用户名: 密码: 验证码:
功能性纳米羟基磷灰石的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用简单的沉淀方法,控制羟基磷灰石的成核和生长,原位制备具有独特显微结构特点的功能性纳米羟基磷灰石,并使羟基磷灰石具有优异的物理和化学性能。第一章为前言,介绍了纳米羟基磷灰石的性质、制备工艺以及生长的原理、应用和功能性纳米羟基磷灰石的合成方面的研究现状与发展。第二章,首先利用简单的沉淀法合成出高纯度和结晶度好的羟基磷灰石。并且,采用聚丙烯酸(PAA)为有机质,原位合成针状的纳米羟基磷灰石,有机质与氢氧化钙发生化学作用生成有机质钙,改变了羟基磷灰石的表面性质。与不加入有机质制备的羟基磷灰石相比,分散性得到了大大提高,能稳定、均匀地分散在水中,使得其作为生物陶瓷应用有了更好的前景。第三章,首次采用聚乙烯吡咯烷酮(PVP)为有机质,沉淀法原位制备棒状纳米羟基磷灰石,PVP对产物的颗粒尺寸控制和表面性质起到了双重作用。对其进行了生物方面的性能测试,此方法制备的羟基磷灰石能够实现跨膜,进入细胞中,并且对癌细胞有一定的抑制作用,为其在生物纳米领域开拓了新方向。第四章,采用自制的纳米碳酸钙为钙源,通过对反应条件的控制,在无任何有机质以及金属离子添加的条件下,首次成功自组装成球形羟基磷灰石,为制备球形羟基磷灰石开辟了一种新方法。第五章,采用碳酸钙作为钙源,无任何有机质以及聚合物的添加,分别加入无机元素硅、铝,首次成功制备了掺杂无机元素的纳米硅酸羟基磷灰石和具有孔隙结构的花状微球。第六章,以中空球形的碳酸钙作为模板以及反应物,采用简单的化学沉淀法,首次在无任何添加物的条件下制备出羟基磷灰石的中空微球。本论文获得了一些创新性的研究成果,在羟基磷灰石的制备和性质研究中引入新的思路,具有广阔的工业应用前景,对羟基磷灰石的生长机理以及实际应用具有指导意义。
With the development of science and technology, new materials are used widely in all areas of the society. The application of biological material has got unprecedented attentions. As the most representative biomaterials, hydroxyapatite (HAP) has been of great interest in the fields of materials and neoteric biomedicine engineering science derived from the most similar composition and crystal structure with a basic mineral of phosphate ores in bones and teeth of living vertebrates. HAP has attracted extensive attention in the field of bone tissue engineering as implants or coatings on prostheses owing to its excellent bioactivity, biocompatibility, osteoconductivity, chemical and physical stability. However, the artificially synthesized HAP materials for the repairing of bone defects are greatly restricted to apply in the load-bearing situation because of its low dense, low strength and poor mechanism compared with natural bone. In order to solve these problems, many investigations have been carried on such as coating materials, composite materials, and nanomaterials. Some research revealed that properties of HAP are largely dependent on their microstructural features, such as particles size, degree of particles size agglomeration and sintered densities. Compared with pure hydroxyapatite, a biological apatite (like in bone) is non-stoichiometric and contains several different substituents in its structure, mainly carbonate (some percent) and other elements in traces like Mg2+, Na+, Fe2+, Sr2+, Pb2+, HPO42-, F-, Cl-. Therefore, the preparation of fine, single distribution and stable HAP particle is the most important step in achieving a highly sintered ceramic material with desirable microstructure. In this paper, via precipitation method, to synthesize hydroxyapatite nanoparticles (nano-HAP) in a systematic and all-round way, and basically realized the controllability of the sizes and appearances of the as-synthesized nano-HAP. Some mechanism of HAP growth was simply discussed. The main research works were as follows:
     The high purity and good crystallinity HAP nanorods have been synthesized by precipitation method in aqueous solution. The as-synthesized HAP nanorods had a diameter of 30 nm, and a length of 100 nm, the slightly sharp of both end, which is similar to the HAP inner the human badly. In order to reduce the aggregation of this nano-HAP, we situ-synthesize needle-like HAP, using PAA as food and medical. And the as-prepared nano-HAP could form stable, dispersal nano-HAP suspension, with a well dispersion effects. The effects of the amount of PAA and ultrasonic time on the dispersion stability of nano-scaled HAP were studied by the images absorbance. The dispersion mechanism was preliminarily discussed as well. The experimental results showed that PAA greatly increased the absolute value, which indicated PAA could effectively improve the dispersion stability of the nano-scaled HAP powder in water. The enhancement mechanism of PAA might be resulted from the electrostatic stabilization and steric stabilization. The organic substrate shields the solid surface through PAACa, which decreasing dramatically its surface energy and hence facilitate the dispersion of the filler in a water. So the bad dispersion problem of nano-HAP has effectively been solved, which can widely apply in biological medicine.
     Firstly using Polyvinylpyrrolidone (PVP) as a template, adopting chemical precipitation method, situ-synthesis nano-HAP with Ca(OH)2 as calcium resource. The product has one-dimensional rodlike structure, with the length of 45 - 130 nm and the diameter of 20 nm, which indicated that PVP have double effect on the dimension and dispersion. To analysis the FESEM photo, we found that PVP can reduce the aggregation of the product, and exhibits extraordinaire dispersion property. Furthermore, larger in the concentration of PVP is, the better the dispersive properties is., the best concentration of PVP is 2.5 g/L. It is also interestingly to find that the nanoparticles could realize membrane penetrating transport in biological research, which is very helpful in the developing of the application of nano-HAP. But the mechanism of the membrane penetrating transport of nano-HAP is unknown, we hope that this is helpful to the biological medicine research.
     We found that, could control the formation of hydroxyapatite nanorods by a one-step precipitation, which have properties of simple process and low cost. Using self-prepared nano-CaCO3 as calcium source, the reedle-like nano-HAP was fist synthesized by self-assembly method, without any organic matter or inorganic ions, which overcome the disadvantage of long reaction time and complicated operation. Not only the CaCO3 is reactants, but also template, this is the reason why nanoparticle could self-assembled sphere, further there is no impurity phases in the product. The carbonated hydroxyapatite sphere could be applied in the field of bone tissue engineering.
     The (SiHAP) nanoparticles and porous flower-like hydroxyapatite were first synthesized by precipitation method, using CaCO3 as reactant, and then adding inorganic sodium silicate and aluminum hydroxide, respectively. In the reaction of adding sodium silicate, concentration and pH were investigated. Compared to other synthesis method of silicon-substituted hydroxyapatite, not only the method is simple, but also the operation is convenient, which could provide convenience to the application on industry. In the system of adding aluminum hydroxide, because there is not any additive organic or polymer, avoid the processes of removing template. In this research, the adding of inorganic could promote the conversion rate from CaCO3 to HAP, which provides a new method to reduce the reaction time successfully, also there is no phosphate phase in the XRD pattern. Moreover it is shown that these products are good thermo-stability, after calcined 6 h at 800 oC, there is no phosphate phase in the XRD pattern, shown there no difference in the structure, which have a better prospect of application on chromatographic separation and absorption.
     Take hollow spherical calcite and phosphate solution as reactants, we successfully synthesis the hollow spherical hydroxyapatite under atmospheric pressure, 60 oC, reacting for 2 h, and also discuss the mechanism of the reaction. CaCO3 is not only reactant, but also template, without any organic matter or inorganic ions, single hydroxyapatite is synthesized, without any other calcium phosphate salt intermediate. The reaction temperature and time could effectively influence the preparation of hollow sphere, the best reaction condition is 60 oC, 2 h. Moreover the temperature is too high or too low, the structure of hollow sphere can not be formatted.
     In this thesis, we attempted a biomimetic method to obtained nano-HAP with special properties, introduced a novel ideal to synthesis nano- HAP. In-situ technique employed during preparation process, which introduced functional groups upon the surface of nano-HAP overcoming the agglomeration of nanoparticles. For the benefits of simple, uninterrupted and inexpensive, this innovatory technique has potential use in application and guide meaning in large-scale industrialization manufacture of nano-HAP.
引文
[1]金琪琳,黄云超.生物材料对细胞生物学行为的影响生物材料学材料[J].科学与工程学报, 2007, 25(2): 318-324.
    [2]王静梅,姚松年.生物材料及其仿生学的研究进展与展望[J].无机材料学报, 2000, 15(1): 9-15.
    [3] Li P, Kangasniemi I, De Groot K, et al. Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate [J]. J Am Ceram Soc, 1994, 77(5):1307-1312.
    [4] Hench L L, Wilson J. Surface-active biomaterials [J]. Science, 1984, 226: 630-636.
    [5] Ducheyne P, EI-Ghannam A, Shapiro I M. Effect of bioactive glass template on osteoblast proliferation and in vitro synthesis of bone-like tissue [J]. J Cell Biochem, 1994, 56: 162-167.
    [6] Wise D L, Baer E, Encyclopaedic handbook of biomaterials and bioengineering [J].1995, Part A: 56-57.
    [7] Li S P. Introduction of biomedical materials [J]. Wuhan: Wuhan University of Technology Press, 2000:1-2.
    [8]武丽华,张光华,殷海荣,等.溶胶一凝胶法制备生物活性有机一无机杂化材料的研究进展[J].硅酸盐通报,2007,26(1): 123-127.
    [9] Puleo D A, Nanci A. Understanding and controlling the bone-implant interface [J]. Biomaterials, 1999, 20: 2311-2321.
    [10]段友容,姚喆,王朝元.多孔磷酸钙陶瓷在动态SBF中类骨磷灰石形成的研究[J].生物医学工程学杂志, 2002, 19(3): 365-369.
    [11]郑学斌,刘宣勇,丁传贤.人体硬组织替代材料的研究进展[J].物理, 2003, 32(3): 159-164.
    [12] Hench L L. Bioceramics: From concept to clinic [J]. J Am Ceram Soc, 1991, 74: 1487-1510.
    [13] Peppas Nicholas A, Robert Langer. New challenges in biomaterials [J]. Science, 1994, 263: 1715-1720.
    [14] Hench L L, Polak Julia M. Third-generation biomedical materials [J]. Science, 2002, 295: 1014.
    [15] Mann S, Biomimetic Materials Chemistry [M], VCH Publishers, New York, 1996.
    [16]毛传斌,李恒德,崔福斋,等.无机材料的仿生合成[J].化学进展,1998, 10, 246-254.
    [17] Kikuchi M,Matsumoto H N,Yamada T, et al. Glutaral-dehyde crosslinked hydroxyapatite/collagen SelF-organized nanocomposites [J]. Biomaterials, 2004, 25(1): 63-69.
    [18] Roveri N, Falini G, Sidoti M C. Biologically inspired growth of hydroxyapatitenanocrystals inside self-assembled collagen fibers [J]. Mater Sci Eng, 2003,23(1): 441-446.
    [19]杨文鸽,李花霞.酵母葡聚糖的羧甲基化研究食品与发酵工业[J].食品与发酵工业,2004,30(11):28-30.
    [20] Ball P, Garwin L. Science at the actomic [J]. Nature, 1992, 355, 761-764.
    [21] Zhao B, Brittain W J. Synthesis of Polystyrene Brushes on Silicate Substrates via Carbocationic Polymerization from Self-Assembled Monolayers [J]. Macromolecules, 2000, 33: 342-348.
    [22] Pyun J, Matyjaszewski K, Kowalewski T, et al. Synthesis of Well-Defined Block Copolymers Tethered to Polysilsesquioxane Nanoparticles and Their Nanoscale Morphology on Surfaces [J]. J Am Chem Soc, 2001, 123, 9445-9446.
    [23] Lee T, Yao N, Imai H, Aksay I. A, Barium Titanate Nanoparticles in Block Copolymer, Langmuir, 2001, 17, 7656-7663.
    [24] Ogoshi T, Itoh H, Kim K M, Chujo Y. Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex [J]. Macromolecules, 2002, 35, 334-338.
    [25] Domer-reisel A, Klemm V, Imer G, et al. Nano-and microstrudured short fibre reinforced and unreinforced hydroxyaptite [J]. Biomed Tech(Berl), 2002, 47 (1): 397-400.
    [26] Feynman, Physics Nobel Lecture[C], 1965.
    [27] Halperin W P. Quantun size effects in metal particles [J]. Rev Mordern Phys, 1986, 58, 532-543.
    [28] Ball P, Garwin L. Science at the actomic [J]. Nature, 1992, 355, 761-764.
    [29] Fedhein D L, Keating C D. Self-assembly of single electron transistors and related [J]. Chem Soc Rev, 1998, 27: 1-12.
    [30] Zhang Z K, Cui Z L, Chen K Z. Behaviour of hydrogen in nano-tranition metals [J]. J Mater Sci Techonl, 1996, 12: 75-77.
    [31] Murngan R, Ramakrishna S. Development of nanocomposites for bone grafting. Compos [J]. Sci Technol, 2005, 65(15-16): 2385-2406.
    [32] Vallet-Regi M, Gonzalez-Calbet J M. Calcium phosphates as substitution of bone tissues [J]. Prog Solid State Chem, 32 (1-2): 1-31.
    [33] Nishikawa H. A high active type hydroxyapatite for photocatalytic decomposition of dimethyl sulfide under UV irradiation [J]. J Mol Catal A: Chem, 2004207(2):147-151.
    [34] Nalla R K, Kruzic J J, Kinney J H, Ritchie R O. Mechanistic aspects of fracture and R-curve behavior in human cortical bone [J]. Biomaterials, 26, 217–231.
    [35] Knott L, Bailey J. A collagen cross-links in mineraliz- ing tissues: a review of their chemistry, function, and clinical relevance [J]. Bone, 1998, 22:181–187.
    [36] Ager III J W, Balooch G., Ritchie R O. Fracture, aging, and disease in bone [J]. J Mater Res, 2006, 21 (8): 1878–1892.
    [37] Nalla R K, Kruzic J J, Kinney J H, Balooch M, Ager J W. Role of microstructure in the aging-related deterioration of the toughness of human cortical bone [J]. Mater Sci Eng C, 2006, 26(8): 1251-1260.
    [38] Narasaraju T S B, Phebe D E. Some physico-chemical aspects of hydroxyapatite [J]. Journal of Materials Science, 1996, 4(17): 85-90.
    [39] Bonfield W. Composites for bone replacement [J]. J Biomed Eng, 1988, 10: 522.
    [40] Schanek W J, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replace- ment implants [J]. J Mater Res, 1998, 13: 94-117.
    [41]成令忠.组织学与胚胎学[M].北京:人民卫生出版社, 1999: 40-53.
    [42] Traub W, Arad T, Weiner S. Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers [J]. Proc Natl Acad Sci, USA, 1989, 86: 9822-9826.
    [43] Miyazaki T, Kim H M, Kokubo T. Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid [J]. Biomaterials, 2002; 23: 827-832.
    [44] Okazaki Y, Rao S, et al. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V [J]. Biomaterials, 1998, 19:1197-1215.
    [45] Martini D, Fini M, Franchi M, et al. Detachment of titanium and fluorohydroxyapatite particles in unloaded endosseous implants [J]. Biomaterials, 2003, 24: 1309-1316.
    [46] Cui H, Wang T, Shen Z. Removal of Trace Heavy Metals from a Natural Medicine Material by Supercritical CO2 Chelating Extraction. Ind [J]. Eng Chem Res, 2001, 40: 3659 -3663.
    [47] Sullivan T J, Truglio J J, Boyne M E, et al. High Affinity InhA Inhibitors withActivity against Drug-Resistant Strains of Mycobacterium tuberculosis [J]. ACS Chem Biol, 2006, 1 (1): 43–53.
    [48] Park J B. Biomaterials, An Introduction [C]. New York: Plenum Press, 1979.
    [49]张宏泉,闰玉华,李世普.生物医用复合材料的研究进展及趋势[J].北京:生物医学工程,2000,1(19):123-128.
    [50]曹文灵,陈际达,王远亮,等.骨修复材料的研究进展[J].国外医学生物医学工程分册, 2000, 23(5): 309-312.
    [51] Bounmeester S J M, Kuijer R. Quantitative histological analysis of bone ingrowth with in the biomaterial polyactive implanted in different bone locations: a experimental study in robbits [J]. J Mater Med, 1998, 9: 181-185.
    [52] Kelly B S, Dunn R L, Casper R A. Totally resorbable high-strength composite material [C]. In:Gebelein CG, editors. Advances in biomedical polymerrs. New York: Plenum, 1987: 77-85.
    [53] Bstman O M. Absorbable implants for the fixation of fracture [J]. J Bone Jt Surg, 1991, 73A:148-153.
    [54]马东洋,薛振恂,毛天球.骨组织修复材料和技术[J].国外医学生物医学工程分册, 2004, 27(1): 44-48.
    [55] Martin J B, Jean B, Sugiu K. Vertebroplasty: clinical experience and follow-up results [J]. Bone, 1999, 25(2): 11-15.
    [56] San M R D, Burkhardt K, Jean B. Pathology finding with acrylic implant [J]. Bone, 1999, 25(2): 85-90.
    [57]俞耀庭.生物医用材料[M].天津:天津大学出版社, 2000: 116-117.
    [58] Heneh L L, Splinter R J, Allen W C, et al. Bonding mechanism at the interface of ceramic prosthetic material [J]. J Biomed Mater Res Symp, 1972(2):117-141.
    [59] Aoki H. Medical applications of hydroxyapatite. Tokyo, St. Louis: Ishikayu Euro America Inc, 1994.
    [60] Kent J N, Quinn J H, Zide M F, et al. Alveolar ridge augmentation using norresorbable hydroxyapatite with or without autogenous cancellous bone [J]. J Oral Maxillofac Surg, 1983, 41(10): 629-642.
    [61] Kim S S; Park M S; Jeon, O, Choi C Y, Kim B S. Poly(lactide-co-glycolide) / hydroxyapatite composite scaffolds for bone tissue engineering [J]. Biomaterials, 27(8): 1399-1409.
    [62] Bruder S P, Kraus K H, Goldberg V M, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of ca-nine segmental bone defects [J]. J Bone Joint Surg, 1998, 80-A(7): 985-996.
    [63]杨洪义,刘玲蓉,张燕.骨移植材料及其传导机理[J].国外医学生物医学工程分册, 1999, 22(6): 344-349.
    [64] Chapman M W, Bucholz R, Cornell C. Treatment of actue fractures with a collagen-calcium phosphate graft material: A randomized clinical trial [J]. J Bone Joint Surg, 1997, 79 A(4): 49-502.
    [65] Baksh D, Daives J E, Kin S. Three dimensional matrices of calcium polyphosphares support bone growth in vitro and in vivo [J]. J Mater Med, 1998, 9: 743-748.
    [66] Dominique P P, Hiroshi T, Tong L, et al. The effects of calcium phosphate cement particles on osteoblast functions [J]. Biomaterials, 2000, 21: 1103-1114.
    [67] Yuan H, Li Y. Tissue responses of calcium phosphate cement: a study in dogs [J]. Biomaterrisls, 2000, 21: 1283-1290.
    [68] Mirtchi A A, Lemaitre J, Munting E, et al. Calcium phosphate cements: action of setting regulators on the properties of theβ-tricalcium phosphate-monocalcium phosphate cements [J]. Biomaterials, 1989, 10:634-638.
    [69] Timmie T L D, Paul D, John M. Cuckler. Flow intrusion characteristics and fracture properties of titanium-fibre-reinforced bone cement [J]. Biomaterials, 1998, 19:1569-1577.
    [70] Ikada Y. Development of a polymer surface with non-adherent platelet properties [J]. Plastics, 1986, 6: 1-6.
    [71] Tsuji H, Ikada Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films [J]. Polymer, 1999, 40: 6699-6708.
    [72] Younes H, Nataf P R, Cohn D, et al. Biodegradable PELA block copolymers: In vitro degradation and tissue reaction [J]. Biomaterials, 1988, 16(4): 705-719.
    [73] Lewandrowski K, Gresse J D, Wise D L, et al. Osteoconductivity of an injectable and bioresorbable polypropylene glycol-co-fumaric acid) bone cement [J]. Biomaterials, 2000, 21: 293-298.
    [74] Jose-Luiz L, Alain G, Elodie B. Synthesis and Characterization of Silica/Poly (Methyl Methacrylate) Nanocomposite Latex Particles through Emulsionpolymerization using a Cationic Azo Initiator [J]. J Colloid Interf Sci, 2002, 250: 82-92.
    [75] Guo Q, Thomann R, Gronski W. Nanostructures, Semicrytalline Morphology, and Nanoscale. Confinement Effect on the Crystallization Kinetics in Self-Organized Block copolymerffhermoset Blends [J]. Macromolecules, 2003, 36: 3635-3645.
    [76] Zhao B H, Lee L-S, Bai W, et al. Improvement of fibroblast adherence to titanium surface by calcium phosphate coating formed with IBAD [J]. Surf Coat Tech, 2005, 193: 366-371.
    [77] Cho J, Grant J, Piquette-Miller M. Synthesis and physicochemical and dynamic mechanical properties of a water-soluble chitosan derivative as a biomaterial [J]. Biomacromolecules, 2006, 7 (10): 2845–2855.
    [78] Weber N, Pesnell A, Bolikal D, Zeltinger J, Kohn J. Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices [J]. Langmuir, 2007, 23: 3298–3304.
    [79] Cejas M A, Kinney W A, Chen C, et al. Collagen-Related Peptides: Self-Assembly of Short, Single Strands into a Functional Biomaterial of Micrometer Scale [J]. J Am Chem Soc, 2007, 129: 2202–2203.
    [80] Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms [J]. J Mater Sci, 1976, 11:2027-2035.
    [81] Aoki H, Kato K. Apatite for biomaterials, Ceramics Japan 10 (1975), 469–478.
    [82]孙玉绣.羟基磷灰石生物陶瓷纳米粒子的制备、表征及生长机理的研究[D].北京:北京化工大学应用化学,2007.
    [83]周宏卉.改性羟基磷灰石制备及结构表征[D].四川:四川大学应用化学,2007
    [84] Leventouri T. Synthetic and biological hydroxyapatites: crystal structure questions [J]. Biomaterials, 2006, 18: 3339–3342.
    [85] Elliott J C. Structure and Chemisity of the Apatite and Other Calcium Orthophosphates [M]. Elsevier London 1994.
    [86] Corti M, Rohlf F J. Chromosomal speciation and phenotypic evolution in the house mouse [J]. Biological Journal of the Linnean Society, 2001, 73: 99-112.
    [87] Li S, Zhang S, Chen W, et al., Effects of hydroxyapatite ultra-fine powder on colony formation and cytoskeletons of MGC-803 cell [J], Bioceramics, 1996, 9: 225–227.
    [88] Feng L Y, Li S P, Yan Y H. The Effect of CaCO3 and TiO2 Nanometer Particles on A549 and L929 Cells [J]. Bioceramics, 2000, 13: 325-328.
    [89] Han Y C, Li S P, Wang X, et al. Influence of apatite nanoparticles on cancer cells [J]. Nanoscience, 2006 11(2): 102-106.
    [90] Yin M Z, Han Y C, Bauer I W, et al. Effect of hydroxyapatite nanoparticles on the ultrastructure and function of hepatocellular carcinoma cells in vitro [J]. Biomed Mater, 2006, 1(1): 38-41.
    [91]夏东,刁路明,杨飞,等.无机纳米粒子对人肺癌细胞A549和小鼠成纤维细胞L929生物学特性研究[J].湖北医科大学学报,2002,21(2):109-111.
    [92] Vallet-Reg?′M. Introduction to the world of biomaterials [J]. Ann Quim Int Ed 1997, 93: 6-14.
    [93] Simpson D R. Problems of the composition and structure of the bone minerals [J]. Clin Orthop, 1972, 86: 260-280.
    [94] Elliott J C. The problems of the composition and structure of the mineral components of the hard tissue [J]. Clin Orthop, 1973, 93: 313-345.
    [95] Rey C, Collins B, Goehl T, Dickson I R, et al. The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study [J]. Calcif Tissue Int, 1989, 45: 157-164.
    [96] Tang R, Hass M, Wu W, et al. Constant composition dissolution of mixed phases.Ⅱ.Selective dissolution of calcium phosphates [J]. J Colloid Interface Sci, 2003, 60(2): 373-384.
    [97] Barralft J E,Best S M, Bonfield W. Effectofsinteringparameters on the density and microstructure of carbonate hydroxyapatite [J]. J Mater Sci:Material in medicine, 2000, (11): 719-724.
    [98] Landi E, Tampieri A, Celotti G, Vichi L, Sandri M. Influence of synthesis and sintering parameters on the characteristics of carbonate apatite [J]. Biomaterials, 2004, 25:1763–1770.
    [99]王友法,闰玉华,戴红莲,等.含部分碳酸根的针状轻基磷灰石晶体的均相合成[J].武汉理工大学学报, 2001, 23(11): 23-26.
    [100] Oreffo R O, Driessens F C, Planell J A, Triffitt J T. Growth and difierentialtiio of human bone marrow osteoprogenitors on novel calcium phosphate cements [J]. Biomaterials, 1998, 19:1845-1854.
    [101] Khairoun I, Bolyong M G,Driessens F, et al. Effect of calcium carbonate on the compliance of an apatite calcium phosphate bone cement [J]. Biomaterials, 1997 18(23): 1635-1639.
    [102] Botelho C M, Lopes M A, Gibson I R, et al. Struetural analysis of si-substituted hydroxyapatite zeta potential and X-ray photoelectron spectroseopy [J]. J Mater Sci: Materials inmedicine, 2002, (13):1123-1127.
    [103] Pate I N, Follon E L, Gibson I R, et al. Comparison of sinteringand mechanieal properties of hydroxyapatite and silicon-substituted hydroxyapatite. Key Eng Mater, 2003, 919: 240-242.
    [104] Mayer I, Cohen H V, Oegel J C, et al. Synthesis,charaeterization and high temperature analysis of AI-containing hydroxyapatites [J]. J Crystal Growth, 1997, 172: 219-225.
    [105] Temane R,Cohen-Adad M T,Panezer G,et al. Introduetion of boron in hydroxyapatite: synthesis and struetural charaeterization [J]. J Alloy Compound, 2002, 333:62-71.
    [106] Jones M I, Kiyoshi Hirao, Hideki Hyuga, Yukihiko Yamauchi. Effect of rare-earth species on the wear properties of sialon andβsilicon nitride ceramics under tribochemical type conditions [J]. J Mater Res, 2004, 19: 2750-2758.
    [107] Christoffersen J, Christoffersen M R, Kolthoff N et al. Effects of Strontium Ions on Growth and Dissolution of Hydroxyapatite and on Bone [J]. Mineral Detection, 1997, 20(1): 47-54.
    [108] Tonsuaadu K, Peld M, Leskel? T, Mannonen R. A thermoanalytical study of synthetic carbonate-containing apatites [J]. Thermochim Acta, 1995, 256: 55-65.
    [109] Kin S R, Lee J H, Kim Y T, et al. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors [J]. Biomaterials, 2003, 24: 1389-1398.
    [110] Nims L F J. Preparatiove techniques based on the dissociation constants of phosphoric acid [J]. Amer Chem Soc, 1934, 56: 1110-1115.
    [111] Korber F, Tromel G Z. The formation of HAP through a solid state reaction between tri and tetra-calcium phosphates [J]. Electro chem, 1932, 38: 578-580.
    [112] Tromel G Z. The optimum conditions for the formation of HAP [J]. Physic Chem, 1932, 158(A): 422-425. 36
    [113] Osaka A, Miura Y, Takeuch I K, et al. Calcium apatite prepared from calium hydroxide and orthophosphoric acid [J]. J Mater Sci: Mater Med, 1991, 2: 51-55.
    [114] Kumar R, Prakash K H, Cheang P, et al. Temperature Driven Morphological Changes of Chemically Precipitated Hydroxyapatite Nanoparticles [J]. Langmuir, 2004, 20: 5196-5200.
    [115] Tas A C. Synthesis of biomimetic Ca-hydroxyapatite powder at 37 in synthetic body fluid [J]. Biomaterials, 2000, 21(14): 1429-1438.
    [116] Choi D, Kumtaw P N. An Alternative Chemical Route for the Synthesis and Thermal Stability of Chemically Enriched Hydroxyapatite [J]. J Am Ceram Soc, 2006, 89(2): 444-449.
    [117] Rodriguez-Lorenzo L M, Vallet-Regi M. Controlled Crystallization of Calcium Phosphate Apatites [J]. Chem Mater, 2000, 12(2): 2460-2465.
    [118] Zhai Y, Cui F Z, Wang Y. Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils [J]. Curr Appl Phys, 2005, 5(5): 429-432.
    [119] Kong X D, Cui F Z, Wang X M, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals [J]. J Cryst Growth, 2004, 270(1-2):197-202.
    [120] Cai S, Yu X Z, Xiao Z Y, et al. Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method [J]. Ceram Int, 2007, 33(2): 193-196.
    [121] Gonzalez-McQuire R, Chane-Ching J Y, Vignaud E, et al. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods [J]. J Mater Chem, 2004, 14(14): 2277-2281.
    [122] Rusu V M, Ng C H, Wilke M, et al. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials [J]. Biomaterials, 2005, 26(26): 5414-5426.
    [123] Kinoshita M, Itatani K, Nakamura S, et al. Preparation and Morphology of carbonate containing hydroxyapatite by homogeneous and Hydrothermal Methods [J]. Gypsum Lime, 1990, 227: 19-27.
    [124] Riman R E, Suchanek W L, Byrappa K, et al. Solution synthesis of hydroxyapatite designer pariculates [J]. Solid State Ionics, 2002, 151(1-4): 393-402.
    [125] Guo X Y, Xiao P, Liu J, et al. Fabrication of Nanostructured Hydroxyapatite viaHydrothermal Synthesis and Spark Plasma Sintering [J]. J Am Ceram Soc, 2005, 88(4):1026-1029.
    [126] Chen J, Wang Y, Wei K, Zhang S, Shi X. Self-organization of hydroxyapatite nanorods through oriented attachment [J]. Biomaterials, 2007, 28: 2275-2280.
    [127] Li H Y, Chen Y F, Zang L K. Hydrotherm al preparation of acicular hydroxyapatite [J]. Materials Review, 2000, 14(2): 305-308.
    [128] Kim S, Kumta P N. Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater [J]. Sci Eng B, 2004, 111(2-3): 232-236.
    [129] Wang F, Li M S, Lu Y P, et al. A simple sol-gel technique for preparing hydroxyapatite nanopowders [J]. Mater Lett, 2005, 59(8-9): 916-919.
    [130] Bigi A, Boanini E, Rubini K. Hydroxyapatite gels and nanocrystals prepared through a sol-gel process [J]. J Solid State Chem, 2004, 177(9): 3092-3098.
    [131] Liu D M, Yang Q Z, Troczynski T, et al. Structural evolution of sol-gel-derived Hydroxyapatite [J]. Biomaterials, 2002, 23(7): 1679-1687.
    [132]韩颖超,王欣宇,等.自然烧法合成纳米HAP粉末[J].硅酸盐学报, 2002, (3): 387-389.
    [133] Hoar T P, Schulman J H. Transparent water in oil dispersions:the oleopathic hydromicelle [J]. Nature, 1943, 152: 102-103.
    [134] Lim G K, Wang J, Ng S C, et al. Processing of fine hydroxyapatite powders via an inverse m icroe m ulsion route[J]. Mater Lett, 1996, 28: 431-436.
    [135] Lim G K, Wang J, Ng S C, et al. Nanosized H ydroxyapatite Powders from M icroe m ulsions and Em ulsions Stabilized by a Biodegradable Surfactant [J]. Mater Chem, 1999, 9: 1635-1639.
    [136] Bose S, Saha S K. Synthesis and Characterization of Hydroxyapatite Nanopowders by Emulsion Technique [J]. Chem Mater, 2003, 15(23): 4464-4469.
    [137] Sarig S, Kahana F. Rapid formation of nanocrystalline apatite [J]. J Cryst Growth, 2002, 237-239: 55-59.
    [1] Deisinger U, Stenzel F, Ziegler G. Hydroxyapatite ceramics with tailored pore structure [J]. Key Engineering Materials, 2004, 264-268: 2047-2050.
    [2] Fleisch H, Russell R G, Francis M D. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo [J]. Science, 1969, 165: 1262-1264.
    [3] Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties [J]. Biomaterials, 2003, 24(13): 2161-2175.
    [4] Mao X, Wu P, Tang S. Cytocompatibility of Highly Dispersed Nano Hydroxyapatite Sol [J]. Chinese Journal of Biomedical Engineering (English Edit ion), 2004, 13(1): 1-5.
    [5] Hideo Aoki. An in Vivo Study on the Reaction of Hydroxyapatite-sol Injected into Blood [J]. Journal of Materials Science: Material in Medicine, 2000, 11: 67-72.
    [6]曹献英,齐志涛,贺建华,等.羟基磷灰石纳米粒子的体外致突变作用研究[J].中国公共卫生, 2003, 19(6): 704.
    [7] Cao X, Qi Z, Dai H, et al. Cytotoxinic mechanism of hydroxyapatite nanoparticles on human hepatoma cell lines [J]. J Wuhan University of Technology-Mater Sci Ed, 2003, 18(3): 66-68.
    [8] Liu Z, Tang S, Ai Z. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells [J]. World J Gastroenterol, 2003, 9(9): 1968-1971.
    [9] Zhu S H, Huang B Y, Zhou K C. Hydroxyapatite nanoparticles as a novel gene carrier [J]. J Nanoparticle Res, 2004, 6(2): 307-311.
    [10] Savita B, Gajadhar B, Susmita M, et al. PharmaceuticalNanotechnology pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector forgene delivery [J]. Int J Pharma, 2005, 288: 157-168.
    [11] Aoki H. Science and Medical Applications of Hydroxyapitite. Tokyo: Takayama Press System Center Co, 1991, 165-177.
    [12] Zhu S H, Huang B Y, Zhou K. Hydroxyapatite Nanoparticle As a Novel Gene Carrier [J]. Journal of Nanoparticle Research, 2004, 6: 307-311.
    [13]李世普.生物医用材料导论[M].武汉工业大学出版社, 2000: 116-118.
    [14]张园,袁媛,刘昌胜.纳米羟基磷灰石悬浮液稳定性能的研究[J].中国生物,医学工程学报, 2008, 27(1): 108-116.
    [15] Li Y, Yan R. A study on composite of hydroxyapatite and polyamide [A]. The Fourth Asian Symposium on Biomedical Materials [C]. Singapore: Kobunshi Kankokai, 1999, 1283-1290.
    [16]郭大勇,储成林,林萍华,等.柠檬酸对溶胶-凝胶法制备羟基磷灰石粉体的影响[J].东南大学学报(自然科学版), 2002, 32(3): 402-404.
    [17] Bimal P S, Jayadev J Laxmidhar B. Dispersion of nano-silicon carbide (SiC) powder in aqueous suspensions [J]. J Nanoparticle Pes, 2007, 9: 797-806.
    [18] Jouliana M, Daniela C, Charles J C. Poly(allylamine)stabilized iron oxide magnetic nanoparticles [J]. J Nanoparticle Res, 2007, 9: 959-964.
    [19] Zhao W, Lee T M H, Leung S S Y. Tunable stabilization of gold nanoparticles in aqueous solutions by monucleotides [J]. Langmuir, 2007, 23(13): 7143-7147.
    [20] CesaranoⅢJ, Akasy I A, Bleier A. Stability of Aqueousα-Al2O3 suspension with Poly (methacrylic acid) Polyelectroiytes [J]. J American Ceramic Society, 1998, 71(4): 250-255.
    [21]李国栋.高效分散剂对高性能陶瓷成型适用性研究[J].中国陶瓷, 2003, 39(2): 18-21.
    [22]陈宗淇,戴闽光.胶体化学[M].北京:高等教育出版社, 1984.
    [23]何静,吴玉英,刘六军,等.低分子量PAANa的合成及分散性的研究[J].北京林业大学学报, 2002, 24(5): 216-219.
    [24] Hiemenz P C. Principles of Colloid and Surface Chemistry [M]. New York: Marcel Dekker, INC, 1986, 710-730.
    [1] Hench L L. Bioceramics: From Concept to Clinic [J]. J Am Ceram Soc, 1991, 74: 1487-1510.
    [2] Jarcho M, Bolen C H, Thomas M B, Bobick J, Kay F, Doremus R H. Hydroxyapatite synthesis and characterization in dense polycrystalline form [J]. J Mater Sci, 1976, 11: 2027-2035.
    [3] Kannan S, Lemos A F, Ferreira J M F. Synthesis and Mechanical Performance of Biological-like Hydroxyapatites [J]. Chem Mater, 2006, 18 (8): 2181-2186.
    [4] Prener J S. The growth and crystsallographic properties of calcium fluor-and chlorapatite crystals [J]. J Electrochem Soc Solid State Science, 1967, 114(l): 77-83.
    [5] Nancollas G H, Wefel J S. The effect of stannous fluoride and stannous chloride on the crystallization of dicalcium phosphate dihydrate at constant pH [J]. J Crystal Growth, 1974, 23:169-176.
    [6] Roy D M, Eysel W, Dinger D. Hydrothermal synthesis of various carbonate containing calcium hydroxyapatite [J]. Mater Res Bull, 1974, 9:35-40.
    [7] He Q J, Huang Z L, Cheng X K, Yu J. Thermal stability of porous A-type carbonated hydroxyapatite spheres [J]. Mater Lett, 2008, 62(3): 539-542.
    [8] Aoki H, Kato K, Shiba M. Synthesis of hydroxyapatite under hydrothermal conditions [J]. J Dent Apparatus and Materials, 1972, 13(27):170-176.
    [9] Chen H, Sun K, Tang Z, et al. Synthesis of Fluorapatite Nanorods and Nanowires by Direct Precipitation from Solution [J]. Cryst Growth Des, 2006, 6(6): 1504-1508.
    [10] Jarcho M, Bolen C H, Thomas M B. Hydroxylapatite synthesis and characterization in dense polycrystalline form [J]. J Mater Sci, 1976, (1): 2027-2035.
    [11] Legeros R Z. Apatites in Biological Systems. Prog [J]. Crystal Growth Charact, 1981, 4: 1-34.
    [12] Aoki H. Science and Medical Applications of Hydroxyapitite. Tokyo: Takayama Press System Center Co, 1991, 165-177.
    [13] Halperin W P. Quantum size effects in metal particle [J]. Rev Mod Phys, 1986, 58(3): 532-539.
    [14] Karch J, Birringer R, Gleiter H. Ceramics ductile at low temperature [J]. Nature, 1987, 330: 516-518.
    [15] Jodran A. Nanotechnology and consequences for surgrical oncology [J]. Kongressbd Dtsch Ges Chir Kong, 2002, 119: 821-828.
    [16] Peppas A. Drug diffusion and binding ionizable interpenetrating networks from poly(vinyl alcohol) and poly(acrylic acid) [J]. Eru J Pharm Biopharm,1998, 46(1): 15-30.
    [17] Stephen M. Molecular recohition in biominerallization [J]. Nature, 1988, 332(10): 119-124.
    [18]李世普,等.生物陶瓷[M].武汉:武汉工业大学出版社, 1989, 27.
    [19]邬鸿彦,朱明刚.纳米级羟基磷灰石生物陶瓷粉末的制备新方法[J].河北师范大学学报(自然科学版) ,1997 (3): 266-269.
    [20] Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes [J]. J Mater Sci: Mater In Medicine, 1998, (9): 727-729.
    [21] Yubao L, Wijn J D, Klein C P A T, et al. Preparation and characterization of nanograde osteoapatatite-like rod crystals [J]. J Mater Sci: Mater In Medicine, 1994, (5): 252-255.
    [22] Li Shipu. Effects of hydroxyapatite ultrofine powder on colony formation and cytoskeletons of MGC-803 cell [J]. Bioceramics, 1996, (9):225-227.
    [23]张士成,李世普,袁润章.磷灰石超微粉对骨癌Os-732细胞形态的影响[J].武汉工业大学学报, 1996, 18(1):12-15.
    [24] Feng L, Li S, Yan Y. Effects of CaCO3 and TiO2 nanometer particles on A29and L929cells [J]. Bioceramics, 2000, 13:325-328.
    [25]崔英德,易国斌,廖列文.聚乙烯基吡咯烷酮的合成与应用[M].北京:科学出版社, 2001.
    [26]白玉杰.聚乙烯基吡咯烷酮(PVP)的生产应用与市场前景[J].化学工程师, 2003, 4: 38-39.
    [27]马婷芳,史铁钧.聚乙烯吡咯烷酮的性能、合成及应用[J].应用化工, 2002, 31: 16-19.
    [28] Monma H, Kamiya T. Preparation of hydroxyapatite by the hydrolysis of brushite [J]. J Mater Sci, 1987, 22: 4247-4250.
    [29] Monma H, Ueno S, Kanazawa T. Properties of hydroxyapatite prepared by thehydrolysis of tricalcium phosphate [J]. J Chem Tech Biotechnol, 1981, 31: 15-24.
    [30] Moreno E C, Varughese K. Crystal growth of calcium apatite from dilute solutions [J]. J Cryst Growth, 1981, 53: 20-30.
    [31] Fujishiro Y, Yabaki H, Kawamura K, et al. Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions [J]. J Chem Tech Biotechnol, 1993, 57: 349-353.
    [32]冯凌云,李世普,陈闻杰.羟基磷灰石溶胶对W-256癌肉瘤细胞和艾氏腹水瘤细胞增殖的影响[J].中国有色金属学报, 1999, 9(3): 651-654.
    [33]陈闻杰.羟基磷灰石溶胶稳定性研究及其抑制癌机理初探[D],武汉:武汉工业大学, 1997.
    [34] Deptula A, Lada W, Olczak T, et al. Preparation of spherical powders of hydroxyapatite by sol-gel process [J]. J Non-Crystalline Solids, 1992, 147-148: 537-541.
    [35] Vallet-Regf M, Gutierrez-Rios M T, Alonso M P, et al. Hydroxyapatite particles synthesized by pyrolysis of an aerosol [J]. J Solid State Chem, 1994, 112: 58-64.
    [36] Lim G K, Wang J, Ng S C, et al. Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant [J]. J Mater Chem, 1999, (9):1635-1639.
    [37] Lim G K, Wang J, Ng S C, et al. Processing of fine hydroxyapatite powders via an inverse microemulsion route [J]. Mater Lett, 1996, 28: 431-436.
    [38] Lim G K, Wang J, Ng S C, et al. Processing of hydroxyapatite via microemulsion and emulsion routes [J]. Biomaterials, 1997, 18(21): 1433-1439.
    [39]任卫,曹献英,等.纳米羟基磷灰石合成及表面改性的途径及方法[J].硅酸盐通报, 2002 (1): 38-43.
    [40] Rodriguez-Lorenzo L M, Vallet-Regi M. Controlled crystallization of calcium phosphate apatites [J]. Chem Mater, 2000, 12(8): 2460-2465.
    [41] Nadine W S K, Theodore C, Jessop, Paul A, et al. Nanotube Molecular Transporters: Internalization of Carbon Nanotube– Protein Conjugates into Mammalian Cells [J]. J Am Chem Soc, 2004, 22 (126): 6851.
    [42] Davide P, Jean–Paul Briand, et al. Translocation of bioactive peptides across cellmembranes by carbon nanotubes. The Royal Society Chemistry, 2004, 16-17.
    [1] Veiderma M, T?nsuaadu K, Knubovets R, Peld M. Impact of anionic substitutions on apatite structure and properties [J]. J Organomet Chem, 2005, 690: 2638–2643.
    [2] Zhang P, Hong Z, Yu T, Chen X, Jing X. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide) [J]. Biomaterials, 2009, 30: 58–70.
    [3] Izquierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, López-Noriega A, Vallet-RegíM. High-Performance Mesoporous Bioceramics Mimicking Bone Mineralization [J]. Chem Mater, 2008, 20: 3191-3198.
    [4] Fleet M E, Liu X. Type A-B carbonate chlorapatite synthesized at high pressure [J]. J Solid State Chem, 2008, 181: 2494-2500.
    [5] Arcos D, Rodriguez-Carvajal J, Vallet-Regi M. Silicon Incorporation inHydroxylapatite Obtained by Controlled Crystallization [J]. Chem Mater, 2004, 16: 2300-2308.
    [6] Kannan S, Ferreira J M F. Synthesis and Thermal Stability of Hydroxyapatite-β-Tricalcium Phosphate Composites with Cosubstituted Sodium, Magnesium, and Fluorine [J]. Chem Mater, 2006, 18: 198-203.
    [7] Kannan S, Lemos A F, Ferreira J M F. Synthesis and Mechanical Performance of Biological-like Hydroxyapatites [J]. Chem Mater, 2006, 18: 2181-2186.
    [8] Kumar R, Prakash K H, Cheang P, Khor K A. Temperature Driven Morphological Changes of Chemically Precipitated Hydroxyapatite Nanoparticles [J]. Langmuir, 2004, 20: 5196-5200.
    [9]邓迟,翁杰,周绍兵,等.羟基磷灰石表面吸附性能的研究综述[J].材料导报, 2007, 21: 84-87.
    [10]王爱娟,吕宇鹏,孙瑞雪.羟基磷灰石在生物活性物质分离与提纯领域中应用的研究进展[J].材料导报, 2006, 20: 111-118.
    [11] Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K. Hydroxyapatite-Supported Palladium Nanoclusters: A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen [J]. J Am Chem Soc, 2004, 126: 10657-10666.
    [12] Choudary B M, Sridhar C, Kantam M L, Venkanna G. T, Sreedhar B. Design and Evolution of Copper Apatite Catalysts for N-Arylation of Heterocycles with Chloro- and Fluoroarenes [J]. J Am Chem Soc, 2005, 127: 9948-9949.
    [13] Tiselius A, Hjerten S, Levin O. Protein chromatography on calcium phosphate columns [J]. Arch Biochem Biophys, 1956, 65: 132-155.
    [14]李校堃.药物蛋白质分离纯化技术[M].北京:化学工业出版社, 2004. 157.
    [15]余晓英,周纯益,余贤真,等.新型、高效球形羟基磷灰石分离介质[J].生物工程进展, 1996, 16: 17-19.
    [16] Luo P, Nieh T G. Preparing hydroxyapatite powders with controlled morphology [J]. Biomaterials, 1996, 17: 1959-1964.
    [17] Kawasaki T, Takahashi S, Ikeda K. Hydroxyapatite high-performance liquid chromatography: column performance for proteins [J]. Eur J Biochem, 1985, 152: 361?371.
    [18]刘国诠.生物工程下游技术[M].北京:化学工业出版社, 2001, 187.
    [19] Shepard S R, Stone C B, Schrimsher J L, et al. Discoloration of ceramic hydroxyapatite used for protein chromatography [J]. J Chromagr A, 2000, 891: 93-98.
    [20] Senya I, Akira O. Preparation of hydroxyapatite by spray pyrolysis technique [J]. J Ceram Soc Japan, 1987, 95: 759–763.
    [21] Kweha S W K, Khora K A, Cheang P. The production and characterization of hydroxyapatite (HA) powders [J]. J Mater Process Tech, 1999, 89-90: 373-377.
    [22] Sun R X, Lu Y P, Li M S, et al. Characterization of hydroxyapatite particles plasma-sprayed into water [J]. Surf Coat Techn, 2005, 190: 281-286.
    [23]刘信安,李伟,王里奥.球状多孔羟基磷灰石生物材料的制备与结构[J].应用化学, 2003, 20: 223-227.
    [24] He Q, Huang Z, Liu Y, Chen W, Xu T. Template-directed one-step synthesis of flowerlike porous carbonated hydroxyapatite spheres [J]. Mater Lett, 2007, 61: 141-143.
    [25] Seoa D S, Lee J K. Synthesis of hydroxyapatite whiskers through dissolution– reprecipitation process using EDTA [J]. J Cryst Growth, 2008, 310: 2162-2167.
    [26] Chen H, Sun K, Tang Z, Law R V, Mansfield J F, Czajka-Jakubowska A, Clarkson B H. Synthesis of Fluorapatite Nanorods and Nanowires by Direct Precipitation from Solution [J]. Cryst Growth Des, 2006, 6: 1504-1508.
    [27] Zhang H G, Zhu Q, Wang Y. Morphologically Controlled Synthesis of Hydroxyapatite with artial Substitution of Fluorine [J]. Chem Mater, 2005, 17: 5824-5830.
    [28] Sarig S, Kahana F. Rapid formation of nanocrystalline apatite [J]. J Cryst Growth, 2002, 237–239: 55-59.
    [29] Ma M-G, Zhu Y-J, Chang J. Monetite Formed in Mixed Solvents of Water and Ethylene Glycol and Its Transformation to Hydroxyapatite [J]. J Phys Chem B, 2006, 110: 14226-14230.
    [30] Liu J, Li K, Wang H, Zhu M, Yan H. Rapid formation of hydroxyapatite nanostructures by microwave irradiation [J]. Chem Phys Lett, 2004, 396: 429-432.
    [31]王丹.一种微米级球形羟基磷灰石的制备方法:中国,200610169556.9 [P]. 2008-6-25.
    [32] Smigelskas A D, Kirkendall E O. Zinc Diffusion in Alpha Brass [J]. Trans AIME,1947, 171: 130-142.
    [1] Heneh L L, Splinter R J, Allen W C, et al. Bonding mechanism at the interface of ceramic prosthetic material [J]. J Biomed Mater Res Symp, 1972(2): 117-141.
    [2] Heneh L L, Polak J M. Third-generation biomedical materials [J]. Science, 2002, 295(8): 1014-1017.
    [3]孟雷,陈奇.生物微晶玻璃的最新进展[J].硅酸盐通报, 2004(3): 60-63.
    [4]张光磊,高辉,刘海涛,朱文尚.生物微晶玻璃的制备和性能及其应用[J].中国组织工程研究与临床康复, 2008, (01): 129-133.
    [5] Agathopoulos S, Tulyaganov D U, Valério P, et al. A new model formulation of the SiO2-Al2O3-B2O3-MgO-CaO-Na2O-F glass-ceramics [J]. Biomaterials, 2005, 26(15): 2255-2264.
    [6] Dyson J A, Genever P G, Dalgarno K W, et al. Development of Custom-Built Bone Scaffolds Using Mesenchymal Stem Cells and Apatite-Wollastonite Glass-Ceramics [J]. Tissue Eng, 2007, 13(12): 2891-2901.
    [7] Huang J, Di Silvio L, Wang M, et al. Evaluation of in vitro bioactivity and biocompatibility of Bioglass-reinforced polyethylene composite [J]. J Mater Sci Mater Med, 1997, 8(12): 809-813.
    [8] Greenspan D C, Zhong J P. Bioactivity and Biodegradability: Melt vs Sol-Gel Derived Bioglass in Vitro and in Vivo [J]. Bioceramics, 1998, 11: 345-348.
    [9]钟吉品, Larry L Hench.生物玻璃的研究与发展[J].无机材料学报, 1995, 10(2): 129-138.
    [10] Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids [J], 1992, 143: 84-92.
    [11]黄永前,郑昌琼.原位反应合成CaO-P2O5-SiO2系生物陶瓷[J].功能材料, 2004, 35(6): 790-792.
    [12] Karlsson K H, Fr?berg K, Ringbom T. Structural approach to bone adhering of bioactive glasses [J]. J Non-Cryst Solids, 1989, 112: 69-72.
    [13] Begazo C C, de Boer H D, Kleverlaan C J, et al. Shear bond strength of different types of luting cements to an aluminum oxide-reinforced glass ceramic core material [J]. Dent Mater, 2004, 20(10): 901-907.
    [14] Porter A E, Patel Nelesh, Skepper J N, Best S M, Bonfeild William. Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone–implant interface [J]. Biomaterials, 2004(25): 3303-3314.
    [15]唐晓恋,刘榕芳,肖秀峰.含硅羟基磷灰石的研究进展[J].硅酸盐通报, 2005, 06: 89-94.
    [16] Carlisle E M. Silicon: a possible factor in bone calcification [J]. Science, 1970, 167: 179-280.
    [17] Mochales C, Briak-Ben-Abdeslam H E, Ginebra M P. Obtaining ofsilicate-substituted calcium deficient hydroxyapatite by drymechano synthesis [J]. Key Engineering Materials, 2004, 254-256: 107-110.
    [18] Arcos D, Rodriguez-Carvajal J, Vallet-Regi M. Neutron scattering for the study of improved bone implants [J]. Physica B, 2004, 350: 607-610.
    [19] Balamurugan A, Balossier G, Kannan S, et al. Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass [J].Acta Biomater, 2007; 3(2): 255-262.
    [20] Albakry M, Guazzato M, Swain M V. Influence of hot pressing on the microstructure and fracture toughness of two pressable dental glass-ceramics [J]. J Biomed Mater Res B Appl Biomater, 2004, 71(1): 99-107.
    [21] Abiraman S, Varma H K, Umashankar P R, et al. Fibrin glue as an osteoinductive protein in a mouse model [J]. Biomaterials, 2002, 23(14): 3023-3031.
    [22] Tanizawa Y, Suzuki T. X-ray photoelectron spectroscopy study of silicate - containing apatite [J]. Phosphorus Res Bull, 1994, 4: 83-88.
    [23] Sugiyama K, Suzuki T. Bactericidal spectroscopy study of silicate-containing hydroxyapatite [J]. J Antibact Antifung Agerts, 1995, 23: 67-71.
    [24] Kim S R, Lee J H, Kim Y T, et al. Bioactive behaviors of porous Si-substituted hydroxyapatite derived from coral [J]. Key Engineering Materials, 2004, 254-256: 969-972.
    [25]艾桃桃,于成龙.水热法制备Ca-P-Si-Na生物活性玻璃陶瓷[J].现代技术陶瓷, 2005, 26(4): 3-6.
    [26] Gibson I R, Best S M, Bonfield W. Chemical characterization of silicon - substituted hydroxyapatite [J]. J Biomed Mater Res, 1994, 4: 422-428.
    [27] Balas F, Perez-Pariente J, Vallet-Regi M. In vitro bioactivity of silicon- substituted hydroxyapatite [J]. J Biomed Mater Res, 2003, 2: 364-375.
    [28] Arcos D, Rodriguez-Carvajal J R; Vallet-Regi M. Silicon incorporation in hydroxyapatite obtained by controlled crystallization [J]. Chem Mater, 2004, 46: 2300-2308.
    [29] Gibson I R,Best S M, Bonfield W. Effect of Silicon Substitution on the Sintering and Microstructure of Hydroxyapatite [J]. J Am Ceram Soc, 2002, 85: 2771-2777.
    [30] Dong Z H, Li Y B,Zou Q. Degradation and biocompatibility of porousnano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering [J]. Applied Surface Science, 2009, 255(12): 6087-6091.
    [31] Visser R, Arrabal P M, Becerra J, Rinas U, Cifuentes M. The effect of an rhBMP-2 absorbable collagen sponge-targeted system on bone formation in vivo [J]. Biomaterials, 2009, 30(11): 2032-2037.
    [32] Ducheyne P, Qiu Q. Bioactive ceramics the effect of surface reactivity on bone formation and bone cell function [J]. Biomaterials, 1999, 20: 23–24.
    [33] Karageorgiou V, Kaplan D. Porosity of 3D biornaterial scaffolds and osteogenesis [J]. Biomaterials, 2005, 26(27): 5474-5491.
    [34] Perry A C. Integrated orbital implants [M]. In: Bosniak S L, Smith B C, eds. Advance in ophthalmic, plastic and reconstructive surgery.Vol 8. New York. Pergamon 1990: 75-81.
    [35]俞耀庭.生物医用材料[M],天津大学出版社, 2000, 84-98.
    [36]刘信安,李伟,王里奥.球状多孔羟基磷灰石生物材料的制备与结构[J].应用化学, 2003, 20(3): 223-227.
    [37] Oxaki Ryuichi. Manufacture of artificial tooth root by coating porous alumina with HAP. JP02184580 [P]. 1990-7-19.
    [38] Takeuchi Y, Arai H. Removal of Coexisting Pb2+, Cu2+ and Cd2+ Ions from Water by Addition of Hydroxyapatite Powder [J]. Journal of Chemical Engineering of Japan, 1990, 23(1): 75-80.
    [39]韩艳君,姜庆辉,李木森.多孔羟基磷灰石的研究现状与发展[J].材料科学与工程学报,2004, 22(6): 929-933.
    [40] Walsh D, Mann S. Chemical synthesis of microskeletal calcium phosphate in bicontinuous microemulsions [J]. Chem Mater, 1996, 8: 1994-2001.
    [41]毛传斌,李恒德,崔福斋.无机材料的合成[J].化学进展, 1998, 9: 246-254.
    [42] Roy D M. Porous biomaterials and method of making the Same [P]. U S Patent, 3929971, 1975-12-30.
    [43] Mittelmeier H. Bone substitute material on the base of natural bones [P]. U S Patent, 4654464, 1987-06-17.
    [44] Hing K A, Best A M, Bonfield W. Characterization of porous hydroxyapatite [J]. J Mater Sci: Mater in Medicine, 1999, 10: 135-145.
    [45] Ryshkewitch E. Compression Strength of porous sintered alumina and zirconia[J]. J Am Ceram Soc, 1953, 36: 65-68.
    [46] Klein C, de Groot K, Chen W, Li Y, Zhang X. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues [J]. Biomaterials, 1994, 15: 31-34.
    [47] Arita I H, Wilkinson D S, Mondragón M A, et al. Chemistry and sintering behaviour of thin hydroxyapatite ceramic with controlled porosity [J]. Biomaterials, 1995, 16(5): 403-408.
    [48] Liu Dean-Mo. Fabrication and characterization of porous hydroxyapatite granules [J]. Biomaterials, 1996, 17: 1955-1957.
    [49]姚秀敏,谭寿洪,江东亮.孔径可控的多孔羟基磷灰石的制备工艺研究[J].功能材料与器件学报, 2000, 6(2): 153-156.
    [50]姚秀敏,潭寿洪,江东亮.多孔羟基磷灰石陶瓷的制备[J].无机材料学报, 2000, 3: 467-472.
    [51]赵俊亮,付涛,徐可为.有机泡沫浸渍法制备多孔羟基磷灰石复相陶瓷[J].中国陶瓷, 2003, 39(1): 4-7.
    [52] Yang X, Wang Z. Synthesis of biphasic ceramics of hydroxyapatite andΒ-tricalcium phosphate with controlled phase content and porosity [J]. J Mater Chem, 1998, 8(10): 2233-2237.
    [53] Hassna R R, Zhang M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods [J]. Biomaterials, 2003, 24: 3293-3302.
    [54] Pierre L, Atsuo I. Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics [J]. J Am Ceram Soc, 1998, 81(6): 1421-1428.
    [55] Tancred D C, McCormack B A O, Carr A J. A synthetic bone implant macroscopically identical to cancellous.Bone [J]. Biomaterials, 1998, 19: 2303-2311.
    [56] Engin N O, Tas A C. Manufacture of macroporous calcium hydroxyapatite bioceramics [J]. J Europ Ceram Soc, 1999, 19: 2569-2572.
    [57] He Q J, Huang Z L, Liu Y, Chen W, Xu T. Template-directed one-step synthesis of flowerlike porous carbonated hydroxyapatite spheres [J]. Mater Lett, 2007, 61: 141-143.
    [58]秦振平,郭红霞.模板法合成有序多孔材料研究进展[J].化工进展, 2002, 21(5): 323-327.
    [1]庞利萍,赵瑞红,郭奋,陈建峰,崔文广.新型氧化铝空心球的制备及表征[J].物理化学学报, 2008, 24(6): 1115-1119.
    [2] Huang H, Remsen E E, Kowalewski Tomasz, Wooley K L. Nanocages Derived from Shell Cross-Linked Micelle Templates [J]. J Am Chem Soc, 1999, 121: 3805-3806.
    [3] Mandal T K, Fleming M S, Walt D R. Production of Hollow Polymeric Microspheres by Surface-Confined Living Radical Polymerization on Silica Templates [J]. Chem Mater, 2000, 12: 3481-3487.
    [4]吴壮志,王德志,徐兵.以聚乙二醇为模板剂制备MoS2空心微球[J].物理化学学报, 2008, 24(10): 1927-1931.
    [5] Huang J X, Xie Y, Li B, Liu Y, Qian Y T, Zhang S Y. In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres [J]. Adv Mater, 2000, 12: 808-811.
    [6] Zhu L P, Xiao H M, Zhang W D, Yang G., Fu S Y. One-Pot Template-Free Synthesis of Monodisperse and Single-Crystal Magnetite Hollow Spheres by a Simple Solvothermal Route [J]. Cryst Growth Des, 2008, 8: 957-963.
    [7] Li G K, Zhang Z C. Synthesis of submicrometer-sized hollow titania spheres with controllable shells [J]. Mater Lett, 2004, 58: 2768-2771.
    [8] Li G L, Liu G., Kang E T, Neoh K G, Yang X L. pH-Responsive Hollow Polymeric Microspheres and Concentric Hollow Silica Microspheres from Silica?Polymer Core?Shell Microspheres [J]. Langmuir, 2008, 24: 9050-9055.
    [9] Xu H L, Wang W Z. Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall [J]. Angew Chem Int Ed, 2007, 46: 1489-1492.
    [10] Lou X W, Deng D, Lee J Y, Archer L A. Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties [J]. Chem Mater, 2008, 20: 1336562-6566.
    [11] Jang J, Lee K. Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization [J]. Chem Commun, 2002, 10: 1098-1099.
    [12] Chen J D, Wang Y J, Wei K, Zhang S H, Shi X T. Self-organization of hydroxyapatite nanorods through oriented attachment [J]. Biomaterials, 2007, 28: 2275-2280.
    [13] Sarig S, Kahana F. Rapid formation of nanocrystalline apatite [J]. J Cryst Growth, 2002, 237–239: 55-59.
    [14] He Q J, Huang Z L, Liu Y, Chen W, Xu T. Template-directed one-step synthesis of flowerlike porous carbonated hydroxyapatite spheres [J]. Mater Lett, 2007, 61: 141-143.
    [15] Zhang H G, Zhu Q S, Wang Y. Morphologically Controlled Synthesis of Hydroxyapatite with Partial Substitution of Fluorine [J]. Chem Mater, 2005, 17: 5824-5830.
    [16] Wei K, Wang Y J, Lai C, Ning C Y, Wu D X, Wu G., Zhao N, Chen X F, Ye J D. Synthesis and characterization of hydroxyapatite nanobelts and nanoparticles [J]. Mater Lett, 2005, 59: 220-225.
    [17] Shchukin D G, Sukhorukov G B, M?hwald H. Biomimetic Fabrication of Nanoengineered Hydroxyapatite/Polyelectrolyte Composite Shell [J]. Chem Mater, 2003, 15: 3947-3950.
    [18]黄文旵,王青,王德平.中空羟基磷灰石微球的制备工艺[J].同济大学学报(自然科学版), 2005, 33(1): 88-92.
    [19] Qi L M, Li J, Ma J M. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers [J]. Adv Mater, 2002, 14: 300-303.
    [20] Li C, Botsaris G D, Kaplan D L. Selective in Vitro Effect of Peptides on Calcium Carbonate Crystallization [J]. Cryst Growth Des, 2002, 2: 387-393.
    [21] Hadiko G, Han Y S, Fuji M, Takahashi M. Synthesis of hollow calcium carbonate particles by the bubble templating method [J]. Mater Lett, 2005, 59: 2519-2522.
    [22] Deng S G, Cao J M, Feng J, Guo J, Fang B Q, Zheng M B, Tao J. A Bio-Inspired Approach to the Synthesis of CaCO3 Spherical Assemblies in a Soluble Ternary-Additive System [J]. J Phys Chem B, 2005, 109: 11473-11477.
    [23] Wei H, Shen Q, Zhao Y, Zhou Y, Wang D, Xu D. On the crystallization ofcalcium carbonate modulated by anionic surfactants [J]. J Cryst Growth, 2005, 279: 439-446.
    [24] Shen Q, Wei H, Wang L, Zhou Y, Zhao Y, Zhang Z, Wang D, Xu G, Xu D. Crystallization and Aggregation Behaviors of Calcium Carbonate in the Presence of Poly(vinylpyrrolidone) and Sodium Dodecyl Sulfate [J]. J Phys Chem B, 2005, 109: 18342-18347.
    [25] Yu J, Zhao X, Cheng B, Zhang Q. Controlled synthesis of calcium carbonate in a mixed aqueous solution of PSMA and CTAB [J]. J Solid State Chem, 2005, 178: 861-867.
    [26] Loges N, Graf K, Nasdala L, Tremel W. Probing Cooperative Interactions of Tailor-Made Nucleation Surfaces and Macromolecules: A Bio-inspired Route to Hollow Micrometer-Sized Calcium Carbonate Particles [J]. Langmuir, 2006, 22: 3073-3080.
    [27] Pan Y, Zhao X, Guo Y P, Lv X T, Ren S X, Yuan M R, Wang Z C. Controlled synthesis of hollow calcite microspheres modulated by polyacrylic acid and sodium dodecyl sulfonate [J]. Mater Lett, 2007, 61: 2810-2813.
    [28] Smigelskas A D, Kirkendall E O. Zinc Diffusion in Alpha Brass [J]. Trans AIME, 1947, 171: 130-142.
    [29] Yang J, Qi L, Lu C, Ma J, Cheng H. Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating [J]. Angew Chem Int Ed, 2005, 44: 598-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700