Hard Mater., 2008, 26: 61~67
    [46] H. P. Xiang, X. J. Liu, X. F. Hao, et al., Structural stability and electronicproperties of Ba2MIrO6 (M = La, Y) by first principles, J. Alloys Compd., 2007(InPress)
    [47]丁迎春,徐明,潘洪哲,在高压下的电子结构和物理性质研究,物3 ? ? Si N 4理学报,2007,56(1):117~122
    [48]王丽平,韩培德,贾虎生,Mo原子嵌入对C36结构和性能的影响,材料研究学报,2006,20(4):431~434
    [49] S. D. Lazaro, L. B. Elson, J. R. Sambrano, et al., Structural and electronicproperties of PbTiO3 slabs: a DFT periodic study, Surf. Sci., 2004, 552:149~159
    [50] J. M. Henriques, E. W. S. Caetano, V. N. Freire, et al., Structural and electronicproperties of CaSiO3 triclinic, Chem. Phys. Lett., 2006, 427: 113~116
    [51] M. K. Tian, W. F. Shang, J. Yuan, et al., K4Ce2M10O30 (M = Ta, Nb) as visiblelight-driven photo-catalysts for hydrogen evolution from water decomposition,Appl. Catal., A: General, 2006, 309: 76~84
    [52]陈志远,高国营,Cr掺杂半导体CdTe的半金属铁磁性研究,材料导报,2006,20(12):119~123
    [53] K. Balazs, K. E. Chang, S. G. Louie, Structural properties and quasiparticle bandstructure of zirconia, Phys. Rev. B, 2006, 57(12): 7027~7036
    [54]林玉芳,赵栋梁,王新林,铝和硅元素掺杂对LaNi5电子结构影响的研究,中国稀土学报,2006,24(5):556~562
    [55]刘廷禹,张启仁,庄松林,钨酸铅晶体中与铅空位有关的电子结构和色心模型研究,物理学报,2006,55(6):2914~2921
    [56] Z. G. Yang, Z. S. Lu, G. X. Luo, et al., Oxygen vacancy formation energy at thePd/CeO2(111) interface, Phys. Lett. A, 2007, 369: 132~139
    [57]孙光爱,陈波,樊志剑等,Y(Fe, M)12化合物的电子结构与磁性(M=Nb, Si),原子与分子物理学报,2005,22(4):671~675
    [58]许晓光,魏英进,孟醒等,Mg、Al掺杂对LiCoO2体系电子结构影响的第一原理研究,物理学报,2004,53(1):210~214
    [59]张富春,邓周虎,允江妮等,应力条件下ZnO电子结构第一性原理研究,功能材料,2006,7(37):1063~1066
    [60]潘志军,张澜庭,吴建生,掺杂半导体?-FeSi2电子结构及几何结构第一性原理研究,物理学报,2005,54(11):5308~5313
    [61]蒋卫卿,郑定山,肖荣军等,RMg2Ni9(R=Ca, La)合金的电子结构与稳定性的第一原理研究,广西大学学报,2006,31(3):201~204
    [62] B. J. Alder, T. E.Vainwright, Studies in molecular dynamics. i. general method, J.Chem. phys., 1959, 31(2): 459~466
    [63] M. Oritz, R. Phillips, Nanomechanics of defects in solids, Advances in AppliedMechanics, 1999, 36: 1~79
    [64]黄海波,Ll-TiAl中角度相关势和Ni3Al中点缺陷的分子动力学研究:[博士论文],北京;北京航空航天大学,2003
    [65] W. D. Wils0n, R. A. Johnson, Non-Central-Force Model of LiH: PhononDispomion Curves and He Migration, Phys. Rev. B, 1970, 8: 3510~3514
    [66] M. S. Daw, M. I. Baskes, Embedded-atom method: Derivationand application toimpurities, surfacesand other defects in metals, Phys. Rev. B, 1984, 29:6443~6453
    [67]吴兴惠,项金钟,现代材料计算与设计教程,北京:电子工业出版社,2002,17
    [68] G. J. Ackland, V. Vitek, Many-body potentials and atomicscale relaxations innoble-metal alloys, Phys. Rev. B, 1990, 41: 10324~10333
    [69] J. A. Moriarty, Density-functional formulation of the generalized pseudopotentialtheory.Ⅲ. Transition-metal interatomic potentials, Phys. Rev. B, 1988, 38:3199~3230
    [70] D. Pettifor, New Many-Body Potential for the bond order, Phys. Rev. Lett., 1989,63: 2480~2483
    [71] M. I. Baskes, Modified embedded-atom potentials for cubic materials andimpurities, Phys. Rev. B, 1992, 46: 2727~2741
    [72] M. I. Baskes, Application of the Embedded-Atom Method to Covalent Materials:A Semi empirical Potential for Silicon, Phys. Rev. Lett., 1987, 59: 2666~2669
    [73] J. Tersof, New empirical modal for the structural properties of silicon, Phys. Rev.Lett., 1986, 56: 632~635
    [74] D. W. Brenner, Empirical potential for hydrocarbons for llse in simulating thehemical vapor deposition of diamond films, Phys. Rev. B, 1990, 42: 9458~9471
    [75] A. F. Kohan, G. Coder, Tight-binding calculation offormation energies inmulticomponent oxides: Applieation to the MgO-CaO phase dingram, Phys. Rev.B, 1996, 54: 805~811
    [76] W. G. Hoover, A. J. D. Groot, C. G. Hoover, et al., Large scale elastic-plasticindentation simulation via Nonequilibrium molecular dynamics, Phys. Rev. A,1990, 42(10): 5844~5853
    [77] I. F. Stowers, R. Komanduri, E. D. Baird, Review of precision surface generationprocesses and their potential application to the fabrication of large opticalcomponents, Proceeding of the spie, San Diego, 1989: 62~73
    [78] W. G. Hoover, C. G. Hoover, I. F. Stowers, et al., Interface tribology viananequilibium molecular dynamics simulation, Material research symposium,1989, 140: 119~124
    [79] J. Belak, W. G. Hoover, C. G. Hoover, et al., Molecular dynamics modelingapplied to indentation and metal cutting problems, Thrust Area Reps, 1990, 89:4~8
    [80] J. Belak, D. B. Boercker, I. F. Stowers. Simulation of nanometer-scaledeformation of metallic and ceramic surface, MRS Bulletin, 1993, 18(5): 55~60
    [81] R. Komanduri, N. Chandrasekaran, L. M. Raff, Molecualr dynamics simulation ofatomic-scale friction, Phys. Rev. B, 2000, 61(20): 14007~14019
    [82] N. Ikawa, S. Shimada, H. Tanaka, Minimum thickness of cutting inmicromachining, Nanotechnology, 1992, 3(1): 6~9
    [83] T. Inamura, H. Suzuki, N. Takezawa, Cutting experiment in a computer usingatomic models of a copper crystal and a diamond tool, JSPW, 1990, 56(8):1480~1486
    [84] S. Shimada, N. Ikawa, G. Ohmori, Molecular dynamics analysis as compared withexperimental result of micromachining, Annals of the CIRP, 1992, 41(1): 117~120
    [85]王成彪,温诗铸,铸铁滑动摩擦副润滑状态转化之部分影响因素的考察,摩擦学学报,1993,13(4):297~304
    [86]林滨,工程陶瓷超精密磨削机理与实验研究:[博士学位论文],天津;天津大学,1999
    [87]周国辉,高克玮,微裂纹愈合过程的分子动力学模拟,自然科学进展:国家重点实验室通讯,2001,11(3):300~305
    [88]黄丹,陶伟明,郭乙木,分子动力学模拟单晶纳米铝丝的拉伸破坏,兵器材料科学与工程,2005,28(3):1~3
    [89]兰惠清张嗣伟,探针作用下自组装膜的分子动力学模拟,自然科学进展,2002,12(6):652~655
    [90]劳令耳,袁望治,掺纳米Al2O3的纳米ZrO2(4Y)固体电解质的电性能,硅酸盐学报,2002,30(1):14~19
    [91]张宝生,李世波,温广武,添加Al2O3对B4C材料热压烧结行为的研究,哈尔滨建筑大学学报,1999,32(3):72~75
    [92]李爱菊,尹衍升,甄玉花等,(SiC, TiB2)/B4C复合材料的烧结机理,复合材料学报,2004,21(4):129~133
    [93] H. L. Zhang, D. Z. Wang, B. Yang, et al., XPS measurement for the elements inthe interface between oxygen ion irradiated ZrO2-Y2O3 films and iron substrate,phys. stat. sol. (a), 1997, 160: 145~150
    [94] I. Avramova, D. Stoychev, T. Marinova, Characterization of a thin CeO2-ZrO2-Y2O3 films electrochemical deposited on stainless steel, Appl. Surf. Sci., 2006,253(3): 1365~1370
    [95] J. F. Moulder, W. F. Srickle, P. E. Sobol, et al., Handbook of X-rayPhotoelectron Spectroscopy, Perkin-Elmer Corporation (Physical Electronics),1992, 25
    [96] X. Guo, Low Temperature Stability of Cubic Zirconia, phys. stat. sol. (a), 2000,177: 191~201
    [97] X. Guo, E. Vasco, S. Mi, et al., Ionic conduction in zirconia films of nanometerthickness, Acta. Materialia, 2005, 53: 5161~5163
    [98] X. Guo, R. Waser, Space charge concept for acceptor-doped zirconia and ceriaand experimental evidences, Solid State Ionics, 2004, 173: 63~67
    [99] Y. Sakai, Y. Esaki, SOFC development in Siements, in the Proc. Of 5th Inter.Symposium on SOFC, Aachen, Germany, 1997: 51~60
    [100] G. S. Li, Y. C. Mao, L. P. Li, et al., Hydrothermal Synthesis and TransportProperties of Nanocrystalline (CeO2)1-x(BiO1.5)x Solid Solution, J. ElectrochemSoc., 1999(11): 1259~1266
    [101]蒋凯,彭程,李五聚等,Ce1-xGdxO2-x/2的溶胶-凝胶法合成及其性质,高等学校化学学报,2001,22(8):1279~1282
    [102]高瑞平,李晓光,施剑林等,先进陶瓷物理与化学原理及技术,北京:科学出版社,2000,52
    [103]刘宗怀,张孟民,苗建英,稀土甘氨酸硝酸盐固体配合物热分解机理研究,宝鸡文理学院学报,1993,2:96~101
    [104] A. I. Nepomnyashchikh, E. A. Radzhabov, A. V. Egranov, Defect formation inBAF2 crystals doped with cadmium, Nuclear Instruments and Methods inPhysics Research A, 2005, 537: 27~30
    [105] W. C. Mackrodt, E. A. Simson, N. M. Harrison, An ab initio Hartree-Fockstudy of the electron-excess gap statesin oxygen-deficient rutile TiO2, Surf. Sci.,1997, 384: 192~200
    [106] H. L. Zhang, D. Z. Wang, B. Yang, et al., XPS Measurement for the Elementsin the Interface between Oxygen Ion Irradiated ZrO2±Y2O3 Films and IronSubstrate, phys. stat. sol., 1997, 160: 145~151
    [107] S. G. Chen, D. P. Wang, M. Y. Yu, et al., Theoretical simulation of theinteraction between neighboring oxygen ions for cation and anion-doped c-ZrO2,Mater. Chem. Phys., 2007, 103: 28~34
    [108]曹冬梅,朱晓敏,杨能勋,显微镜发展与物理学关系的研究,延安大学学报,2007,26(2):33~38
    [109]田文超,贾建援,扫描探针显微镜系列及其应用综述,西安电子科技大学学报,2003,30(1):108~112
    [110] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, et al., Atomic scale structure ofsputtered metal multilayer, Acta. Mater., 2001, 49(19): 1005~1015

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700