用户名: 密码: 验证码:
有机/无机复合微纳米结构功能材料的构筑与介电及光电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有良好独特的综合性能,近几年有机/无机复合纳米材料受到了广泛的关注,在催化、传感器、光电器件、纳米生物技术、气体选择透过膜以及能量存储和转换等方面都有着很重要的科学和工业应用价值,目前人们对开发其新的纳米结构作了很多工作。一般来讲,复合材料由两种原料混合形成(有机、无机或金属)。我们期待有机无机原料的结合能够提供显著的互补的而且无法用单一一种材料得到的性能。有机/无机复合纳米材料中两种组分是在纳米尺度混合的,这使其具有独特的相间形态和改良的界面性能,因此与普通的宏观混合的复合物相比它展现出更加良好的表现。纳米材料间的有效复合不仅可以实现材料间功能性的集成,而且有可能产生出复合前纳米材料本身所不具备的特殊性质。我们知道大多数无机纳米粒子或纤维机械性能较差,难以进行加工。而通用的聚合物纳米纤维虽然具有优良的柔性加工性质,但是又缺少功能性。因此将二者结合能很好的实现聚合物与功能纳米材料间性质的融合。另外,将性质上具有关联的两种纳米材料复合在一起,由于电子转移等作用,两种材料相互影响,也可能产生出具有更加优异性质的材料来。
     本论文主要利用静电纺丝、极化涂膜、溶胶和旋涂技术,构筑了有机/无机复合微纳米结构功能材料。主要包括四个方面的工作:第一,利用静电纺丝技术和极化涂膜技术,分别制备了聚合物与二茂铁复合纳米纤维和复合膜,并研究了它们的介电性质。第二,结合静电纺丝技术与溶胶技术,制备聚合物与四氧化三铁磁性无机纳米粒子复合纳米纤维,并研究其磁性和介电性质。第三,利用静电纺丝技术制备聚合物与硫化镉复合微纳米结构材料和聚合物与碳纳米管复合膜,并研究了它们的介电性质。第四,结合溶胶和旋涂技术,制备聚合物与无机半导体纳米材料复合膜,考察了它们的荧光性质及光电转换性质,并对它们在太阳能电池方面的应用进行了研究。
Over the past decade, organic and inorganic hybrid nanocomposites have gained interest rapidly due to their favorable and often unique combination of properties. Considerable efforts have recently been directed toward the exploitation of new nanostructured hybrid organic-inorganic composites for their scientific interest and their industrial applications. That is because of their utility and potential as catalysts, sensors, optical and electronic applications, gas selective membranes, energy storage and transform, etc. In general, composite materials are formed when at least two different types of materials (organic, inorganic, or metallic) are mixed. The combination of organic and inorganic materials is expected to provide remarkable and complementary properties, which cannot be obtained with a single material. Organic/inorganic nanocomposites, in which two components were mixed at the nanometer level, usually exhibited improved performance properties compared to conventional composites, in which two components were mixed on a macroscopic scale (> micrometers), owing to their unique phase morphology and improved interfacial properties. Composite nanomaterials composed of different materials can combine the properties of these materials and even produce novel unique properties. It is well known that most of inorganic nanoparticles are difficult to process for their poor mechanical performance. However, most of the common polymers are processable but are rare in functionability. Therefore, the combination of polymers and functional nanoparticles can combine their properties. On the other hand, combination of two different materials with correlative properties may produce more excellent properties.
     In this thesis, we use electrospinning, polarization coating, spin-coating and sol techniques to fabricate organic and inorganic hybrid micro-nanostructure functional materials, and investigate their dielectric and photoelectric properties.
     In the first section, we have successfully prepared PVP/ferrocene hybrid nanofibers and membranes via electrospinning and polarization coating techniques, and the dielectric properties of the hybrid materials have been studied in detail. We used 100 kHz and 1 MHz two frequencies to investigate the dielectric constants of composite nanofibers and polarization coating membranes. The results showed that the dielectric constants of nanofiber membranes are from 1.41 to 1.54, which are less than the coating membranes after polarization.The dielectric constants of coating membranes are from 11.51 to 22.60. The dielectric constants under 1 MHz frequency are lower than those under the 100 kHz frequency. Based on this method, we have successfully prepared PMMA/ferrocene composite fibers via electrospinning. The PMMA/ferrocene fibers are smooth and continuous, which are ranged in diameter from 800 nm to 3μm. The properties of PMMA and ferrocene are combined perfectly. We demonstrate that our method is effective in producing ultra-low dielectric constant composite materials. The dielectric constants of PMMA/ferrocene composite fiber membranes are decreasing with the increasing of ferrocene content. And enforcing the fiber prepared voltage can make the dielectric constant increased. The dielectric constants of the prepared PMMA/ferrocene composite fiber membranes are from 1.12 to 1.32.
     In the second section, PVP/Fe3O4 composite nanofibers have been successfully prepared using electrospinning technique. The composite nanofibers have been characterized by means of TEM, XRD and TGA. Transmission electron microscope images of the PVP/Fe3O4 nanofibers showed that the Fe3O4 nanoparticles with diameter about 10.5 nm were dispersed in PVP fiber matrices. And the TGA of PVP/ Fe3O4 nanofibers show that the content of Fe3O4 nanoparticles in the composite was about 36.8% (mass fraction). The PVP/Fe3O4 nanofibers were found to be superparamagnetic. The hysteresis loop at room temperature showed high saturated magnetization (Ms =15.1 emug-1) and a low coercive force (μc=0). We investigated their dielectric constants from 100 Hz to 1 MHz frequency; the dielectric contant is 1.8 under 1 MHz frequency. Based on this method, we successfully prepared ultra-low dielectric constant PMMA/Fe3O4 composite fiber membrances. The morphology of the fibers is smooth and uniform. We obtained PMMA/ Fe3O4 composite fibers with different Fe3O4 content. When Fe3O4 content is 30%, the dielectric constant of composite fibers is 1.22 under 1 MHz frequency after drying treatment.
     In the third section, we successfully fabricated PVP/CdS composite micro-nano structure materials, studied their causes and dielectric properties, The CdS nanorods were dispersed into PVP solution to prepare the electrospun PVP/CdS fibers. It has been shown that the morphologies of the PVP/CdS fibers were strongly affected by the CdS amount and the PVP concentrations. At a lower CdS: PVP weight ratio of 1:1000, HHS was formed because of a kind of nano-effect. With the increase of CdS: PVP weight ratio, the CdS nanorods aggregated and the nano-effect disappeared so that fibers and ribbons were obtained. Holding the CdS: PVP constant, the morphology’s change from HHS to bead-free fibers with the increase of the PVP concentrations is attributed to the effect of the viscosity and the surface tension of the solution. The dielectric constants of the prepared PVP/CdS composite structure are from 1.51 to 1.55 under the frequency from 100 Hz to 1 MHz. And then, we prepared PMMA/CNT composite fiber membrances with ultra-low dielectric constant, and PMMA/CNT coating membrances with higher dielectric constant.
     In the last section, hybrid solar cells based on blends of a conjugated polymer regioregular poly (3-hexylthiophene) (P3HT) as electron donor and crystalline SnO2 nanoparticles as electron acceptor have been studied. Composite SnO2:P3HT films were cast from a common solvent mixture. The photoluminescence property has been studied as a function of the SnO2 content. When the SnO2 content is 20%, the device exhibits an open-circuit voltage Voc of 0.37 V, max power Pmax =0.2μWcm-2, and a fill factor of 0.27. Then we prepared P3HT and porous TiO2 hybrid solar cell. Annealing the blend films is found to greatly improve the polymer–metal oxide interaction at the P3HT/TiO2 interface, resulting in increase of the charge separation yield and improving photovoltaic device performance under 1 sun AM 1.5 illumination. After annealing the device exhibits a photocurrent Jsc of 9.72μAcm-2, open-circuit voltage Voc=0.42 V. The hybrid solar cells based on nanocrystalline ZnO nanorods and P3HT are processed from solution and characterized as a function of ZnO concentration. When ZnO concentration is 16 mg/mL, the device exhibits a photocurrent Jsc of 1.9 mAcm-2 and open-circuit voltage Voc of 0.38 V, resulting in a power conversion efficiency of only 0.2%.
引文
[1] VOGEL R, HOYER P, WELLER H, Quantum-Sized PbS, CdS and Ag2S Particles as Sensitizers for Various Nanoporous Wide- Bandgap Semiconductors [J]. J. Phys. Chem. 1994, 98: 3183-3188.
    [2] O'NEIL M, MAROHN J, MCLENDON G, Dynamics of electron-hole pair recombination in semiconductor clusters (2) [J]. J. Phys.Chem., 1990, 94: 4356.
    [3] LEGGETT A J, CHAKRAVARTY S, DORSEY A T, et al. Dynamics of the dissipative two-state system [J]. Rev. Mod. Phy., 1987, 59(1):1-85.
    [4] AWSCHALOM D D, MCCORD M A, GRINSTEIN G, Observation of macroscopic spin phenomena in nanometerscale magnets [J]. Phys Rev Lett, 1990, 65(6):783-786.
    [5] EYCHMIILER A, Structure and photophysics of semiconductor nanocrystals [J]. J. Phys. Chem. B, 2000, 104: 6514.
    [6] TALAPIN D V, ROGCH A L, KORNOWSKI A, HAASE M, WELLER H, Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine– Trioctylphosphine Oxide– Trioctylphospine Mixture [J]. Nano. Lett., 2001, 1: 207.
    [7] KLEIN D L, MCEUEN P L, BOWEN-KATARI J E, ROTH R, ALIVIDSTOS A P, An approach to electrical studies of single nanocrystals [J]. Appl. Phys. Lett., 1996, 68: 2574?2576.
    [8] EROKIN V, Observation of Room Temperature Mono-Electron Phenomena on Nanomete-Sized CdS Particles [J]. J. Phys. D: Appl. Phys, 1995, 28: 2534.
    [9] RUIZ-H E, ARAND P, CASAL B, Nanocomposite materials with controlled ion mobilityk [J]. Adv. Mater., 1995, 7: 180.
    [10]吴培熙,张留城,聚合物共混改性[M].中国轻工业出版社,1996, 1.
    [11]宋焕成,赵时熙,聚合物基复合材料[M].国防工业出版社,1986, 200.
    [12] COLVERT P, Rough grade to the nanoworld [J]. Nature, 1996, 383(26): 300.
    [13] ENZEL P, BEIN T, Inclusion of Polyaniline Filaments in Zeolite Molecular Sieves [J]. J. Phys. Chem., 1989, 93: 6270.
    [14]王铀,沈静,制备聚合物纳米复合材料展望[J].化工新型材料,1998, 1: 8.
    [15] NOVAK B M, Hybrid Nanocomposite Materials - between inorganic glasses and organic polymers [J]. Adv. Mater., 1993, 5 (6): 422.
    [16] SANCHEZ C, PBOT F, New Type Organic-Inorganic Materials [J]. J, Chem., 1994, 18: 1007-1047.
    [17] SCHUBERT U, HOSING N, Lorenz A, Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides [J]. Chem. Mater., 1995, 7: 2010- 2027.
    [18]符连社,张洪杰,邵华,孟庆国,倪嘉缵,溶胶-凝胶法制备无机/有机杂化材料研究进展[J].材料科学与工程,1999, 17 (1): 84-88.
    [19] PARK S H, XIA Y, Fabrication of Three-Dimensional Macroporous Membranes with Assemblies of Microspheres as Templates [J]. Chem. Mater., 1998, 10: 1745.
    [20]白杰,有机/无机复合纳米材料的制备及其在有机反应中的应用[D].长春:吉林大学化学学院,2008.
    [21]宋金玲,两亲分子辅助下无机、有机/无机复合纳米材料的复合与表征[D].长春:东北师范大学,2008.
    [22] BARBENI M, PELIZZETTI E, BORGARELLO E, et al., Hydrogen from hydrogen sulfide cleavage Improved efficiencies via modification of semiconductor particulates [J]. International Journal of Hydrogen Energy, 1985, 10(4): 249-253.
    [23]张池明,超微粒子的化学特性[J].化学通报, 1993, (8): 20-22.
    [24] BARD A. J. [J]. Ber. Bunsen-Ges.Phy Chem, 1988, 92:1194.
    [25] Q'Regan B, GR?TZEL M, A Low-cost High-efficiency Solar Cell Based on dye-sensitized Colloidal TiO2 Films [J]. Nature, 1991, 353:737-740.
    [26]HAGFFELDT A., GR?TZEL M., Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev., 1995, 95: 49.
    [27]江龙,量子化尺寸纳米颗粒及其在生物体系中的作用[J].无机化学报, 2000, 16:185 194.
    [28] RICHARD L, Controlling life's gateway; opening and closing cell membranes on demand [J]. Science News, 1994, 9: 24.
    [29] KENNEDY D, Breakthrough of the Year [J]. Science, 2001, 294: 2429.
    [30] APPELL D, Nanotechnology: wired for success [J]. Nature, 2002, 419: 553.
    [31] Li D, Xia Y N, Electrospinning of nanofibers: Reinventing the wheel? [J]. Adv. Mater.2004, 16: 1151.
    [32] HUANG Z M, ZHANG Y -Z, KOTAKI M, RAMAKRISHNA S, A review onpolymer nanofibers by electrospinning and their applications in nanocomposites [J]. Composites Science and Technology, 2003, 63: 2223–2253.
    [33] RENEKER D H, CHUN I, Nanometre diameter fibres of polymer, produced by electrospinning [J]. Nanotechnology, 1996, 7: 216.
    [34] YANG Q B, LI D M, HONG Y L, LI Z Y., WANG C, QIU S L, WEI Y, Preparation and Characterizaton of a PAN Nanofibre Containing Ag Nanoparticles via Electrospinning [J]. Synth. Met., 2003, 137: 973.
    [35] LI Z Y, HUANG H M, SHANG T C, YANG F, ZHENG W, WANG C, MANOHAR S K, Facile synthesis of single-crystal and controllable sized silver nanoparticles on the surfaces of polyacrylonitrile nanofibres, [J]. Nanotechology, 2006, 17: 917.
    [36] HONG K H, Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings [J]. Polym. Eng. Sci. 2007.
    [37] HONG K H , PARK J L, SUL I H, YOUK J H, KANG T J, Preparation of Antimicrobial Poly(vinyl alcohol) Nanofibers Containing Silver Nanoparticles [J]. J. Polym. Sci. Part B: Polym. Phys., 2006, 44: 2468.
    [38] SON W K, YOUK J H, PARK W H, Antimicrobial cellulose acetate nanofibers containing silver nanoparticles [J]. Carbohyd. Polym., 2006, 65: 430.
    [39] WANK Y Z, Li Y X, YANG S T, ZHANG G L, AN D M, WANG C, A convenient route to polyvinyl pyrrolidone/silver nanocomposite by electrospinning [J]. Nanotechnology 2006, 17: 3304.
    [40] XU X Y, YANG Q B, WANG Y Z, et al., Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles [J]. Eur. Polym. J. 2006, 42, 2081.
    [41] SHANG T. C., YANG F., ZHENG W., WANG C., Fabrication of Electrically Bistable Nanofibers [J]. Small, 2006, 2: 1007.
    [42] KIM G M, WUTZLER A, RADUSH H J, MICHLER G H, SIMON P, SPERLING R A, PARAK W J, One-Dimensional Arrangement of Gold Nanoparticles by Electrospinning [J]. Chem. Mater., 2005, 17: 4949.
    [43] BAI J, LI Y X, YANG S T, DU J S, WANG S G, ZHENG J F, WANG Y Z, et al., A simple and effective route for the preparation of poly(vinylalcohol) (PVA) nanofibers containing gold nanoparticles by electrospinning method [J]. Solid State Commun. 2007, 141: 292.
    [44] DEMIR M M, GULGUN M A, MENCELOGLU Y Z, ERMAN B, et al., Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid)?PdCl2 Solutions Relations between Preparation Conditions, Particle Size, and Catalytic Activity [J]. Macromolecules, 2004, 37: 1787.
    [45] PINTO N J, CARRION P, QUINONES J X, Electroless deposition of nickel on electrospun fibers of 2-acrylamido-2-methyl-1-propanesulfonic acid doped polyaniline [J]. Mater. Sci. Eng. A, 2004, 366: 1.
    [46] BOGNITZKI M, BECKER M, GRAESER M, MASSA W, WENDORFF J H, SCHAPER A, WEBER D, et al, Preparation of Sub-micrometer Copper Fibers via Electrospinning [J]. Adv. Mater., 2006, 18: 2384.
    [47] LI Z Y, HUANG H M, WANG C, Electrostatic Forces Induce Poly(vinyl alcohol)-Protected Copper Nanoparticles to Form Copper/Poly(vinyl alcohol) Nanocables via Electrospinning [J]. Macromol.Rapid Commun., 2006, 27: 152.
    [48] LU X F, ZHAO Q D, LIU X C, WANG D J, ZHANG W J, WANG C, WEI Y, Preparation and Characterization of Polypyrrole/TiO2 Coaxial Nanocables [J]. Macromol.Rapid Commun., 2006, 27: 430.
    [49] LU X F, ZHAO Y Y, WANG C, Fabrication of PbS Nanoparticles in Polymer-Fiber Matrices by Electrospinning [J]. Adv. Mater., 2005, 17: 2485.
    [50] LU X F, ZHAO Y Y, WANG C, WEI Y, Fabrication of CdS Nanorods in PVP Fiber Matrices by Electrospinning [J]. Macromol. Rapid, Commun, 2005, 26: 1325.
    [51] WANG H Y, LU X F, ZHAO Y Y, WANG C, Preparation and characterization of ZnS:Cu/PVA composite nanofibers via electrospinning [J]. Mater. Lett., 2006, 60: 2480.
    [52]王海鹰,杨洋,卢晓峰,王策,硫化锌掺锰/聚乙烯醇复合纳米纤维的制备与表征[J]高等化学学报, 2006, 27 (9): 1785-1787.
    [53] LU X F, LIU X C, WANG L F, ZHANG W J, WANG C, Fabrication of luminescent hybrid fibres based on the encapsulation of polyoxometalate into polymer matrices [J]. Nanotechnology, 2006, 17: 3048.
    [54] YE H H, TITCHENAL N, GOGOTSI Y, KO F, SiC Nanowires Synthesized from Electrospun Nanofiber Templates [J]. Adv. Mater., 2005, 17: 1534.
    [55] KO F, GOGOTSI Y, AH A, et al., Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns [J]. Adv. Mater., 2003, 15(14): 1161.
    [56] KO F, LAM H, TITCHENAL N, YE H H, GOGOTSI Y, Coelectrospinning ofcarbon nanotube reinforced nanocomposite fibrils [C]. 226th National Meeting of the American-Chemical-Society, 2006, 918: 231-245.
    [57] YE H H, LAM H, TITCHENAL N, et al. Reinforcement and rupture behavior of carbon nanotubes–polymer nanofibers [J]. Appl. Phys. Lett. 2004, 85 (10): 1775.
    [58] DROR Y, SALALHA W, KHALFIN R L, et al., Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning [J]. Langmuir 2003, 19(17): 7012.
    [59] SALALHA W, DROR Y, KHALFIN R L, COHEN Y, YARI N, ZUSSMAN A L E, Single-Walled Carbon Nanotubes Embedded in Oriented Polymeric Nanofibers by Electrospinning [J]. Langmuir, 2004, 20: 9852.
    [60] HOU H, RENEKER D H, Carbon Nanotubes on Carbon Nanofibers: A Novel Structure Based on Electrospun Polymer Nanofibers [J]. Adv. Mater., 2004, 16(1): 69.
    [61]樊勇,叶珣,吕文中,聚合物基高介电常数复合材料的研究进展[J].材料导报网刊,2006, 5: 5-7.
    [62]赵文元,赵文明,王亦军,聚合物材料的电学性能及其应用[M].北京:化学工业出版社,2006.
    [63]陈平,新型高介电常数材料Ba<,1-x>Sr<,x>TiO<,3>薄膜特性的研究[D] ,广州,华南理工大学,2003.
    [64]孟中岩,姚熹等,电介质理论基础[M].西安交通大学1980.
    [65] HILTON A D, RICHETTS B W, Dielectric properties of BaSrTiO ceramics [J]. J Phys, 1996, 29 (3): 1 321.
    [66] ALERS G B, Intermixing at the tantalum oxide/silicon interface in gate dielectric structure [J]. Apl Phys Lett, 1998, 73 (11): 1517.
    [67] CAMPBELL S A, GILMER D C, WANG X, et al., MOSFET transistors fabricated with high permittivity TiO2 dielectric. IEEE Trans Electron Devices, 1997, 44 (1): 104.
    [68]邵天奇,任天令,李春晓,朱钧,高介电常数材料在半导体存储器件中的应用[J].固体电子学研究与进展,2002,22:312-317.
    [69] PAIK K W, CHO S D, HYUN J G, LEE S, KIM H, KIM J, Epoxy/ BaTiO3(SrTiO3) composite films for high dielectric constant and low tolerance embedded capacitors fabrication in organic substrates [C]. 10th InternationalSymposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005, 227-232.
    [70] HYUN J G, LEE S, CHO S D, PAIK K W, Frequency and temperature dependence of dielectric constant-of epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate [C]. 55th Electronic Components & Technology Conference, 2005, 1:1241-1247.
    [71] SHEN Y, NAN C W, LI M, Anisotropic electrical properties of semiconductive Bi2S3 nanorod filled ferroelectric polyvinylidene fluoride [J]. Chem Phys Lett, 2004, 396:420.
    [72] LU J X, MOON K S, XU J W, et al., Dielectric loss control of high-k polymer composites by coulomb blockade effects of metal nanoparticles for embedded capacitor applications [C]. 10th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005, 237-242.
    [73] XU J W, MOON K S, et al. A novel aluminum-filled composite dielectric for embedded passive applications [C]. IEEE Transactions on Advanced Packaging, 2006, 29: 295.
    [74]黄烧,刘之景,新型低介电常数材料研究进展,纳米材料与结构,2003, 9,11一18.
    [75]王献彪, POSS基低介电多孔材料的制备及表征[D].安徽:安徽大学,2004.
    [76] PETER S, Low-k dielectrics: The search continues [J]. Semiconductor International 1996, 5: 88-96.
    [77] IDA J, OBTOMO A, YOSHIMARU M, Influence of low dielectric SiOF film on metal oxide semiconductor field effect transistor characteristics and its impact on circuit performance [J]. Jpn. J. Appl. Phys. (1), 1998, 37(11): 5843-5848.
    [78] YU B G, KIM K H, SUB K S, Characteristics of SiOF films formed by remote plasma enhanced chemical vapor deposition with SF6 gas [J]. Jpn. J. Appl. Phys. (2), 1996, 35(613): L745-L747.
    [79] CHEN L L, CHENG S H, YU X, Effects of deposition temperature on the properties of fluorinated amorphous carbon films [J]. Plasma. Sci. Technol, 2003, 5(5): 1977-1982.
    [80] YUN S M, CHANG H Y, KANG M S, CHOI C K, Low dielectric constant CF/SiOF composite film deposition in a helicon plasma reactor [J]. Thin Solid Films, 1999, 341(1-2): 109-111.
    [81] SUK O K, SUNG K M, MAN L K, SOO K D, KYU C C, MIN Y S, YOUNG C H, SUK O K, KANG M S, LEE K M, Formation and charaterization of the fluorocarbonated-SiO2 by O2/FTES helicon plasma chemical vapor deposition [J]. Thin Solid Films, 2002, 345(1): 45-49.
    [82] LEE P, MIZUNO S, VERMA A, TRAN H, NGUYEN B, Dielectric constant and stability of fluorine doped PECVD silicon oxide thin films [J]. Thin Solid Films, 2000, 283(1): 30-36.
    [83] AONO M, NITTA S, High resistivity and low dielectric constant amorphous carbon nitride films: application to low-k materials for ULSI [J]. Diamond and Related Materials, 2001, 10:1375-1379.
    [84] SUGINO T, TAI T, ETOU Y, Synthesis of boron nitride film with low dielectric constant for its application to silicon ultralarge scale integrated semiconductor [J]. Diamond and Related Materials, 2002, 11:1219-1222.
    [85] FAN H Y, BENTLEY H R, KATHAN K R, CLEM P, LU Y F, BRINKER C J, Self-assembled aerogel-like low dielectric constant films [J]. J Non-Cryst Solids, 2001, 285:79-83.
    [86] SHU Y, PETER A M, PAI C S, et al. Nanoporous Ultralow dielectric constant organosilicates template by triblock copolymers [J]. Chem Mater, 2002, 14:369-374.
    [87] JUNG S B, PARK H H, Control of surface residual-OH polar bonds in SiO2 aerogel film by silylation [J]. Thin Solid Films, 2002, 420-421:503-507.
    [88] TSAI M H, WHANG W T, Low dielectric polyimide/poly(silsesquioxane)-like nanocomposite material [J]. Polymer, 2001, 42:4197-4207.
    [89] WAHAB M A, et al., Microstructure and properties of polyimide/poly (vinylsisesquioxane) hybrid composite films [J]. Polymer, 2003, 44:4705-4713.
    [90] ZHANG Y H, et al. Dielectric and dynamic mechanical properties of polymide-clay nanocomposite film [J]. Chemical Physcis Letters, 2005, 401:553-557.
    [91] CHEN Y M, KANG E T, New approach to nanocomposites of polyimides containing polyhedral oligomeric silsesquioxane for dielectric application [J]. Materials letters, 2004, 58: 3716-3719.
    [92] LIU J Y, MIN Y, CHEN J Y, ZHOU H W, WANG C, Preparation of the Ultra-Low Dielectric Constant Polyimide Fiber Membranes Enabled by Electrospinning [J]. Macromol. Rapid Commun., 2007, 28: 215–219.
    [93] GR?ZEL M, Photoelectrochemical cells [J]. Nature, 2001, 414: 338.
    [94] HAGFELDT A, GR?TZEL M, Molecular Photovoltaics [J]. Acc. Chem. Res., 2000, 33: 269.
    [95] GR?TZEL M, Perspectives for dye-sensitized nanocrystalline solar cells [J]. PROGRESS IN PHOTOVOLTAICS, 2000, 8: 171-185.
    [96] WANG P, ZAKEERUDDIN S M, EXNAR I, GR?TZEL M, High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte [J]. Chem. Commun., 2002, 2972.
    [97] YANAGIDA M, YAMAGUCHI T, KURASHIGE M, HARA K, KATOH R, Panchromatic Sensitization of Nanocrystalline TiO2 with cis-Bis(4-carboxy-2-[2‘-(4‘-carboxypyridyl)]quinoline)bis(thiocyanato N)ruthenium(II) [J]. Inorg. Chem., 2003, 42: 7921.
    [98] ZABRI H, GILLAIZEAU I, BIGNOZZIC A, CARAMORI S, CHARLOT M F, CANO-BOQUERA J, ODOBEL F, Synthesis and Comprehensive Characterizations of New cis-RuL2X2 (X = Cl, CN, and NCS) Sensitizers for Nanocrystalline TiO2 Solar Cell Using Bis-Phosphonated Bipyridine Ligands (L) [J]. Inorg. Chem., 2003, 42: 6655.
    [99] WANG P, KLEIN C, HUMPHRY-BAKER R, Zakeeruddin S M, GR?TZEL M, A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc., 2005, 127: 808.
    [100] KLEIN C, NAZEERUDDIN MD K, LISKA P, CENSO D DI, HIRATA N, PALO-MARES E, DURRANT J R, GR?TZEL M, Engineering of a Novel Ruthenium Sensitizer and Its Application in Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity [J]. Inorg. Chem., 2005, 44: 178.
    [101] ZABAN A, MEIER A, GREGG B A, Electric Potential Distribution and Short-Range Screening in Nanoporous TiO2 Electrodes [J]. J. Phys. Chem. 1997, 101: 7985.
    [102] O’REGAN B , GR?TZEL M, A Low - cost , High - efficiency Solar Cell Based On Dye - sensitized Colloidal TiO2 Films [J]. Nature , 1991 ,353 (6346): 737.
    [103] FALARAS P, GR?TZEL M, Nazeeruddin M 1Dye Sensitization of TiO2 Surfaces Studied by Raman Spectroscopy [J]. Journal of the Electrochemical Society, 1993, 140 (6): 92.
    [104]姜月顺,李铁津等,光化学[M].北京:化学工业出版社,2005.
    [105] WENHAM S R, GREEN M, A WATT M E. Applied Photovotaics [M]. Bridge Printery, 1994.
    [106] SHAH A, TORRES P, TSCHARNER R, WYRSCH N, KEPPNER H, Photovoltaic technology: The case for thin-film solar cells [J]. Photovoltaic Technology: The Case for Thin-Film Solar Cells Science, 1999, 285:692.
    [107] WANG P, ZAKEERUDDIN S M, COMTE P, CHARVET R, HUMMPHRY-BAKER R, GR?TZEL M, Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals [J]. J. Phys. Chem. B., 2003, 107: 14336.
    [108] WANG P, KLEIN C, MOSER J-E, et al, Amphiphilic Ruthenium Sensitizer with 4,4‘-Diphosphonic Acid-2,2‘-bipyridine as Anchoring Ligand for Nanocrystalline Dye Sensitized Solar Cells [J]. J. Phys. Chem. B., 2004, 108: 17553.
    [109] GR?TZEL M, Dye-sensitized solar cells [J]. J. Photochem. Photobiol. C., 2003, 4: 145.
    [110] SRIVATSAVOY V J P, MOSER J-E, GR?TZEL M, CHASSOT L, Surface Modification of a Hydrogen-Bonded Pigment: A Fluorescence Spectroscopy Study [J]. Colloid & Interface Science, 1999, 216: 189-192.
    [111] KOCH U, FOJTIK A, WELLER H, HENGLEIN A, Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects [J]. Chem. Phys. Lett., 1985, 122: 507.
    [112] TRIBUTSCH H, GERISCHER H, The use of semiconductor electrodes in the study of photochemical reactions [J]. Ber. Bunsenges. Phys. Chem., 1969, 73: 850-854.
    [113] GUPTA T K, Application of Zinc Oxide Varistors [J]. J. Am. Ceram. Soc., 1990, 73: 1817.
    [114] RALPH E L, Solar cell development survey, Intersociety energy conversion engineering conference, 1968, 2: 116-121.
    [115] SZLUFCIK J, NIJS J, MERTENS R, VAN OVERSTRAETEN R, High efficiency crystalline silicon solar cells for industrial application [J]. Semiconductor Devices, 1996, 2733: 556-562.
    [116] HARTITI B, SLAOUI A, MULLER J C, et al. Multicrystalline silicon solar cells processed by rapid thermal processing [C]. 23rd IEEE Photovoltaic Specialists Conference, 1993, 224-229.
    [117]吴建荣,杜丕一,韩高荣等,非晶硅太阳能电池研究现状[J].材料导报, 1999, 13(2): 38~39.
    [118]邓志杰,王雁,化合物半导体光伏电池研究进展[J].世界有色金属, 2000, 8: 4-6.
    [119]封伟,王晓工,有机光伏材料与器件研究的新进展[J].化学通报, 2003, 5: 291-300.
    [120] BECHINGER C, GREGG B A, Development of a self-powered electrochromic device for light modulation without external power supply [J]. Solar Energy Materials and Solar Cells, 1998, 54: 405-410.
    [121]吴季怀,郝三存,林建明等,染料敏化TiO2纳米晶太阳能电池研究进展, [J].华侨大学学报, 2003, 24(4): 335-344.
    [122] TENNAKON K, SENDEERA G K R, PERERA V P S, KOTTEGODA I R M, DE SILVA L A A, Dye-Sensitized Photoelectrochemical Cells Based on Porous SnO2/ZnO Composite and TiO2 Films with a Polymer Electrolyte [J]. Chem. Mater. 1999, 11: 2474-2477.
    [123] BOUCLéJ, RAVIRAJAN P, NELSON J, Hybrid polymer–metal oxide thin films for photovoltaic applications [J]. J. Mater. Chem., 2007, 17: 3141–3153.
    [124] HUYNH W U, DITTMER J J, ALIVISATOS A P, Hybrid Nanorod-Polymer Solar Cells [J]. Science, 2002, 295: 2425.
    [125] BEEK W J E, WIENK M M, JANSSEN R A J, Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer [J]. Adv. Mater., 2004, 16: 1009.
    [126] KWONG C Y, DJURI A B, CHUI P C, CHENG K W, CHAN W K, Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells [J]. Chem. Phys. Lett., 2004, 384: 372.
    [127] ZENG T W, LIN Y Y, LO H H, et al., Large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices [J]. Nanotechnology, 2006, 17: 5387.
    [128] GREENE L E, LAW M, YUHAS B D, YANG P D, ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells [J]. J. Phys. Chem. C, 2007, 5: 9.
    [129] MARTIN B, HARALD G, ANDREAS F, et al., Dielectric Study of Molecular Mobility in Poly(propylene-graft-maleic anhydride)/Clay Nanocomposites [J]. Macromolecules 2005, 38: 2764.
    [130] HERVéH, TRUNG L D, PATRICK C, Polymer-Based Nanoparticles for the Delivery of Nucleoside Analogues [J]. J. Nanosci. Nanotechnol., 2006, 6: 2608.
    [131] SCHMIDT D, SHAH D, GIANNELIS E P, New advances in polymer/layered silicate nanocomposites [J]. Current Opinion in Solid State & Materials Science, 2002, 6: 205.
    [132] GALIKHANOV M F, EREMEEV D A, DEBERDEEV R Y, Electret effect in compounds of polystyrene with Aerosil [J]. Russian Journal of Applied Chemistry, 2003, 76: 1651.
    [133] GALIKHANOV M F, BORISOVA A N, DEBERDEEV R Y, Changes in electret characteristics of polymeric formulations in their processing into articles [J]. Russian Journal of Applied Chemistry, 2005, 78: 820.
    [134] GIANNELIS E P, Polymer-layered silicate nanocomposites: Synthesis, properties and applications [J]. Appl. Organomet. Chem., 1998, 12: 675.
    [135] INNOCENZI P, BRUSATIN G, Fullerene-Based Organic?Inorganic Nanocomposites and Their Applications [J]. Chem. Mater., 2001, 13: 3126.
    [136] KUMARA M T, MURALIDHARAN S, TRIPP B C, Generation and characterization of inorganic and organic nanotubes on bioengineered flagella of mesophilic bacteria [J]. J. Nanosci. Nanotechnol., 2007, 7: 2260.
    [137] CHANDRASEKHAR V, ATHIMOOLAM A, New Hybrid Inorganic?Organic Polymers as Supports for Heterogeneous Catalysis: A Novel Pd (0) Metalated Cyclophosphazene-Containing Polymer as an Efficient Heterogeneous Catalyst for the Heck Reaction [J]. Org. Lett., 2002, 4: 2113.
    [138] PANUSA A, FLAMINI A, POLI N, Sol?Gel Hybrid Silica Thin Films Doped with 2-(5-Amino-3, 4-dicyano-2H-pyrrol-2-ylidene)-1, 1, 2-tricyanoethanide as Optical Chemical Sensors [J]. Chem. Mater., 1996, 8: 1202.
    [139] KIM H K, KANG S J, et al., Highly Efficient Organic/Inorganic Hybrid Nonnlinear Optic Materials via Sol-Gel Process: Synthesis, Optical Properties, and Photobleaching for Channel Waveguides [J]. Chem. Mater., 1999, 11: 779.
    [140] TAMAKI R, et al., Application of organic-inorganic polymer hybrids as selective gas permeation membranes [J]. J. Mater. Chem., 1999, 9: 1741.
    [141] NOVAK B M, Hybrid Nanocomposite Materials-between inorganic glasses and organic polymers [J]. Adv. Mater., 1993, 5: 422.
    [142] KYUNG M K, DONG K K, YOSHIKI C, Organic-Inorganic Polymer Hybrids Using Polyoxazoline Initiated by Functionalized Silsesquioxane [J]. Macromolecules, 2003, 36: 867.
    [143] KLOPPER W, LüTHI H P, Towards the accurate computation of properties of transition metal compounds: the binding energy of ferrocene [J]. Chem. Phys. Lett., 1996, 262: 546.
    [144] ARMSTRONG A T, et al. Electronic Absorption Spectrum of Ferrocene [J]. J. Chem. Phys., 1967, 46: 4321.
    [145] SOHN Y S, et al., Electronic structure of metallocenes [J]. J. Am. Chem. Soc., 1971, 93: 3603.
    [146] LIPPINCOTT E R, NESLON R D, The Thermodynamic Functions of Bis-cyclopentadienyl Iron, Bis-cyclopentadienylnickel and Bis-cyclopentadienylruthenium [J]. J. Am. Chem. Soc., 1955, 77: 4990.
    [147] FRITZ H.P, Infrared and Raman Spectral Studies ofπComplexes Formed Between Metals and Cn Hn Rings [J]. Adv. Organomet. Chem., 1964, 1: 239.
    [148] MADHUGIRI S, et al., Electrospun MEH-PPV/SBA-15 Composite Nanofibers Using a Dual Syringe Method [J]. J. Am. Chem. Soc., 2003, 125: 14531.
    [149] BOGNITZKI M, et al., Nanostructured Fibers via Electrospinning [J]. Adv. Mater., 2001, 13: 70.
    [150] LI D, XIA Y N, Fabrication of Titania Nanofibers by Electrospinning [J]. Nano Lett., 2003, 3: 555.
    [151] HOU H Q, RENEKER D H, Carbon Nanotubes on Carbon Nanofibers: A Novel Structure Based on Electrospun Polymer Nanofibers [J]. Adv. Mater., 2004, 16: 69 .
    [152]DEMIR M M, Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid)?PdCl2 Solutions Relations between Preparation Conditions, Particle Size, and Catalytic Activity [J]. Macromolecules, 2004, 37: 1787.
    [153] ZONG X H, et al., Structure and Morphology Changes during in Vitro Degradation of Electrospun Poly(glycolide-co-lactide) Nanofiber Membrane [J]. Biomacromolecules, 2003, 4: 416.
    [154] WNEK G E, et al., Electrospinning of Nanofiber Fibrinogen Structures [J]. Nano Lett., 2003, 3: 213.
    [155] WANG X Y, et al., Samuelson, Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors [J]. Nano Lett., 2002, 2: 1273.
    [156] JIANG L, ZHAO Y, ZHAI J, A Lotus-Leaf-like Superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics [J]. Angew. Chem. Int. Edn. Engl., 2004, 43: 4338.
    [157] KUMBAR S G, et al., Polymeric Nanofibers as Novel Carriers for the Delivery of Therapeutic Molecules [J]. J. Nanosci. Nanotechnol., 2006, 6: 2591.
    [158] ASHAMMAKHI N, NDREU A, PIRAS A, et al., Biodegradable Nanomats Produced by Electrospinning:Expanding Multifunctionality and Potential for Tissue Engineering [J]. J. Nanosci. Nanotechnol., 2006, 6: 2693.
    [159] CHEN F C, CHU C W, HE J, et al., Systematic correlation between Raman spectra, photoluminescence intensity, and absorption coefficient of silica layers containing Si nanocrystals [J]. Appl. Phy. Lett., 2004, 85: 1511.
    [160] TUNCER E, RONDINONE A J, WOODWARD J, SAUERS I, JAMES D R, ELLIS A. R., Cobalt iron-oxide nanoparticle modified poly(methylmethacrylate) nanodielectrics, [J]. Appl Phys A, 2009, 94: 843–852.
    [161] ATZKERN H, HUBER B, KOHLER F H, et al., Rigid Bent Bridges between Cyclopentadienylmetal Fragments Iron Derivatives of the 4, 8-Ethano-2,4,6,8-Tetrajudrp-s-Indacene-2,6-Diyldianion [J]. Organometallics, 1991, 10: 238.
    [162] VERWEY E J W, Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures [J]. Nature, 1939, 144: 327.
    [163] COEY J M D, BERKOWITZ A E, BALCELLS L I, et al., Magnetoresistance of magnetite [J]. Appl. Phys. Lett., 1998, 72: 734.
    [164] SOEYA S, HAYAKWA J, TAKAHASHI H, et al., Development of half-metallic ultrathin Fe3O4 films for spin-transport devices [J]. Appl. Phys. Lett., 2002, 80: 823.
    [165] RAJ K, MOSKOWITZ R, Commercial applications of ferrofluids [J]. J. Magn. Magn. Mater., 1990, 85: 233.
    [166] FU L, DRAVID V P, JOHNSON D L, Self-assembled (SA) bilayer molecular coating on magnetic nanoparticles [J]. Appl. Surf. Sci., 2001, 181: 173.
    [167] OSWALD P, CLEMENT O, CHAMBON C, SCHOUMAN-CLAEYS E, FRIJA G, Liver positive enhancement after injection of superparamagnetic nanoparticles: Respective role of circulating and uptaken particles [J]. Magnetic Resonance Imaging, 1997, 15: 1025.
    [168] KIM D K, ZHANG Y, KEHR J, KLASON T, BJELKE B, MUHAMMED M, Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain [J]. J. Magn. Magn. Mater., 2001, 225: 256.
    [169] JORDAN A, SCHOLZ R, WUST P, FAHLING H, FELIX R, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles [J]. J. Magn. Magn. Mater., 1999, 201: 413.
    [170] CARL R F, DUMESIC J A, Strong oxide-oxide interactions in silica-supported magnetite catalysts. 1. X-ray diffraction and Moessbauer spectroscopy evidence for interaction [J]. J. Phys. Chem., 1981, 85:3175-3180.
    [171] LU X F , YU Y H, CHEN L, Aniline dimer–COOH assisted preparation of well-dispersed polyaniline–Fe3O4 nanoparticles [J]. Nanotechnology, 2005, 16:1660-1665.
    [172] RENEKER D H, CHUN I, Nanometre diameter fibres of polymer, produced by electrospinning [J]. Nanotechnology, 1996, 7: 216-223.
    [173] HONG Y L, SHANG T C, JIN Y W, et al., Silica @ polymers coaxial nanofibers [J]. Chem. J. Chinese Universities, 2005, 26(5): 985-987.
    [174] LU X F, ZHAO Y Y, WANG C, et al., Fabrication of PbS Nanoparticles in Polymer-Fiber Matrices by Electrospinning [J]. Adv. Mater., 2005, 17: 2485-2488.
    [175] LU X F, LI L L, ZHANG W J, et al., Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning [J]. Nanotechnology , 2005,16: 2233-2237.
    [176] ZHU Y, ZHANG J C, ZHENG Y M, et al., Conducting PANI/PAN coaxial nanofibers with tuned wettability [J]. Chem. J. Chinese Universities, 2006, 27: 196-198.
    [177] TAN S T, WENDORFF J H, PIETZONKA C, Biocompatible and Biodegradable Polymer Nanofibers Displaying Superparamagnetic Properties [J]. Chem. Phys. Chem., 2005, 6:1461-1465.
    [178] AN L J, LI Z Q, XU W, et al., Preparation and characterization of superparamagnetic polymer microspheres [J]. Chem. J. Chinese Universities, 2005, 26(2): 366-369.
    [179] ZHANG H, WANG C L, LI M J, et al., Fluorescent Nanocrystal?Polymer Composites from Aqueous Nanocrystals: Methods without Ligand Exchange [J]. Chem. Mater., 2005, 17: 4783.
    [180] ZHANG H, et al., Fluorescent Nanocrystal-Polymer Complexes with Flexible Processability [J]. Adv. Mater., 2005, 17: 853.
    [181] CEPAK V M, HUHEEN J C, MARTIN C R, Chemical Strategies for Template Syntheses of Composite Micro- and Nanostructures [J]. Chem. Mater., 1997, 9: 1065.
    [182] CAO H Q, XU Z, et al., Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules [J]. Adv. Mater., 2001, 13: 121.
    [183] LEE K H, KIM H Y, BANG H J, JUNG Y H, LEE S G., The change of bead morphology formed on electrospun polystyrene fibers [J]. Polymer. 2003, 44: 4029.
    [184] XIE J, HSIEH Y L, Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme [J]. J. Mater. Sci., 2003, 38: 2125.
    [185] BAUGHMAN R H, et al., Carbon nanotubes-the route toward applications [J]. Science, 2002, 297:787-792.
    [186] FALVO M R, et al. Bending and buckling of carbon nanotube sunder larges train [J]. Natrue, 1997, 389: 582.
    [187] KWON Y K, TOMANEK D, Orientational melting in carbon nanotube ropes [J]. Phys Rev Lett, 2000, 84: 1483.
    [188] FALVO M R, CLARY G, HELSER A, Nanomanipulation experiments exploring fricational and mechanical properties of carbon nanotubes [J]. Microsc Microanal, 1999, 4:504
    [189] SALVETAT J P, BONARD J M, THOMSON N H, et al., Mechanical properties carbon nanotubes [J]. Appl Phys: A, 1999, 69:255-260.
    [190] DEMCZYK B G, WANG Y M, CUMINGS J, et al. Direct mechanical measurement strength and elastic modulus of multiwalled carbon of the tensile nanotubes [J]. Material Science and Engineering, 2002, 334:173-178.
    [191] WONG E W, SHEEHAN P E, LIEBER C M, Nanobeam: elasticity strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277:1971-1975.
    [192] GüNES S, SARICIFTCI N S, Hybrid Solar Cells [J]. Inorganica Chimica Acta, 2008, 361: 581-588.
    [193] FERRERE S, ZABAN A, GREGG B A, Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives [J]. J Phys. Chem. B, 1997, 101:4490.
    [194] WANG Y, LEE J Y, ZENG H C, Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application [J]. Chem. Mater., 2005, 17:3899.
    [195] WANG Y, ZENG H C, LEE J Y, Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers [J]. Adv. Mater., 2006 18:645.
    [196] STAMPFL S R, CHEN Y, DUMESIC J A, NIU C M, HILL C G, Interactions of molybdenum oxide with various oxide supports: Calcination of mechanical mixtures [J]. J Catal, 1987, 105:445.
    [197] ZHANG Y, KOLMAKOV A, LILACH Y, MOSKOVITS M, Electronic Control of Chemistry and C Catalysis at the Surface of an Individual Tin Oxide Nanowire [J]. J Phys Chem B, 2005, 109:1923.
    [198] NICHOLAS C P, MARKS T J, Sulfated Tin Oxide Nanoparticles as Supports for Molecule-Based Olefin Polymerization Catalysts [J]. Nano Lett, 2004, 4:1557.
    [199] WANG Y L, JIANG X C, XIA Y N, A Solution-Phase, Precursor Route to Polycrystalline SnO2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions [J]. J Am Chem Soc, 2003, 125:16176.
    [200] COMINI E, FAGLIA G, SBERVEGLIERI G, PAN Z W, WANG Z L, Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts [J]. Appl Phys Lett, 2002, 81:1869.
    [201] KOLMAKOV A, ZHANG Y X, CHENG G S, MOSKOVITS M., Detection of CO and O2 Using Tin Oxide Nanowire Sensors [J]. Adv Mater, 2003, 15: 997.
    [202] LAW M, KIND H, MESSER B, KIM F, YANG P D, Photochemical Sensing ofNO2 with SnO2 Nanoribbon Nanosensors at Room Temperature [J]. Angew Chem Int Ed, 2002, 41:2405.
    [203] HUANG J, MATSUNAGA N, SHIMANOE K, YAMAZOE N, KUNITAKE T, Nanotubular SnO2 Templated by Cellulose Fibers:Synthesis and Gas Sensing [J]. Chem Mater, 2005, 17: 3513.
    [204] AKSARI S, FRIEMELT K, GLOCKLER K, LUXSTEINER M C, BUCHER E, DRANSFELD K, Large-scale Electrochemical Synthesis of SnO Nanoparticles [J]. Appl Phys A Mater Sci Process, 1993, 57: 221.
    [205] TATSUYAMA C, ICHIMURA S, Electrical and Optical Properties of GaSe-SnO2 Heterojunctions [J]. Jpn J Appl Phys, 1976, 15: 843.
    [206] CHENG Y, XIONG P, FIELDS L, ZHENG J P, YANG R S, WANG Z L, Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors [J]. Appl Phys Lett, 2006, 89: 093114.
    [207] YANG Y Y, PRADHAN S, CHEN S W, Lateral Quantized Charge Transfer Across Nanoparticle Monolayers at the Air/Water Interface [J]. J Am Chem Soc, 2004, 126:76.
    [208] SIRRINGHAUS H, TESSLER N, FRIEND R H, Integrated Optoelectronic Devices Based on Conjugated Polymers [J]. Science, 1998, 280: 1741.
    [209] BOUCLéJ, CHYLA S, SHAFFER M S P, et al., Hybrid Solar Cells from a Blend of Poly(3-hexylthiophene) and Ligand-Capped TiO2 Nanorods [J]. Adv. Funct. Mater. , 2008, 18: 622–633.
    [210] GREENHAM N C, PENG X, ALIVISATOS A P, Charrge Separation and Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity [J]. Phys. Rev. B, 1996, 54: 17628.
    [211] RAVIRAJAN P, BRADLEY D D C, NELSON J, et al., Efficient Charge Collection in Hybrid Polymer/TiO2 Solar Cells Using Poly (ethylenedioxythiophene)/Polystyrene Sulphonate as Hole Collector [J]. Appl. Phys. Lett., 2005, 86: 143101.
    [212] WANG H, OEY C C, DJURISI? A B, et al., Titania bicontinuous network structures for solar cell applications [J]. Appl. Phys. Lett., 2005, 87: 023507.
    [213] SLOOFF L H, KROON J M, LOOS J, et al., Influence of the Relative Humidity on the Performance of Polymer/TiO2 Photovoltaic Cells Adv. Funct. Mater.,2005, 15: 689.
    [214] HUYNH W U, DITTMER J J, ALIVISATOS A P, Hybrid Nanorod-Polymer Solar Cells [J]. Science 2002, 295: 2425.
    [215] RAVIRAJAN R, PEIRO A M, NAZEERUDDIN M K, et al., Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer [J]. J. Phys. Chem. B 2006, 110: 7635.
    [216] SUN B, SNAITH H J, DHOOT A S, et al., Vertically segregated hybrid blends for photovoltaic devices with improved efficiency, J. Appl. Phys., 2005, 97: 014914.
    [217] SALAFSKY J S, LUBBERHUIZEN W H, SCHROPP R E I, Photoinduced charge separation and recombination in a conjugated polymer-semiconductor nanocrystal composite [J]. Chem. Phys. Lett., 1998, 290: 297.
    [218] QIAO Q, et al., Characteristics of water-soluble polythiophene: TiO2 composite and its application in photovoltaics [J]. J. Appl. Phys., 2005, 98: 094906.
    [219] PETRELLA A, TAMBORRA M, COZZOLI P D, et al., TiO2 nanocrystals– MEH-PPV composite thin films as photoactive material [J]. Thin Solid Films, 2004, 451–452, 64.
    [220] KWONG C Y, DJURI A B, CHUI P C, CHENG K W, CHAN W K, Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells [J]. Chem. Phys. Lett., 2004, 384: 372.
    [221] ZENG T W, LIN Y Y, LO H H, et al., A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices, Nanotechnology, 2006, 17: 5387.
    [222] BARBE C J, ARENDSE F, COMTE P, et al., Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications [J]. J. Am. Ceram. Soc., 1997, 80: 3157.
    [223] JUN Y W, CASULA M F, SIM J H, KIM S Y, CHEON J, ALIVISATOS A P, Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals [J]. J. Am. Chem. Soc., 2003, 125: 15981.
    [224] BEEK W J E, WIENK M M, JANSSEN R A J, Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles [J]. Adv. Funct. Mater.,2006, 16: 1112.
    [225] CLARKE D R, Varistor Ceramics [J]. J. Am. Ceram. Soc.1999, 82: 485-502.
    [226] HUNG N T, QUANG N D, BEMIK S, Electrical and Microstructural Characteristics of ZnO-Bi203-Based Varistors Doped with Rare-Earth Oxides [J]. J. Mater. Res., 2001, 1 6: 2817-2823.
    [227] SHIMIZU Y, LIN F C, TAKAO Y, EGASHIRA M, Zinc Oxide Varistor Gas Sensors: 11, Efect of Chromium (111) Oxide and Yttrium Oxide Additives on the Hydrogen-Sensing Properties [J]. J. Am. Ceram. Soc., 1998, 81: 1633-1643.
    [228] PANEVA R, GOTCHEV D, Non-Linear Vibration Behavior of Thin Multilayer Diaphragms [J]. Sens. Actuators A: P hys., 1999,72: 79 -87.
    [229] KAMPMANN A, LINCOT D, Photoelectrochemical Study of Thin Film Semiconductor Heterostructures: Junction Formation Processes in CdS/CdTe Solar Cells [J]. J. Electroanal.Chem., 1996, 418: 73-81.
    [230] OHTA H, KAWAMURA K, ORITA M, HIRANO M, Current In jection Emission from a Transparent p- n Junction Composed of p- SrCU202/n-ZnO [J]. Appl. Phys. Lett., 2000, 77: 475-477.
    [231] AOKI T, HATANAKA Y, LOOK D C, ZnO Diode Fabricated by Excimer-Laser Doping [J]. Appl. Phys. Lett., 2000, 76: 3257-3258.
    [232] BAGNALL D M, et al., Optically Pumped Lasing of ZnO at Room Temperature [J]. Appl. Phys. Lett., 1997, 70: 2230-2232.
    [233] TANG Z K, ZU P, Room Temperature Ultraviolet Laser Emission from Microstructured ZnO Thin Film [J]. Nonlinear Opt., 1997, 18: 355-359.
    [234] ZU P, TANG Z K, Ultraviolet Spontaneous and Stimulated Emissions from Microcrystalline Thin Films at Room Temperature [J]. Solid State Commun., 1997, 103: 459-463.
    [235] BAGNALL D M, CHEN Y F, High Temperature Excitonic Stimulated Emission from ZnO Epitaxial Layers [J]. Appl. Phys. Lett., 1998 , 73: 1038-1040.
    [236] BAGNALL D M, CHEN Y F, Room Temperature Stimulated Emission from Zinc Oxide Epilayers Grown by Plasma-Assisted MBE [J]. J. Cryst. Growth, 1998, 84: 605-609.
    [237] SAVENIJE T J, KROEZE J E, et al., The effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene-fullerene bulk [J]. Adv. Funct. Mater., 2005,15: 1260-1266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700