用户名: 密码: 验证码:
特低渗透砂岩储层微观孔隙结构与渗流机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特低渗透砂岩储层物性差、孔喉细小、孔隙结构非均质性强、微观渗流机理不同于常规储层,开展此项研究工作有助于对特低渗储层的微观孔隙结构进行系统认识,从本质上揭示影响特低渗储层微观渗流机理变化的关键因素。本文以高压压汞、恒速压汞、核磁共振、真实砂岩微观驱替、启动压力梯度测试和油水相渗实验结果等为基础,结合岩矿分析对鄂尔多斯盆地延长组长8、长6和长4+5储层的微观孔隙结构特征、油水微观驱替特征、微观渗流规律和油水相渗曲线特征进行了深入研究,主要取得如下认识:
     (1)特低渗透储层物性受孔隙、喉道特征影响较大,物性差异正是孔隙结构差异性的一种体现。喉道半径的多种分布形态对渗透率贡献值影响较大,孔隙结构的差异主要体现在喉道半径大小及分布上,特低渗透储层品质主要由喉道控制,渗透性主要由占少部分的较大喉道所贡献。4个研究区中,渗透率较大的样品其分选系数主要介于2.0~3.0之间,变异系数主要介于0.15~0.3之间。毛管压力曲线在进汞压力较小时主要受孔隙影响,当进汞压力增加到一定程度后,其变化趋势主要取决于喉道的变化。
     (2)孔隙结构均质系数(Ep)可较好地评价孔隙结构的非均质程度,4个研究区块的Ep平均值介于1.144~1.607之间,样品Ep分布曲线呈上翘、平缓、下凹的三段式。
     (3)可动流体百分数是特低渗储层微观特征的综合反映,研究区储层实验样品的可动流体百分数差异较大,主要分布于14.04%~72.15%之间,平均为47.38%,复杂、多变的微观孔隙结构是造成这一现象的主要原因。
     (4)油水微观驱替实验结果表明,研究区特低渗储层实验模型表现出6种主要驱替通道、4种主要驱替类型和3种主要残余油类型。微观孔隙结构和润湿性的非均质性是影响油水驱替特征与剩余油分布的主要原因。驱替压力只能在一定程度上提高驱油效率,注入倍数在1~2PV时对驱油效率的影响较大。可动油百分数是驱替效率的上限,驱替效率与可动油百分数之间的差距说明特低渗储层注水开发后的潜力仍然较大。
     (5)启动压力梯度是特低渗储层液体渗流的一种特殊表现,也是临界启动渗透率存在的根本原因,建立有效的驱替压力系统,降低临界启动渗透率,有助于改善开发效果。
     (6)特低渗透储层油水相渗曲线两相共渗区窄,实验样品两相共渗区平均值为28.56%,储层微观孔隙结构和润湿性的改变都会影响油水相渗曲线特征。
Micro-flow mechanism of Ultra low permeability sandstone reservoir is different from traditional reservoir because of the poor physical property, fine pore throat and strong pore structure heterogeneity. Micro-pore structure is understood by the numbers and key elements which affect on Micro-flow mechanism are revealed essentially through this study, micro-pore structure characteristics, oil/water micro-displacement characteristics, micro-flow rule and oil/water relative permeability curve characteristics of Chang8, Chang6, Chang4+5 reservoir in Yanchang Formation of Ordos Basin are studied in depth based on the results of high pressure mercury penetration, constant speed mercury penetration, NMR, true sandstone micro-displacement, kickoff pressure gradient test, oil/water relative permeability test and geoanalysis In this dissertation. The main conclusions are as follows:
     (1) Physical property of ultra low permeability reservoir is influenced by pore and throat attributes. Physical property difference is the reflection of pore structure difference. Contribution value of permeability is affected by the manifold distribution of throat radius, pore structure difference is reflected in the size and distribution of throat radius. Quality of ultra low permeability reservoir is controlled by throat, permeability is contributed by little portion greater throat. In four studied areas, the permeability of samples is higher when the separation factor value distribute within 2.0~3.0 and the variation coefficient value distribute within 0.15~0.3. Capillary pressure curve is mainly influenced by pore in the low input mercury pressure. Variation tendency of capillary pressure curve mainly depends on throat alteration when the input mercury pressure increases to certain extent.
     (2) Pore structure uniformity coefficient (Ep) can evaluate pore structure inhomogeneous degree preferably. Ep average values of four areas distribute within 1.144~1.607. Distribution curves of Ep present upwarp, smooth and ward triple section.
     (3) Mobile fluid percent is the comprehensive reflection of micro-attributes of ultra low permeability. Difference of mobile fluid percent of laboratory sample is greater in studied areas for the complex and versatile micro-pore structure. The mobile fluid percent mainly spread within 14.04%~72.15%, average value is 47.38%.
     (4) The results of oil/water micro-displacement experiment show that experimental models of studied areas display six kinds of displacement passageways, four kinds of displacement types and three kinds of irreducible oil modes. Heterogeneity of micro-pore structure and wettability are the main reasons that affect the oil/water displacement attribute and remaining oil distribution. Displacement pressure only can improve the displacement efficiency to some extent. Inject multiple from 1PV to 2PV impact on displacement efficiency greater. Difference between displacement efficiency and Mobile oil percent which is the upper limit of displacement efficiency indicates the greater potential after waterflood development of ultra low permeability reservoir.
     (5) Kickoff pressure gradient is the particular performance of fluid flow through porous medium in ultra low permeability reservoir, also is the essential reason why the critical threshold permeability exists. Displacement pressure system established to decrease the critical threshold permeability can contribute to improve development effect.
     (6) Two-phase flow range of oil/water relative permeability curves is narrow in ultra low permeability reservoir and average value of laboratory sample is 28.56%. Alteration of micro-pore structure and wettability of reservoir can create influences on attribute of relative permeability curve.
引文
[1]翟光明.中国石油天然气勘探任重道远[J].地质通报,2003,22(11~12):854-859
    [2]赖枫鹏,李治平.21世纪的中国石油外交合作[J].资源与产业,2008,10(1):8-11[3]唐衍伟,黄运成,杨婕.中国石油进口参与国际定价的现状、趋势及策略分析[J].资源科学,2007,29(1):184-189
    [4]王道富.鄂尔多斯盆地特低渗透油田开发[M].北京:石油工业出版社,2008
    [5]李德生.重新认识鄂尔多斯盆地油气地质学[J].石油勘探与开发,2004,31(6):1-7
    [6]史成恩,李健,雷启鸿等.特低渗透油田井网形式研究及实践[J].石油勘探与开发,2002,29(5):59-61
    [7]赵惊蛰,李书恒,屈雪峰.特低渗透油藏开发压裂技术[J].石油勘探与开发,2002,29(5):93-95
    [8]杨清立,杨正明,王一飞等.特低渗透油藏渗流理论研究[J].钻采工艺,2007,30(6):52-54
    [9]何琰,伍友佳,吴念胜.特低渗透油藏开发技术[J].钻采工艺,1999,22(2):20-23
    [10]李松泉,程林松,李秀生等.特低渗透油藏非线性渗流模型[J].石油勘探与开发,2008,35(5):606-612
    [11]李红,柳益群.鄂尔多斯盆地西峰油田白马南特低渗岩性油藏储层地质建模[J].沉积学报,2007,25(6):954-959
    [12]江同文,唐明龙,肖香姣等.塔里木盆地迪那2气田特低渗砂岩储层应力敏感性研究[J].沉积学报,2007,25(6):950-953
    [13]Zeng Lianbo,Qi Jiafu,Li Yuegang.The relationship between fractures and tectonic stress Field in the extra low-permeability sandstone reservoir at the south of western Sichuan depression[J].Journal of China University of Geosciences,2007,18(3):223-231
    [14]高辉,宋广寿,孙卫等.储层特低渗透成因分析与评价—以安塞油田沿25区块为例[J].地球科学进展,2007,22(11):1134-1139
    [15]Zhao Mingguo,Zhou Halfei,Chen Dingfeng.Investigation and application on gas drive development in ultra-low permeability reservoirs[J].Journal of Hydrodynamics,2008,20(2):254-260
    [16]文华国,郑荣才,陈洪德.鄂尔多斯盆地白豹—华池地区长6砂岩储层特征[J].石油 学报,2007,28(4):46-51
    [17]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:5-8
    [18]李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社,2003:3-8
    [19]贺承祖,华明琪.低渗砂岩气藏的孔隙结构与物性特征[J].新疆石油地质2005,26(3):280-283
    [20]胡志明,把智波,熊伟等.低渗透油藏微观孔隙结构分析[J].大庆石油学院学报,2006,30(3):51-53
    [21]Katz A J,Thompsonah.Fractal sandstone Pores implication for conductivity and formation[J].Phys ReLett,1985,54(3):1325-1328
    [22]Krohn.C.E.Sandstone fractal and Euelidean pore voume distribution[J].Geophys Res,1988,93(B4):328-3296
    [23]Lina T.L,Radhakrishnan.P,Sagar B.S.D.Morphological decomposition of sandstone Pore-space:Fractal power-laws.Chaos[J].Solitons and Faretals,2004,19(2):339-346
    [24]廖明光,夏宏全.孔隙结构新参数、点及其应用[J].石油勘探与开发,1997,24(3):78-81
    [25]刘子晋.对砂岩油藏水洗后岩石孔隙结构变化的探讨[J].沉积学报,1984,2(1):1-14
    [26]林玉保,张江,刘先贵等.喇嘛甸油田高含水后期储集层孔隙结构特征[J].石油勘探与开发,2008,35(2):215-219
    [27]罗蛰谭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986,21-43
    [28]Pape.H,Clauser C,lffinad,J.Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal Pores space model[J].Pure and Applied Geophysics,2000,157(4):603-619
    [29]Schlueter E.M,Zimmerman R.W,Witherspoon,P.A,Cook,N.G.W.The fractal dimension of pores in sedimentary rocks and its influence on Permeability[J].Engineering Geology,1997,48(3-4):199-215
    [30]Steven D.Hood,Campbell S.Nelson.and peter J.J.KamP.Modification of fracture porosity by multiphase vein mineralization in an Oligocene nontropical carbonate reservoir,Taranaki Basin New Zealand[J].AAPG Bulletin,2003,87(10):1575-1597
    [31]王传禹.杨普华,马永海等.大庆油田注水开发过程中油层岩石的润湿性和孔隙结构的变化[J].石油勘探与开发,1981(1):54-67
    [32]文慧俭,闫林,姜福聪等.低孔、低渗储层孔隙结构分形特征[J].大庆石油学院学报,2007,31(1):15-18
    [33]应凤祥,杨式升,张敏等.激光扫描共聚焦显微镜研究储层孔隙结构[J].沉积学报,2002,20(1):75-79
    [34]陈丽华.扫描电镜在石油地质上的应用[M].北京:石油工业出版社,1990
    [35]刘伟新,史志华,朱樱等.扫描电镜/能谱分析在油气勘探开发中的应用[J].石油实验地质,2001,23(3):341-343
    [36]刘伟新,承秋泉,王延斌等.油气储层特征微观分析技术及其应用[J].石油实验地质,2006,28(5):341-343
    [37]李红,柳益群,刘林玉.鄂尔多斯盆地西峰油田延长组长8_1低渗透储层成岩作用[J].石油与天然气地质,2006,27(2):209-217
    [38]刘林玉,张龙,王震亮.鄂尔多斯盆地镇北地区长3储层微观非均质性的实验分析[J].沉积学报,2007,25(2):224-229
    [39]王琪,禚喜准,陈国俊.鄂尔多斯西部长6砂岩成岩演化与优质储层[J].石油学报,2005,26(5):17-23
    [40]冯娟萍,李文厚,欧阳征健等.河流相和三角洲相储层成岩作用及其对储层的影响—以青化砭油田长2油层组和长6油层组砂岩为例[J].地球学报,2008,29(2):189-198
    [41]张大伟,陈发景,程刚.松辽盆地大情字井地区高台子油层储集层孔隙结构的微观特征[J].石油与天然气地质,2006,27(5):668-674
    [42]刘锐娥,孙粉锦,卫孝锋等.鄂尔多斯盆地中东部山2段储集层岩性微观特征差异性的地质意义[J].石油勘探与开发,2005,32(5):56-58
    [43]何更生.油层物理[M].北京:石油工业出版社,1994:225-245
    [44]Viet Hoai Nguyen,Adrian P.Sheppard,Mark A.Knackstedt,et al.The effect of displacement rate on imbibition relative permeability and residual saturation[J].Journal of Petroleum Science and Engineering,2006,52:54-70
    [45]王刚,王德民,夏惠芬.聚合物驱后用甜菜碱型表面活性剂提高驱油效率机理研究[J].石油学报,2007,28(4):86-90
    [46]孙龙德,宋文杰,江同文.克拉2气田储层应力敏感性及对产能影响的实验研究[J].中国科学D辑,2004,34(增刊Ⅰ):134-142
    [47]于忠良,熊伟,高树生.致密储层应力敏感性及其对油田开发的影响[J].石油学报, 2007,28(4):95-98
    [45]H.Guan,D.Brougham,K.S.Sorbie,et al.Wettability effects in a sandstone reservoir and outcrop cores from NMR relaxation time distributions[J].Journal of Petroleum Science and Engineering,2002,34:35-54
    [49]J.Chen,G.J.Hirasaki,M.Flaum.NMR wettability indices:Effect of OBM on wettability and NMR responses[J].Journal of Petroleum Science and Engineering,2006,52:161-171
    [50]S.H.Al-Mahrooqi,C.A.Grattoni,A.K.Moss,et al.An investigation of the effect of wettability on NMR characteristics of sandstone rock and fluid systems[J].Journal of Petroleum Science and Engineering,2003,39:389-398
    [51]S.H.Al-Mahrooqi,C.A.Grattoni,A.H.Muggeridge,et al.Pore-scale modelling of NMR relaxation for the characterization of wettability[J].Journal of Petroleum Science and Engineering,2006,52:172-186
    [52]Zhang G.Q,Huang,C.C,Hirasaki,G.J.Interpretation of wettability in sandstones with NMR analysis[J].Petrophysics,2000,41(3):223-233
    [53]赵彦超,陈淑慧,郭振华.核磁共振方法在致密砂岩储层孔隙结构中的应用—以鄂尔多斯大牛地气田上古生界石盒子组3段为例[J].地质科技情报,2006,25(1):1099-112
    [54]Zwaag V.d,Stallmach,C.H.F,Skjetne,T.,Veliyulin E.NMR response of non-reservoir fluids in sandstone and chalk[J].Magn.Reson.Imaging,2001,19:543-545
    [55]杨正明,张英芝,郝明强等.低渗透油田储层综合评价方法[J].石油学报,2006,27(2):64-67
    [56]D.Zhou,L.Jia,J.Kamath.Scaling of counter-current imbibition processes in low-permeability porous media[J].Journal of Petroleum Science and Engineering,2002,33:61-74
    [57]J.M.Schembre,A.R.Kovscek.A technique for measuring two-phase relative permeability in porous media via X-ray CT measurements[J].Journal of Petroleum Science and Engineering,2003,39:159-174
    [58]Kristian Mogensen,Erling H.Stenby,Dengen Zhou.Studies of waterflooding in low-permeable chalk by use of X-ray CT scanning[J].Journal of Petroleum Science and Engineering,2001,32:1-10
    [59]R.S.Seright,J.Liang,W.Brent Lindquist.Use of X-ray computed microtomography to understand why gels reduce relative permeability to water more than that to oil[J].Journal of Petroleum Science and Engineering,2003,39:217-230
    [60]Seright R.S.,Liang,J.,Lindquist,B.W.,Dunsmuir,J.H.Characterizing Disproportionate Permeability Reduction Using Synchrotron X-ray Computed Microtomography[J].SPE REE,2002:355-364.
    [61]孙卫,史成恩,赵惊蛰等.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用—以西峰油田庄19井区长8_2储层为例[J].地质学报,2006,80(5):775-778
    [62]Willhite,G.P,Zhu,H,Natarajan,D.,McCool,C.S.,Green,D.W.Mechanisms Causing Disproportionate Permeability in Porous Media Treated With Chromium Acetate/HPAAM Gels[J].SPE J.,2002:100-108.
    [63]朱九成,郎兆新,张丽华等.砂岩孔隙结构分形模型及随机网络仿真[J].石油大学学报(自然科学版),1995,19(6):46-51
    [64]谢丛姣,关振良,姜山等.基于微观随机网络模拟法建立的储层孔隙结构模型[J].地质科技情报,2005,24(2):97-100
    [65]Pfeifer P,Avnir D.Chemisty nonintegral dimensions between two and three[J].ChemPhys,1983,7(7):3369-3558
    [66]屈世显,张建华.分形与分维及在地球物理学中的应用[J].西安石油学院学报,1991,6(2):8-13
    [67]景贵成,刘福海,俞理.天然低渗岩心分形维数变化原因分析[J].岩石力学与工学报,2005,24(6):921-924
    [68]Kewen Li.Characterization of rock heterogeneity using fractal geometry[J].SPE86975,Presented at the SPE International Thermal Operations and Heavy oil Symposium and Western Regional Meeting,California,March,2004,16-18
    [69]Kewen Li.Theoretical development of the brooks-corey capillary pressure model from fractal modeling of porous media[J].SPE89429,Presented at SPE/DOE symposium on improved oil recovery,Oklahoma,April,2004,17-23
    [70]李留仁,赵艳艳,李忠兴等.孔介质微观孔隙结构分形特征及分形系数的意义[J].石油大学学报(自然科学版),2004,28(3):105-107
    [71]李云省,邓鸿斌,吕国祥.储层微观非均质性的分形特征研究[J].天然气工业,2002, 22(1):37-39
    [72]李中锋,何顺利,杨文新.砂岩储层孔隙结构分形特征描述[J].成都理工大学学报(自然科学版),2006,33(2):203-208
    [73]Meng B.Determination and interpretation of fractal properties of the sandstone Pore system[J].Materials and Structures/Materiaux Constructions,1996,29(188):195-205
    [74]马新仿,张世诚,朗兆新.储层岩石孔隙结构的分形研究[J].中国矿业,2003,(9):46-48
    [75]唐玮,唐仁骐,白喜俊.分形理论在油层物理学中的应用[J].石油学报,2008,29(1):93-96
    [76]张宸恺,沈金松,樊震.应用分形理论研究鄂尔多斯MHM油田低孔渗储层孔隙结构[J].石油与天然气地质,2007,28(1):110-115
    [77]付晓燕,孙卫.低渗透储集层微观水驱油机理研究—以西峰油田庄19井区长8_2储集层为例[J].新疆石油地质,2005,26(6):681-683
    [78]李劲峰,曲志浩,孔令荣.贾敏效应对低渗透油层有不可忽视的影响[J].石油勘探与开发,1999,26(2):93-96
    [79]李振泉,候健,曹绪龙等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):69-73
    [80]M.Bulova,K.Nosova,D.Willberg.Benefits of the novel fiber-laden low-viscosity fluid system in fracturing low-permeability tight gas formations[J].SPE 102956,2006:1-8
    [81]Peden J M,Husain M I.Visual investigation of multiphase flow and phase interactions within porous media.In:SPE,ed.SPE14307[C].SPE 60th Annual Tech Confand Exhib,Las Ve-gas,1985.1-12
    [82]R.J.H.Jolly,L Wei,and R.J.Pine.Stress-sensitive fracture flow modelling in fractured reservoirs[J].SPE 59042,2000:1-10
    [83]Ren Xiaojuan,Wu Pingchang,Qu Zhihao,et al.Studying the scaling mechanism of low-permeability reservoirs using visual real-sand micromodel[J].SPE 100452,2006,1-7
    [84]孙卫,曲志浩,岳乐平等.鄯善油田东区油藏注水开发的油水运动规律[J].石油与天然气地质,1998,19(3):190-195
    [85]赵阳,曲志浩,刘震.裂缝水驱油机理的真实砂岩微观模型实验研究[J].石油勘探与开发,2002,29(1):25-51
    [86]朱玉双,曲志浩,孔令荣等.安塞油田王窑区、坪桥区长6油层储层特征驱油效率分析[J].沉积学报,2000,18(2):279-283
    [87]孙卫,曲志浩,李劲峰.安塞特低渗透油田见水后的水驱油机理及开发效果分析[J].石油实验地质,1999,21(3):256-259
    [88]孙卫,何娟.姬源延安组储层水驱油效率及影响因素[J].石油与天然气地质,1999,20(1):26-29
    [89]谷建伟,郭志华,赵燕.特低渗油藏生产井初始含水率高的微观机理[Jr].中国石油大学学报(自然科学版),2007,31(5):64-68
    [90]李恕军,柳良仁,熊维亮.安塞油田特低渗透油藏有效驱替压力系统研究及注水开发调整技术[J].石油勘探与开发,2002,29(5):62-65
    [91]林玉保,刘春林,卫秀芬等.特低渗透储层油水渗流特征研究[J].大庆石油地质与开发,2005,24(6):42-44
    [92]毛振强,李明,于红军.樊31北块特低渗透油藏初始含水率的影响因素[J].油气地质与采收率,2006,13(5):62-65
    [93]王文环.特低渗透油藏驱替及开采特征的影响因素[J].油气地质与采收率,2006,13(6):73-75
    [94]孙卫,杨生柱.聚丙烯酸胺类堵剂的堵水机理实验[J].石油与天然气地质,2002,23(4):332-335
    [95]任晓娟,曲志浩,史承恩.西峰油田特低渗弱亲油储层微观水驱油特征[J].西北大学学报(自然科学版),2005,35(6):766-769
    [96]孙庆和,何玺,李长禄.特低渗透储层微缝特征及对注水开发效果的影响[J].石油学报,2000,21(4):52-58
    [97]Sun W.Qu Z,Tang G.Characterization of water injection in low permeability rock using sandstone micromobles[J].Journal of Petroleum Technology,2004,56(5):71-72
    [98]W.Sun,G-Q.Tang.Visual Study of Water Injection in low Permeable Sandstone[J].JCPT,2006,11(45):21-26
    [99]张荻楠,刘淑琴.特低渗透油层储层非均质性对油水分布的影响[J].大庆石油地质与开发,2000,19(5):7-12
    [100]D.V.S.Gupta,B.T.Hlidek and H.S.Dinsa,B.J.Fracturing fluid for low-permeability gas reservoirs:emulsion of carbon dioxide with aqueous methanol base fluid:Chemistry and Applications[J].SPE 106304,2007,1-4
    [101]Gvain Longrnuiri.Per-darcy flow A missing Piece of the improved oil recovery Puzzle [J].SPE89433,Presented at the SPE/DOE fourteenth symposium improved oil recovery,Oklahoma,U.S.A,April,2004,17-21
    [102]Hardy H H.Mathematical model of microscopic fluid flow in porous media[J].Transport in Porous Media,1990,4:24-27
    [103]黄远智,王恩志,韩小妹.低渗透岩石非饱和非Darey渗流机理[J].清华大学学报(自然科学版),2005,45(9):1202-1205
    [104]M.M.Rahman,M.K.Rahman.An intelligent hydraulic fracture optimization model:a new tool to stimulate low permeable oil reservoir[J].SPE 101137,2006,1-11
    [105]Michael W.Conway,Steven W.Lindeman,Robert D.Barree.Selection of stimulation fluids and treatment design for low-permeability reservoirs[J].SPE 106085,2007,1-7
    [106]任晓娟,何秋轩,闰庆来等.低渗气层气体的渗流特征实验研究[J].西安石油学院学报,1997,12(3):22-25
    [107]张光明,廖锐全,徐永高等.特低渗透油藏流体渗流特征实验研究[J].江汉石学院学报,2004,26(1):88-89
    [108]Lenorm and R,Zarcone C.Roll of roughness and edges during imbibition in square capillaries[A].SPE13264,1984.1-17
    [109]刘建军,刘先贵等.低渗透岩石非线性渗流规律研究[J].岩石力学与程学报,2003,22(4):556-561
    [110]Prada A,Civan F.Modification of Darcy's law for the threshold pressure gradient[J].Petroleum Science and Engineering,1999,22(4):237-240
    [111]Serhat Akin,Louis Castanier.Multiphase-flow properties of fractured porous media Edgar Rangel-German Serhat Akin,Louis Castanier[J].Journal of Petroleum Science and Engineering,2006,51:197-213
    [112]Torsten Friedel,Hans-Dieter Voigt.Investigation of non-Darcy flow in tight-gas reservoirs with fractured wells[J].Journal of Petroleum Science and Engineering,2006,54:112-128
    [113]杨琼,聂孟喜,宋付权.低渗透砂岩渗流启动压力梯度[J].清华大学学报(自然科学版) 2004,44(12):1650-1652
    [114]姚约东,葛家里.低渗透油层非达西渗流规律的研究[J].新疆石油地质,2000,21(3):213-215
    [115]沈平平.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000,90-94
    [116]Amiell P,Billiotte J,Meunier G,et al.The study of alternate and unstable gas/water displacements using a small-scale model[A].In:SPE,ed.SPE 19070[C].SPE Gas Technology Sym-posium,Dallas,1989,147-156
    [117]崔浩哲,姚光庆,周锋德.低渗透砂砾岩油层相对渗透率曲线的形态及其变化特征[J].地质科技情报,2003,22(1):88-91
    [118]高慧梅,姜汉桥,陈民锋.储层孔隙结构对油水两相相对渗透率影响微观模拟研究[J].西安石油大学学报(自然科学版),2007,22(2):56-59
    [119]刘中云,曾庆辉,唐周怀等.润湿性对采收率及相对渗透率的影响[J].石油与天然气地质,2000,21(2),148-150
    [120]吕成远.油减条件下油水相对渗透率实验研究[J].石油勘探与开发,2003,30(4):102-104
    [121]Abdulrahman Al-Quraishi,M.Khairy.Pore pressure versus confining pressure and their effect on oil-water relative permeability curves[J].Journal of Petroleum Science and Engineering,2005,48:120-126
    [122]董大鹏,冯文光,赵俊峰.考虑启动压力梯度的相对渗透率计算[J].天然气工业,2007,27(10):95-96
    [123]Hardy H H.Mathematical model of microscopic fluid flow in porous media[J].Transport in Porous Media,1990,4:24-27
    [124]李广月,郭平,林春明.不同类型凝析气藏在低渗多孔介质中的相态及采收率研究[J].石油学报,2006,27(1):73-76
    [125]刘爱武,李学文.低渗油藏的两相渗流特征及其影响因素[J].石油天然气学报,2006,28(3):325-327
    [126]Shehadeh K.Masalmeh.The effect of wettability heterogeneity on capillary pressure and relative permeability[J].Journal of Petroleum Science and Engineering,2003,39:399-408
    [127]Wardlaw N.C,Tayle R.P.Mercury capillary pressure curves and the interpretation of pore structure and fluid distribution[J].Bull.Can.Petod.Geol,1976,24(2):225
    [128]Viet Hoai Nguyen,Adrian P.Sheppard,Mark A.Knackstedt.The effect of displacement rate on imbibition relative permeability and residual saturation[J].Journal of Petroleum Science and Engineering,2006,52:54-70
    [129]吴元燕.油矿地质学[M].北京:石油工业出版社,1996:152-153
    [130]唐仁骐,曾玉华.岩石退汞效率几个影响因素的研究[J].石油实验地质,1994,16(1):84-93
    [131]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):22-24
    [132]王金勋,杨普华,刘庆杰.应用恒速压汞实验数据计算相对渗透率曲线[J].石油大学学报(自然科学版),2003,27(4):66-69
    [133]范宜仁,倪自高,邓少贵等.储层性质与核磁共振测量参数的实验研究[J].石油实验地质,2005,27(6):624-626
    [134]王为民,赵刚,谷长春等.核磁共振岩屑分析技术的实验及应用研究[J].石油勘探与开发,2005,32(1):56-59
    [135]丁绍卿,郭和坤,刘卫等.核磁共振岩样分析技术在储层评价中的应用[J].大庆石油地质与开发,2006,25(6)22-26
    [136]刘林玉,张龙,王震亮等.鄂尔多斯盆地镇北地区长3储层微观非均质性的实验分析[J].沉积学报,2007,25(2):224-228
    [137]张立宽,王震亮,曲志浩等.砂岩孔隙介质内天然气运移的微观物理模拟实验研究[J].地质学报,2007,81(4):539-542
    [138]刘林玉,王震亮,柳益群.鄂尔多斯盆地西峰地区长8砂岩微观非均质性的实验分析[J].岩矿测试,2008,27(1):29-32
    [139]曲志浩,孔令荣.低渗透油层微观水驱油特征[J].西北大学学报(自然科学版),2002,32(4):329-334
    [140]高辉,孙卫,宋广寿等.鄂尔多斯盆地合水地区长8储层特低渗透成因分析与评价[J].地质科技情报,2008:71-76
    [141]王道富,李忠兴,赵继勇.低渗透油藏超前注水理论及其应用[J『].石油学报,2007,28(6):78-81
    [142]冉新权,程启贵,屈雪峰.特低渗透砂岩油藏水平井井网形式研究[J].石油学报, 2008,29(1):89-92
    [143]韩洪宝,程林松,张明禄等.特低渗油藏考虑启动压力梯度的物理模拟及数值模拟方法[J].石油大学学报(自然科学版),2004,28(6):49-53
    [144]李莉,董平川,张茂林.特低渗透油藏非达西渗流模型及其应用[J].岩石力学与工程学报,2006,25(11):2272-2279
    [145]李忠兴,韩洪宝,程林松.特低渗油藏启动压力梯度新的求解方法及应用[J].石油勘探与开发,2004,31(3):107-109
    [146]何贤科,陈程.低渗透油层有效动用的注采井距计算方法[J].新疆石油地质,2006,27(2):216-218.
    [147]祝春生,程林松,阳忠华等.特低渗透砂岩油藏渗流特性研究[J].油气地质与采收率,2008,15(2):102-104
    [148]黄文芬,王建勇,凡哲远.孤东油田七区西相对渗透率曲线研究[J].石油勘探与开发,2001,28(3):90-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700