用户名: 密码: 验证码:
披覆构造混源油来源与富集特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国东部断陷盆地中坳隆相间的构造格局造就了大量四周被生烃洼陷环绕的披覆含油气背斜构造。论文以渤海湾盆地沾化凹陷中勘探开发程度较高的孤岛披覆背斜油藏为例,通过对其在多洼陷、多套烃源岩供烃条件下形成的混源油的地球化学特征、分布的研究,结合物理、数值模拟和包裹体分析测试结果,以揭示混源油的来源、定量匹分、优势运移路径和富集机理,明确勘探方向和不同区带勘探潜力。
     建立了3个洼陷以甲藻甾烷、三芳甲藻甾烷、4-甲基甾烷、δ~(13)C等为标志的烃源岩地球化学判识标准,有效实现了孤岛凸起及其周缘原油来源的精细分析。馆陶组原油分别来自渤南洼陷、孤北洼陷及孤南洼陷。其中,周缘西北渤南区及凸起主体的油气来自渤南洼陷沙四上段(Es_4~s)与沙三段(Es_3)烃源岩形成的“混源油”,北部孤北区油气来自孤北洼陷Es_3烃源岩,南部孤南区油气主体来自孤南洼陷Es_3烃源岩,西南部斜坡过渡区油气除少量仅来自渤南洼陷外,主体为来自渤南洼陷和孤南洼陷的混源油。
     在明确了不同区块油气来源的基础上,通过两端元混源模拟实验,建立了混源油定量判识模版,实现了孤岛凸起及其周缘地区油藏混源比的定量匹配,确定该区已探明资源量中渤南洼陷贡献最大,其Es_3供油占62%,Es_4~s占10%;孤南洼陷次之,其Es_3占10%,沙一段(Es_1)约占8%;孤北洼陷贡献最少,仅Es_3提供油源,约占10%。
     通过对输导要素及其组合关系的落实,建立了新的输导体系分类。厘定了断层纵向开启的必要条件为东营期V_f(断层活动速率)≥3.4m/Ma或馆陶期V_f≥1.9m/Ma,或者为断层泥比率SGR≥0.40。反之,断层封闭利于封堵油气。
     通过埋藏史和流体包裹体综合分析,确定研究区内存在东营组(Ed)沉积期、馆陶组末-明化镇组(Nm)沉积早期和Nm沉积末期3期排烃和成藏。油气运移模拟清晰再现了3个砂岩发育层在三个油气运聚高峰时的优势运移路径,其中孤岛凸起西南缘、东北近孤南断层处和北部近孤北断层处是向凸起供烃的主要通道。
     成藏史分析表明,Ng沉积期间及之前,油气主要来自渤南洼陷Es_4烃源岩;Nm沉积期间则来自渤南洼陷和孤南洼陷的Es_3烃源岩;至平原组沉积期,随着Es_1低成熟油的生成及孤北洼陷Es_3进入生油门限,孤岛凸起区油气运移路径复杂性强,油气构成具有明显的多源、混源特点,发育主断裂带陡坡带和缓坡带2类成藏模式。
As a result of structural framework with sag-uplift alternation, many oil-bearing drape anticline structures arrounding hydrocarbon generation sags were formed in faulted basins in eastern China. In this paper, the chemical characteristics and distribution of source-mixed oils were studied, and the sources of mixed oils, relative quantity from different sources, hydrocarbon migration pathway and accumulation mechanism were disclosed taking Gudao drape anticline of Zhanhua depression as an example using physical simulation, numerical modelling and inclusions analysis. This studies make clear where and what the petroleum exploration targets are in the future, further, to give guidances for rapid, high efficient hydrocarbon exploration and development of similar geological structures or areas.
     In this study, geochemical distinguishing marks, such as dinophyceae sterane, triaromatic dinophyceae steroid, 4-meth sterane,δ~(13)C, and so on, are summarized systimatically among different sources in Bonan, Gunan and Gubei sub-depressions for oil-source correlation in Gudao draping anticline and its circumambience. Correlation results show that there are three types of oil and come from Bonan, Gunan and Gubei sub-depressions respectively. Additionally, oils in different areas around Gudao swell were analyzed. The northwestern area's oil comes from Bonan sag's source rocks of the 4th member of Shahejie formation(Fm.) (Es_4) and the 3rd member of Shahejie Fm. (Es_3), and northern area from Gubei sag's source rocks of Es_3; and southern one from Gunan sag's of Es_3 and the 1st member of Shahejie Fm. (Es_1), southwestern slope area from Gunan sag and Bonan sag besides some deep strata's oil only from Bonan sag's source rock. According to maturity and geochemical signatures, these oils in southwestern slope area are divided into two types and four kinds.
     Two-end mixed source oils experiments based on subtle oil-source correlation results provides a great many of quantificational distinguishing models for discovered reserves in Gudao swell and its circumambience. Experiments shows that about 62% of discovered reserves comes from Es_3 source rock of Bonan sag, and about 10% from Es_4 source rock of Bonan sag, and about 10% from Es_3 source rock of Gunan sag, and about 8% from Es_1 source rock of Gunan sag, and about 10% from Es_3 source rock of Gunan sag.
     A new classification on oil and gas transport system was put forward after ascertainment of transport factors and assembled relationship. As an important factor for hydrocarbon migration, faults were studied considering those action for oil migration or seal ability. Studies indicates faults are open and migrates oil and groundwater when fault activity speed (V_f)≥3.4m/Ma in Dongying Fm. or V_f≥1.9m/Ma in Guantao Fm., or SGR≥0.40 in any stratum. On the contrary, faults are close and be closed reserves.
     Analysis by buried history and fluid inclusion shows that there three times of hydrocarbon accumulation at the end of sedimentation of Dongying Fm., during the sedimentation of from the end of Gutao Fm. to early Minghuazhen Fm. and the end of sedimentation of Minghuazhen Fm.. Hydrocarbon migration simulation shows clearly superior migration routes of three sand-rich strata during three main stages of hydrocarbon migration and accumulation. Southwestern part, northeast partnear Gunan fault and northern part near Gubei fault are the main entrances into Gudao swell.
     In studied area, pools charaterized by many sources and mixed source oils are widely exist beacause of structural pattern alternated with sags and swells, oil and gas reserves types and accumulation efficiency are controlled by transport system's type in different structural belts, and complex and episodic accumulation process is affected by multistage migration based on abnormity pressure's episodic discharge. For those reason, two hydrocarbon accumulation models, i.e. actic region hydrocarbon accumulation model near main fault belts and gentle slope hydrocarbon accumulation model are summarized.
引文
[1] Chapman R E. Petroleum geology[M]. Amsterdam: Elsevier Science, 1983
    [2] North F K. Petroleum geology[M]. Boston: Allen Linwin, 1985
    [3] Magara K. Compaction and Fluid Migration[M]. Amsterdam Oxford-New York: Elsevier Scientific Publishing Company 1978
    [4] Tissot B P, Welte D H. Petroleum formation and occurrence [M]. Springer Verlag, Heidelberg, New York, 1978(lst edition), 1984 (2nd edition).
    [5] Hunt J M. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bull, 1990,74(1): 1-12.
    [6] Magoon L B, Dow W G The petroleum system [A]. In: Magoon L B, Dow W G, eds. The petroleum system-from source to trap[C]. AAPG Memoir, 1994, 60: 3-22.
    [7] Philppi G T.On the depth, time and mechanism of petroleum generation.Geochem Cosmochim Acta, 1965, 29:1021-1049.
    [8] Mclver R D.Composition of Kerogen-clue to its role in the origin of petroleum.Proc Seventh World Petr Cong(Mexico), 1967,2:25-36.
    [9] 黄第藩,李晋超.中国陆相油气生成[M].北京:石油工业出版社,1982
    [10] 黄第藩,李晋超,周翥虹.陆相有机质演化和成烃机理.北京:石油工业出版社,1984.1-355
    [11] Snowdon L R, Powell T G.Immature oil and condensate-modification of hydrocarbon generation model for terrestrial organic matter.AAPG Bull, 1982, 66:775-788.
    [12] Palacas J G.碳酸盐岩油源岩:地质和化学特征及油源对比(1983).第11届石油会议报告论文集,第一分册(石油地质).北京:石油工业出版社,1984.20-34.
    [13] 傅家谟,盛国英,江继纲.膏岩沉积盆地形成的未熟石油.石油与天然气地质,1985,6(2):150-158.
    [14] 黄第藩,李晋超.陆相沉积中的未熟石油及其意义.石油学报,1987,8(1):1-9.
    [15] Martin R L, Winters J C, Willams J A, etal.Distribution of N-paraffinsin crude oils and their implication to origin of petroleum.Nature, 1963, 199:110-113.
    [16] Tannenbaum E, Aizenshtat Z. Formation of immature asphalt from organic-rich carbonate rocks-Ⅱ, correlation of maturation indicates.Org Geochem. 1984, 6:503-511.
    [17] Tannenbaum E, Aizenshtat Z. Formation of immature asphalt from organic-rich carbonate rocks-Ⅰ, correlation of maturation indicates.Org Geochem. 1985, 8:191-192.
    [18] Nissenbaum Arie, Goldberg M, Aizenshtat Z, et al. Immature condensate from Southeastern Mediterranean coastal plain, Israel.AAPGBull, 1985, 69(6):946-949.
    [19] 史继扬,麦坎任 A S,埃格林顿G.胜利油田原油和生油岩中的生物标志化合物及其应用.地球化学,1982,(1):4-19.
    [20] 王铁冠,钟宁宁.低熟石油的形成机理与分布[M].北京:石油工业出版社,199. 、
    [21] Peters K. E. Moldowan J. M. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall Inc. 1993.
    [22] 张水昌,张宝民,赵孟军,等.塔里木盆地油气源及成藏研究."九五"国家终点科技攻关项目《塔里木盆地石油天然气勘探(二期)成果报告》.2000.332-334.
    [23] 张枝焕,王铁冠,常象春,等.原油族群划分及其地球化学意义.地球学报(增刊),2004,24:108-114.
    [24] 黄第藩,熊传武,杨俊杰.鄂尔多斯盆地中部气田气源判识和天然气成因类型[J].天然气工业,1996,16(6):1-51.
    [25] Whiticar M J.. The pet roleum system - From source to t rap[J]. AAPG Memoir, 1994, 60 : 261-281.
    [26] Jarvie D. M., Walker, P. R.. Correlation of oils and source rocks in the Williston Basin using classical correlation tools and thermal extraction very high resolution C_7 gas chromatography. In: 18th International Meeting on Organic Geochemistry, 1997, Maastricht, The Netherlands, Abstract for oral presentation. 51-52.
    [27] Odden W., Patience R.L., Van Graas GW. Application of light hydrocarbons (C_4-C_(13)) to oil/source rock correlations:a study of the light hydrocarbons compositions of source rock and testfluids from offshore Mid-Norway. Organic Geochemistry, 1998,28 (12), 823-847.
    [28] Nora L. C., Carlos A. G., Mario A.G, et al.. Effect of evaporation on C7 light hydrocarbon parameters . Org. Geochem., 2003, 34: 813-826.
    [29] 钟小莉,苏秀芳,等.有机地球化学分析方法及其应用.塔里木石油勘探开发指挥部和江汉石油学院地球化学研究中心,1999(内部资料).
    [30] 王培荣,周光甲等.生物标志物.江汉石油学院分析测试中心.1994,323
    [31] 程克明,王铁冠,等.烃源岩地球化学及演化特征.1989(内部资料).
    [32] 王培荣.非烃地球化学和应用.北京:石油工业出版社.2002.
    [33] 李景贵,刘文汇,郑建京,等.库车坳陷陆相烃源岩及原油中的氧芴系列化合物.石油学报,2004,25(1):40-47.
    [34] 马永生,田海芹.碳酸盐岩油气勘探[M].山东东营:石油大学出版社,1999.
    [35] 曾宪斌,张静华,金惠等.中国主要气区海相沉积层序特点与大中型气田分布规律[J].石油实验地质,2000,22(4):325-329.
    [36] 郝石生.碳酸盐岩油气生成[M].北京:石油工业出版社,1993.312.
    [37] 傅家谟.国外石油有机地球化学进展[J].石油实验地质,1980,2(2):62-641.
    [38] 金强,田海芹,戴俊生.微量元素组成在固体沥青-源岩对比中的应用.石油实验地质,2001,23(3):285-290.
    [39] 张枝焕,邓祖佑,吴水平等.石油成藏过程中的地球化学变化及控制因素的综合评述.高校地质学报,2003,9(3):484-493.
    [40] 李赞毫,李季,向龙斌等.原油的厌氧细菌降解作用及其产物特征.石油与天然气地质,1998,19(1):29-34.
    [41] 侯读杰,王铁冠.陆相油气地球化学研究[M].北京:中国地质大学出版社,1995.25-31.
    [42] 必得斯 K.E.,莫尔多望 E.M..生物标志化合物指南[M].姜乃煌等译.北京:石油工业出版社,1995.179-187.
    [43] 黄志龙,张枝焕.吐哈盆地吐玉克油田稠油成因及油源分析.大庆石油学院学报.1999,23(4):9-11.
    [44] Dzou L I, Holba A G, Ramon J C, Moldowan J M, Zinniker D. Application of new diterpane biomarkers to source, biodegradation and mixing effects on Central Llanos Basin oils, Colombia. Organic Geochemistry, 1999, 30(7): 515-534.
    [45] 宋孚庆,张大江,王培荣,徐冠军,李友川,付宁,郭永华.生物降解混源油混合比例估算方法.石油勘探与开发,2004,31(2):67-70.
    [46] 王文军,宋宁,姜乃煌,宋孚庆.朱熟油与成熟油的混源实验、混源理论图版及其应用.石油勘探与开发,1999,26(4):34-38.
    [47] 张敏,王东良,朱翠山,赵红静.冀中坳陷苏桥-文安油气田混源油定量识别模式研究(一)-原油成因分类及地球化学特征.天然气地球科学,2004,15(2):115-119.
    [48] 陈建平,邓春萍,梁狄刚,等.叠合盆地烃源层混源油定量判析——以准噶尔盆地东部彩南油田为例.地质学报,2004,78(2):279-288.
    [49] Emmons W H. Experiments on accumulation of oil in sands. AAPG Bull., 1921, 5: 103-104.
    [50] Illing V C. The migration of oil and natural gas. Jour nst Petrol Technol, 1933, 19(4): 229-260.
    [51] Hubbert M K. Entrapment of petroleum under hydrodynamics conditions. AAPG Bull. , 1953, 37(8): 1954-2026.
    [52] Berg R R. Capillary pressure in stratigraphic traps. AAPG Bull., 1975, 59(6): 939-959.
    [53] Tiratsoo E N. Petroleum geology[M]. New York: McGraw-Hill, 1951, 1-449.
    [54] Chatenever A, Calhoun J C. Visual examinations of fluid behavior in porous media (Part Ⅰ). AIME Petroleum Transactons, 1952, 195: 149-156.
    [55] Kimbler K D, Ali S M F. Scalred physical modeling of steam-injection experiments. Society of Petroleum Engineers Reservoir Engineering, 1991, 18(8): 467-469.
    [56] Mattax C C, Kyte J R. Imbibition oil recovery from fractured, waterdrive reservoir. SPE Journal, 1962, 2(6): 177-184.
    [57] Lenormand R, Touboul E, Zarcone C. Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 1988, 189: 165-187.
    [58] Weidner D E, Schwartz L W. An experimental and numerical investigation of buoyancy-driven two-phase displacement. Phys Fluids A, 1991, 3(9): 2076-2080.
    [59] Meakin P, Wagner G, Vedvik A. Invasion percolation and secondary migration: experiments and simulations. Marine and Petroleum Geology, 2000, 17: 777-795.
    [60] Chatzis I, Dullien F A L. Dynamic immiscible displacement mechanisms in pore doublets: theory vs. experiments. Journal of Colloids and Interface Science, 1983, 91(1): 199-222.
    [61] Schowalter T T. Mechanics of secondary hydrocarbon migration and entrapment. AAPG Bull. , 1979, 63(5): 723-760.
    [62] Dembicki H J, Anderson M J. Secondary migration of oil: experiments supporting efficient movement of separate, buoyant oil phase along limited conduits. AAPG Bull., 1989,73(8): 1018-1021.
    [63] Catalan L, Xiaowen F, Chatzis I. An experimental study of secondary oil migration. AAPG Bull. , 1992, 76(5): 638-650.
    [64] Tokunaga T, Mogi K, Matsubara O. Buoyancy and interfacial force effects on two-phase displacement patterns: an experimental study. AAPG Bull., 2000, 84(1): 65-74.
    [65] 张发强,罗晓容,苗盛,等.石油二次运移的模式及其影响因素.石油实验地质,2003,25(1):69-75.
    [66] 陈章明,张云峰,韩有信,等.凸镜状砂体聚油模拟实验及其机理分析.石油实验地质,1998,20(2):166-170.
    [67] 曾溅辉,金之钧,等.油气二次运移和聚集物理模拟[M].北京:石油工业出版社,2000.
    [68] 张义纲,陈彦华,陆嘉炎,等.油气运移及其聚集成藏研究[M].南京:河海大学出版社,1997.
    [69] Scheidegger A E. The physics of flow though porous media [M]. Toronto, Canada: Univ of Toronto Press, 1974,20-240.
    [70] 陈荷立.油气运移研究的有效途径.石油与天然气地质,1995,16(2):126-131.
    [71] 石广仁.油气盆地数值模拟方法[M].北京:石油工业出版社,1994,1-172.
    [72] Ungerer P, Bessis F. Chenet Y, et al. Geological and geochemical models in oil exploration: principles and practical examples [A]. In: Demaison G, ed. Petroleum geochemistry and basin evaluation[C]. AAPG Memoir, 1984, 35: 53-57.
    [73] 罗晓容.油气运聚动力学研究进展及问题.天然气地球科学,2003,14(5):337-347.
    [74] Dahlberg E C. Applied hydrodynamics in petroleum exploration [M]. New York: Springer-Verlag, 1982, 1-171.
    [75] Bethke C M, Reed J D, Oltz D F. Long-range petroleum migration in the Illinois basin. AAPG Bull. 1991, 75(5): 925-945.
    [76] 袁益让,赵卫东,程爱杰,等.三维油资源运移聚集的模拟和应用.应用数学和力学,1999,20(9):933-941.
    [77] 刘伊克,常旭.盆地模拟水动力油气二次运移隐式多重网格法.地球物理学报,1998,41(3):342-347.
    [78] Wilkinson D. Percolation effects in immiscible displacement. Physical Review A, 1986, 34: 1380-1391.
    [79] Carruthers D, Ringrose P. Secondary oil migration: oil-rock contact volumes, flow behavior and rates. In: Parnell J, ed. Dating and duration of fluid flow and fluid-rock interaction. London: Geological Society Special Publications, 1998, 144: 205-220.
    [80] Ewing R E. Aspects of upscaling in simulation of flow in porous media. Advances in Water Resources, 1997, 20(5-6): 349-358.
    [81] Kueper B H, McWhorter D B. The use of macroscopic percolation theory to construct large-scale capillary pressure curves. Water Resource Res, 1992, 28(9): 2425-2436.
    [82] Aker E, Maloy K J. Dynamics of stable viscous displacement in porous media. Physical Review E, 2000, 61(3): 2936-2946.
    [83] Surdam R C. Organic-inorganic interactions and sandstone diagenesis. AAPG Bull., 1989, 73(1): 1-23.
    [84] 陈建平,查明,周瑶琪.有机包裹体在油气运移研究中的应用综述.地质科技情报,2000,19(1): 61-64.
    [85] 钟宁宁,张枝焕.石油地球化学进展,现代油气勘探理论和技术培训教材(六)[M].北京:石油工业出版社,1998,102.
    [86] 张有瑜,罗修泉.油气储层自生伊利石 K-Ar同位素年代学研究现状与展望.石油与天然气地质,2004,25(2):231-236.
    [87] Allan U S. Model for hydrocarbon migration and entrapment within faulted strcutures. AAPG Bull., 1989, 73:803-811
    [88] Gussow W C. Differential entrapment of oil and gas: a fundamental principle. AAPG Bull, 1954, 38: 816-853.
    [89] Tissot B P. Migration of hydrocarbons in sedimentary basins, a geological, geochemical and historical perspective [A]. In: Doligez B, ed. Migration of hydrocarbons in sedimentary basins[C]. Paris: Editions Technip, 1987, 1-19.
    [90] Hindle A D. Petroleum migration pathways and charge concentration: A three-dimensional model. AAPG Bull. ,1997,81(9): 1451-1481.
    [91] Rhea L, Person M, Marsily G D, et al. Geostatistical models of secondary oil migration within heterogeneous carrier bes: theoretical example. AAPG Bull., 1994, 78: 1679-1691.
    [92] 吕延防,付广,高大岭.油气藏封盖研究[M].北京:石油工业出版社,1996.
    [93] 李明诚.石油与天然气运移(第二版)[M].北京:石油工业出版社,1994.
    [94] 郝芳,邹华耀,姜建群.油气成藏动力学及其研究进展[J].地学前缘,2000,7(3):11-21.
    [95] 向才富,夏斌,解习农,等.松辽盆地西部斜坡带油气运移主输导通道.石油与天然气地质,2004,25(2):204-215.
    [96] 罗晓容.断裂开启与地层中温压瞬态变化的数学模拟.石油与天然气地质,1999,20(1):1-6.
    [97] 金之钧,张一伟,王捷.油气成藏机理与分布规律[M].北京:石油工业出版社,2003.
    [98] 邱楠生,金之钧.油气成藏的脉动式探讨.地学前缘,2000,7(4):561-567.
    [99] Hu Wenxuan, Jin Zhijun, Qiu Nansheng, et al. Boiling process of low temperature formation water in petroleum system, Qaidam Basin. Chinese Science Bulletin, 1999, 44(S0): 77-78.
    [100] Dow W G. Application of oil correlation and source rock data to exploration in Williston basin (abs) [J]. AAPG Bulletin, 1972, 56: 615
    [101] Perodon A. Petroleum systems: models and applications. Journal of Petroleum Geology, 1992, 15(3): 319-326.
    [102] Demaison G The generative basin concept [A]. In: Demaison G Murris R J. eds. Petroleum geochemistry and basin evaluation[C]. AAPG Memoir. 1984, 35: 1-14
    [103] Meissner F F. Petroleum geology of the Bakken Formation, Williston basin, North Dakota and Montan [A]. In: Demaision G Murris R J. eds. Petroleum geochemistry and basin evaluation[C]. AAPG Memor. 1984,35: 159-179.
    [104] Ulmishek G. Stratigraphic aspects of petroleum resource assessment [A], In: Rice D, ed. Oil and gas assessment-methods and applications[C]. AAPG Studies in Geology, 1986, 21: 59-68.
    [105] Magoon L B. The petroleum system-a classification scheme for research, resource assessment, and exploration(abs)[J].AAPG Bulletin,1987,71(5),587
    [106] 田世澄,陈建渝,张树林.论成藏动力学系统[J].勘探家,1996,1(2):20-24.
    [107] 田世澄,陈建渝,张树林.论成藏动力学系统的划分与类型[A].中国含油气系统的应用与进展[C].北京:石油工业出版社,1997.33-41.
    [108] 田世澄,孙自明,傅金华,等.论成藏动力学与成藏动力系统.2007,28(2):129-138.
    [109] 张树林,田世澄,陈建渝.断裂构造与成藏动力系统[J].石油与天然气地质,1997,18(4):261-266.
    [110] 张树林,田世澄,陈建渝.陆相断陷盆地的成藏动力系统[A].成油体系与成藏动力学论文集[C].北京:地震出版社,1999,36-42.
    [111] 吴冲龙、王夔培、何光玉.论油气系统与油气系统动力学[J].地球科学-中国地质大学学报,2000,12(3):605-609
    [112] 郝芳,董伟良.沉积盆地超压系统演化、流体流动与成藏机理.地球科学进展,2001;16(1):79-81
    [113] 张厚福.石油地质学新进展[M].北京:石油工业出版社,1998.
    [114] 张厚福,方朝亮.盆地油气成藏动力学初探-21 世纪油气地质勘探新理论探索[J].石油学报,2002.23(4):7-12
    [115] 常象春,张金亮.油气成藏动力学:涵义、方法与展望[J].海洋地质动态,2003,19(2):18-25
    [116] 田世澄,陈永进,张兴国.论成藏动力系统中的流体动力学机制[J].地学前缘,2001,8(4):329-336.
    [117] 褚庆忠、张树林.含油气盆地成藏动力学研究综述[J].世界地质2002,21(1):24-29
    [118] 谢泰俊,潘祖荫,杨学昌.油气运移动力及通道体系,见:龚再升,李思田.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社,1997.
    [119] 张照录,王华,杨红.含油气盆地的输导体系研究.石油与天然气地质,2000,21(2).
    [120] 张卫海,查明,曲江秀.油气输导体系的类型及配置关系.新疆石油地质,2003,24(2):
    [121] Yielding, G., Freeman B., and Needham D. T. Quantitative fault seal prediction. AAPG Bulletin, 1997; 81:897-917
    [122] 刘泽容,信荃麟,邓俊国,等.断块群油气藏形成机制和构造模式[M].北京:石油工业出版社,1998:35-88
    [123] Knott S. D. Fault seal analysis in the North Sea. AAPG Bulletin, 1993; 77: 778-792
    [124] Bouvier J D , Kaars-Sijpesteijn C H , Kluesner D F, et al. There-dimensional seismic interpretation and fault sealing investigations, Nun River field, Nigeria . AAPG Bulletin, 1989; 73: 1397-1414
    [125] 付广,曹成润,陈章明.泥岩涂抹系数及其在断层侧向封闭性研究中的应用.石油勘探与开发,1996,23(6):38-39
    [126] Gibson R. G Fault-zone seals in siliciclastic strata of the Columbus Basin, Offshore Trinidad. AAPG Bulletin, 1994; 78: 1372-1385
    [127] Lindsay N. G., Murphy F. C, Walsh J. J., et al. Outcrop studies of shale smears on fault surfaces. Special Publication of the International Association of Sedimentologists, 1993; 15: 113-123
    [128] Davies R K , An L , Jones P, et al. Fault-seal analysis South Marsh Island 36 field, Gulf of Mexico. AAPG Bulletin, 2003; 87: 484-485
    [129] 胡望水,吕炳全,郭齐军,等.大港油田大张坨断层三维封闭特征.石油勘探与开发,2002:29(5):31-32
    [130] Doughty P. T. Clay smear seals and fault sealing potential of an exhumed growth fault, Rio Grande rift, New Mexico. AAPG Bulletin, 2003; 87:434-438
    [131] 林会喜.沾化凹陷区中生界构造-沉积演化与油气成藏特征[博士学位论文],中国地质大学,北京:2006
    [132] 王秉海,钱凯.胜利油区地质研究与勘探实践.东营:石油大学出版社,1992.
    [133] 吴冲龙,毛小平,王燮培.三维油气成藏动力学建模与软件开发[J].石油实验地质,2001,23(3):301-311.
    [134] 陈海云,于建国,舒良树,侯方英,吴龙丽.高校地质学报,2005,11(4):622-632.
    [135] 徐守余,严科.渤海湾盆地构造体系与油气分布.地质力学学报,2005,11(3):259-265.
    [136] 翟光明,何文渊.渤海湾盆地勘探策略探讨.石油勘探与开发,2003,30(6):1-4.
    [137] 朱伟林,王国纯.渤海浅层油气成藏条件分析.中国海上油气(地质),2000,14(6):367-374.
    [138] 田波,孙自明.垦西地区油气成藏模式.油气地质与采收率,2001,8(2):29-32.
    [139] 杨晓敏,孙自明,毕秋军.济阳坳陷垦西地区油气藏成藏模式.断块油气田,2002,9(2):14-19.
    [140] 伍涛,陈建渝,田世澄.济阳坳陷孤南洼陷油气成藏系统.石油与天然气地质,1999,20(4):326-329.
    [141] 张义纲.天然气的生成聚集和保存[M].南京:河海大学出版社,1991:140-155
    [142] 谯汉生,王明明.渤海湾盆地隐蔽油气藏.地学前缘,2000,7(4):497-506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700