用户名: 密码: 验证码:
氮化铝陶瓷及其表面金属化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化铝(AlN)陶瓷是最理想的高导热基板和封装材料,可广泛应用于高功率器件、电路和组件。本文以稀土氧化物(Y_2O_3)、碱土金属氧化物(CaO)及其复合添加途径,研究了高导热氮化铝陶瓷及厚膜基片的组成、流延工艺、无压烧结及物理性能。采用CaO-B_2O_3-SiO_2-BaO系玻璃结合工艺和TiB_2反应结合工艺,研究了强共价键型氮化铝陶瓷的表面金属化,金属相、粘接相对厚膜金属化性能的影响。采用XRD, DTA-TG,SEM分析表征了相组成、热工艺过程及显微结构,采用激光热导、四探针测试、拉伸试验等测定了热导率、金属化方阻、金属化层的结合强度。优化出的氮化铝陶瓷基片导热性能优异,实用价值高,金属化结合可靠,方阻小。
     氮化铝陶瓷及基片的研究显示,粉体对氮化铝陶瓷性能及工艺的影响显著,碳热还原制备的氮化铝陶瓷粉料具有细的颗粒尺寸、窄的粒径分布和球形颗粒形貌,从而在成型、烧结方面优于其它工艺制得的粉料,用其制得的陶瓷显微结构均匀、最高热导率可达_248W/m.K。氮化铝陶瓷流延工艺采用以PVB为粘结剂的非水基流延成型体系,通过对粉料、流变性、粘度的研究及工艺参数的优化,可获得表面平整、结构致密、微观均匀的氮化铝流延生带。氮化铝陶瓷烧结助剂的研究表明,氧化钙对氮化铝陶瓷的烧结具有最强的促进作用,氧化钇的添加具有最高的热导率,而复合添加兼顾了高导热和低温烧结的特征。氮化铝陶瓷烧结过程与可烧结性的研究表明,烧结温度和烧结时间对氮化铝陶瓷的影响主要体现在密度和热导率方面,适当提高烧结温度和延长保温时间可以提高氮化铝陶瓷的密度和热导率
     在低熔CaO-B_2O_3-SiO_2-BaO体系玻璃结合剂的研究中,当金属浆料固含量不变、玻璃含量为10%时,Ag导体层与AlN基片之间附着力最大,达到11.74MPa,且随着玻璃含量的增加,方阻逐渐增大,当玻璃含量超过15%,方阻可大于46 m?/□。对CaO-B_2O_3-SiO_2-BaO玻璃体系与氮化铝基片润湿行为的研究发现,高温下玻璃倾向于在基片表面处富集,并向晶界内扩散。在反应结合氮化铝厚膜金属化研究中,发现当金属浆料中Ag、TiB_2、Co_3O4、有机载体的含量分别为72.8%、1.5%、0.7%、25%;烧结工艺为室温到550℃空气烧结,550℃以后氮气保护烧结,850℃保温15min时,可以获得附着力达12.7MPa,表面方阻5.2 m?/□的光亮、致密的金属化膜层。
Aluminum Nitride is an ideal substrate and packaging material applied in high power devices, circuits and modules due to high thermal conductivity. In this paper, AlN ceramic and thick film substrates with high thermal conductivity were prepared by adding Y_2O_3, CaO and Y_2O_3-CaO sintering agents, and influences of composition, tape casting process, pressureless sintering on microstructure and physical properties were investigated. Surface metallization of the covalent-bonded AlN ceramics was studied by using two pastes, i.e.CaO-B_2O_3-SiO_2-BaO glass-bonded and TiBB_2 reaction-
     bonded Ag pastes. Phase compositions, hot processing procedures and microstructures of AlN ceramics with and without metallization were characterized by XRD, DTA-TG,SEM. Thermal conductivity, sheet resistance and adhesive strength were measured by laser flash method, four probe technique and tensile test. The obtained AlN ceramic substrates possess excellent thermal conductivity and reliable adhesion between metal and itself.
     Investigation into four AlN powders revealed that the AlN powder synthesized by carbothermal reduction method had fine particle size, narrow size distribution and granular morphology. Processing features were superior to that of other AlN powders. The final microstructure was uniform and thermal conductivity achieved _248W/m.K.
     Tape casting of AlN substrates adopted a non-aqueous solvent system with PVB binder. Surface smooth, dense and uniform green sheets of AlN could be achieved under carefully controlling rheology, viscosity and other processing parameters.
     In the study of sintering aids, CaO displayed the best improvement to sinter AlN ceramics, and Y_2O_3-added AlN ceramics had the highest value of thermal conductivity. The complex addition of Y_2O_3-CaO combined the above both characteristics. Sintering temperature and holding time played important role on density and thermal conductivity. Proper increase of sintering temperature and holding time could improve the density and thermal conductivity of AlN ceramics.
     In the study for CaO-B_2O_3-SiO_2-BaO glass, adhesive strength between AlN substrates and conducting layer was the highest and reached 11.74MPa when glass content was 10% under constant solid content of metal paste. With increasing of glass content, sheet resistance became large. The sheet resistance was above 46 m?/□as glass content of 15%. The wetting behavior of CaO-B_2O_3-SiO_2-BaO glass to AlN substrates revealed that glass tended to penetrate into surface layer of AlN and diffuse into AlN lattice at 850℃.
     In the study of reaction-bonded thick film, when the content of Ag,TiB2,Co3O4 and organic carrier in metal paste was 72.8%, 1.5%, 0.7%, and 25%, respectively, and sintering condition was from room temperature to 550℃in air, then to 850℃holding for 15 minutes in 95% N2, the resultant metal layer was dense and smooth with adhesive strength of 12.7MPa and sheet resistance of 5.2 m?/□.
引文
[1] N.Kuramoto, H.Taniguchi, and I.Aso, Am.Cera.Soc.Bull.,Vol.68,p.883-887(1989)
    [2] G.A.Slack, R.A.Tanzilli, R.O.Pohl and J.W.Vandersande, J.Phys.Chem.Soli., Vol.48, p.641-642(1987)
    [3] W.Werdecker, F.Aldinger, IEEE Trans.Compon.Hybrids, Manu.Tech., Vol.7,p.399- 400(1984)
    [4] G.Selvaduray, L.Sheet, Mat.Sci.Tech., Vol.9,p463-464(1993)
    [5] L. M. Sheppard. AlN: A versatile but challenging materials. Am.Ceram. Soc. Bull., 1990, 69(11), 1801~1812
    [6] W. Markstein Howard. A wide choice of materials for MCMs [J].Electronic Packaging&Production, 1997,37(3),34-38
    [7]万群,钟俊辉,电子信息材料[M] .北京:冶金工业出版社,1990
    [8]石功奇,王健,丁培道,陶瓷基片材料的研究现状[J].功能材料,1994,24(2),176-180
    [9]高技术新材料要览编写组,高技术新材料要览[M] .北京:中国科学技术出版社,1993
    [10] EP P.MCM process combines beryllia substrate [J]. Electronic Packaging& Production, 1996,36(8),81
    [11] E. Cote Rene.Ceramic multichip module and high-density thick film interconnect technology [J]. Electronic Packaging&Production,1998,38(4),43-48
    [12] L. Hodson Timothy. AlN steps up, takes the heat and delivers[J]. Electronic Packaging&Production,1995,35(7),26
    [13]高尚通,赵正平.电子封装在中国的发展趋势[J].世界电子元器件,1996(6),32-34
    [14] Susan Crum.MCM-L substrate choices expand [J]. Electronic Packaging & Production, 1996,36(4),47-49
    [15]张迎九,王志法,吕维洁等.金属基低膨胀高导热复合材料[J].材料导报,1997,11(3),52-56
    [16] G.A.Slack, R.A. Tanzilli, R.O. Pohl and J.W. Vandersande. The Intrinsic Thermal Conductivity of AlN. J Phys.Chem.Solids, 1987,48 (7),641~647
    [17] G. A. Slack, S. F. Bartram. AlN single crystals. J.Cryst.Growth,1977, 42, 560~563
    [18] G.A.Slack. Nonmetallic crystals with high thermal conductivity. J.Phys. Chem. Solids., 1973 (34), 321~35
    [19] J .H .Harris, R.A.Young man, R.G.Teller. On the nature of the oxygen related defect in aluminum nitride. J Mater Res,1990,5(6), 1763~1772
    [20] A .D.Westwood, R.Y. Youngman, M.R.Mccartney, A.N.Cormack and M .R. Notis. Oxyge incorporatioin aluminum nitride via extende defects: Part1. Refinement of the structural model for the planar inversion domain boundary. J.Mater Res., 1995, 10(5), 1270~1286
    [21]吴音,影响AIN陶瓷热导率的本征氧缺陷,硅酸盐学报,1997,25(6):675~678
    [22] A.V.Virkar, T.B.Jackson and R.A.Cutler. Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride. J Am.Ceram. Soc,1989,72 (11), 2031~2042
    [23] A.Geith, M.Kulig, T.Hofmann, C. Russel. Thermal conductivity of calcium- doped Aluminum nitride ceramics. J.Mater Sci., 1993, 28,865~869
    [24] K.Watari, H .J. Hwang, M. Toriyama and S.Kanzaki. Low-temperature sintering and high thermal conductivity of YLiO2 doped AlN ceramics. J.Am .Soc, 1996, 79(7), 1979~1981
    [25] Weiguo Miao, Yin Wu, Heping Zhou. Low-temperature sintering of aluminum nitride substrate with high thermal conductivity. J.Mater.Sci., 1997,16, 1245~1246
    [26] E.Streicher, T.Chartier, P.Boch, M.F.Denanot and J.Rabier. Densification and thermal conductivity of low-sintering-temperature AlN materials. J Euro.Ceram Soc., 1990, 10 (6), 23~29
    [27]刘耀诚、周和平、乔梁, (YCa)F3助烧AlN陶瓷的显微结构和热导率,无机材料学报, 2000, 15(4):619~624
    [28]崔嵩、黄岸兵、张浩,氮化铝高温共烧多层基板技术研究,混合微电子技术,2006,11(1):26~34
    [29] C.O.Dugger.The Single Crystal Synthesis and Some Properties of Aluminum Nitride.Tech.Rept.AFCRL-TR-75-0486,August 1,1975
    [30] T.A Guiton, J.E.Volmering,K.K.Killinger,Mat.Res.Soc.Symp.Proc.271(1992)851
    [31] F.Miyashiro, N.Iwase, A Tsuge, F.Ueno, M.Nakahashi, and T.Takahashi, IEEE Trans.Comp.Hybrids,Manuf.Tech.13(1990)313
    [32] K.Watari, M.Kawamoto, K.Ishizaki, J.Mater.Sci. 26(1991)4727
    [33] F.Ueno,A.Horiguchi,in Euro-Ceramics Vol.1 pp383-387,ed by G.de wity,R.A Terpstra,R.Metselaar,Elsevier Applied Science,London(1994)
    [34] T.Yagi, K.Shinozaki, N.Mizutani, M.Kato, Y.Sawada, Nippon Ceramics Kyokai Gakujutsu Robunshi 97(1989)1372-1378
    [35] A.K.Knudsen, et al., IMC 1992 Proceedings, A.K.Yokohama,3-5(1992)270-274
    [36] K.Komeya, H Inoue, A.Tsuge, J.Am.Ceram.Soc. 57(1974)411-412
    [37] P.S.de Baranda,“The effect of Calcia and Silica on the Thermal Conductivity of Aluminum Nitride Ceramics”,PhD.Thesis, Rugters,The State YUniversity of New Jersey,(1991)
    [38] M.Alper, Chemical and Metallurgical Products Towanda,Pennsylvania,p12-29, (1995)
    [39] T.Nakamatsu, J.Mat.Sci., Vol.34,p.1553-1556,(1999)
    [40] K.Wongchotigul, N.Chen, D.P.Zheng, X.Tang, M.G.Spencer, Mat.Lett.,Vol.26,p. 223-226,(1996)
    [41] R.Metselaar, J.Euro.Cera.Soc., Vol.15,p.1079-1085,(1995)
    [42] Y.Zhang, Mat.Res.Bull., Vol.37,p.2393-2400,(2002)
    [43] D.Hotza, O.Sahling, J.Mat.Sci.,Vol.30,p.127-132,(1995)
    [44]李耀霖,厚膜电子元件,广州:华南理工大学大学出版社,1991,70~72
    [45] N.Iwase, K.Anzai, K.Shinozaki, et al. Thick Film and Direct Bond Copper Forming Technologies for Aluminum Nitride Substrates. IEEE Components, Hybrids and Manufacturing Technology,1985,8(2), 253~258
    [46] Y.Kuronitsu, H.Yoshida.and K.Morinaga in Proc. 7th European Hybrid Microelectronics Conf. International Society for Hybrid Microelectronics Montgomerv.AL.1989
    [47] M.G.Norton. Glass Ceramic Interactions and Thick Film Metallization of Aluminum Nitride. J.Mater. Sci, 1991(26), 2322~2341
    [48] Y.Kuromitsu, T.Nagese and H.Yoshida. Interaction between Alumina and Binary Glasses and Development of a Surface Treatment Method for AlN Substrates to improve Adhesion with Thick-Film Conductors. Novel Synthesis and Processing of Ceramics, Key Engineering Materials, 1999, Vols.159~160, 281~286
    [49] E.Y.Lull, J.H.Enloe, L.E. Dolhert, J.W.Lau, A.L.Kovacs, and M.R.Ehlert. Design of Metallizations and Components for Aluminum Nitride Package for VLSIC.IEEE Trans.Components, Hybrids, Mfg, Technol, 1987, 14(3), 538~54
    [50]高陇桥,陶瓷-金属材料实用封接技术,北京:化学工业出版社,2005, 28~34
    [51]任学佑,新型活性银基合金浆料,电子材料,1995,10: 26~27
    [52]李世鸿,厚膜金导体浆料,贵金属,2001,22(1):57~62
    [53] T.Yamaguchi, M.Kageyama., et al. Oxidation behavior of AlN in the presence of oxide and glass for thick film applications. IEEE Transations, 1989, 12(3), 22~25
    [54] Xinrui Xu, Hanrui Zhang, Wenlan Li. Bonding behavior of copper thick films containing lead-free glass frit on aluminum nitride substrates. Ceram.Inter, 2004,661~665
    [55]王玉新,刘渭萍,宋守志,邢军。MgO-Al2O3-SiO2系玻璃受控晶化研究,东北大学学报(自然科学版) ,2000,21(5):558~561
    [56] C.F.Yang, C.M.Cheng. The influence of B2O3 on the sintering of MgO-CaO- Al2O3-SiO2 composite glass power. Ceramics International,1999(25),383~387
    [57] Kuninori Okamoto. Study on thick film conductor performances on AlN substrate. Am.Ceram.Soc, 1989, 54(1), 195~198
    [58]许昕睿,微电子封装用AlN基材料金属化的研究:[博士学位论文],上海;中国科学院上海硅酸盐研究所, 2003
    [59] R.Reicher, W.Smetana, E.U.Gruber, et al. Bonding mechanism and stress distribution of a glass frit-free thick film metallization for AlN-ceramic. JOURNAL OF MATERIALS SCIENCE,1998(9), 429~434
    [60] Roland Reicher, Walter Smetana. A fritless copper conductor system for power electronic applications. Mater.Microelectronics Reliability, 2001(41), 491~498
    [61]徐忠华,AlN基片氧化及金属化,电子元件与材料,2000,19(4):1~2
    [62] K.Shinozaki, Y.Goto, K.Kasori, F.Ueno, K.Anzai, and A.Tsuge,“Thermal Conductivity and Microstructure of AlN Ceramics with Y2O3 Addtive,”Proceedings of the 24th Symposium on Basic Science of Ceramics, Yogyo Kyokai, 1D13, 175(1986)
    [63] Alper, Allen M. Phase diagrams in advanced ceramics, 1995:127
    [64] S.K. Muralidhar, Robert G J, Shalk A, et al. low Dielectric Low Temperature Fired Glass Ceramics [P],USA 5258335.1993
    [65] Alper, Allen M. Phase diagrams : materials science and technology. v.1,1970:153
    [66] Sakka S.J.Non-Cryst.Solids,1982.48:129
    [67]张文典.实用表面组装技术.北京:电子工业出版社,2002
    [68] Xinrui Xu,Hanrui Zhuang,Wenlan Li,et al.Bonding behavior of copper thick films containing lead-free glass frit on aluminum nitride substrates,Ceramics International 30 ,2004:661~665
    [69] Kuninori Okamoto. Study on thick film conductor performances on AIN substrate. Am.Ceram.Soc, 1989, 54(1), 195~198
    [70] Kageyama Makiko et al. Mechanism of reaction between AIN and glasses. IMC 1988 Proceeding, 1988, 161~164
    [71]刘联保,陶瓷-金属封接技术指南,北京:国防工业出版社, 1990,49
    [72] Noriaki Koto, Joei Yukawa, Takeo Moro. Process for the production of a silver coated copper powder and conductive coating composition. U.S. Patent, No: 4652465, 1987-09-02
    [73] T. Hayashi. Production of silver coated copper-based powders. U.S. Patent, No:5178909,1993-05-14
    [74]李耀霖,厚膜电子元件,广州:华南理工大学大学出版社,1991,70~72
    [75] A. Trigg. Thick Film Resistors and Capacitors for Multichip modules. Proceedings of IEEE 48th ECTC, 1998, 228~231
    [76] R. P. Mayank, F.Q. William, et all. SPC and Set up Analysis for Screen Printed Thick Films. IEEE Trans on CHMT 1991 14(3), 493~498
    [77] R.Moreno and G.Cordoba. Oil Related Deflocculants for Tape Casting Slips. Journal of the European Ceramic Society, 1997,17, 351~357
    [78] R. E. Johnson, W. H. Morrison. Ceramic powder dispersion in non-aqueous systems. In Advances in Ceramics, vol.21: Ceramic Powder Science, ed.G.L Messing, K.S.Mazadiyasni, J.W.McCauley and R.A.Haber, The American Ceramic Society.Westerville, OH, 1989, 323~348
    [79]张为军,基于lCr17不锈钢基片的厚膜电子浆料及其应用技术研究:[博士学位论文],长沙;国防科技大学研究生院,2003
    [80] Kuninori Okamoto. Study on thick film conductor performances on AIN substrate. Am.Ceram.Soc, 1989, 54(1), 195~198
    [81]刘景琳编译,AlN-ZrBB2系及AlN-SiC-ZrB2B系复合型陶瓷材料的的高温氧化,国外耐火材料,2006,31(1): 40~44
    [82]崔殿亨,软钎焊手册,北京:机械工业出版社,1987: 1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700