用户名: 密码: 验证码:
Ⅱ-Ⅵ族半导体纳米晶的合成及其在聚合物体系中的复合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机半导体纳米晶具有依赖于尺寸的优异的光电性质,在荧光编码、生物标记、荧光显示和可调激光器等方面显示出广阔的应用前景。如何提高纳米晶的质量,即提高其稳定性、量子效率、尺寸分散性等是纳米晶合成领域追求的一个目标;同时,由于胶体化学法合成的纳米晶是分散在溶液中的,具有自身的不稳定性,严重限制了其应用范围,因此,将纳米晶和其它材料复合,保护纳米晶免受外界环境的破坏,提高其稳定性,实现不同材料功能间的集成,是实现纳米晶在多领域应用的前提。本论文一方面从提高纳米晶单分散性出发,合成了具有单一尺寸的魔尺寸(magic-size)CdS纳米晶,纳米晶的紫外吸收和荧光发射半峰宽都降到了10 nm以内,探索了魔尺寸纳米晶的生成机理;另一方面广泛地研究了纳米晶和一系列聚合物基质结构,如微球、纤维及胶囊等的复合方法,通过对纳米晶进行表面改性、增加纳米晶和聚合物之间相互作用、避免纳米晶直接参加聚合反应和采取适当的物理加工方法等,解决了复合中常遇到的由于纳米晶的氧化、分解、聚集等导致的荧光淬灭等问题,实现了纳米晶在多种聚合物基质结构上的可控复合,为扩展纳米晶的应用领域奠定了基础。
Semiconductor nanocrystals (NCs) have many unique optoelectronic properties, for example, the bandgap of NCs can be tuned by its size, their emission band is narrow and symmetric, different emissions of NCs’can be excited simultaneously by a single excitation source for their continuous absorption spectra, and so on. Thus, NCs have promising and extensive applications in bio-labeling, bio-imaging, optical coding, laser, fluorescence display, and so on. During the resent two decades, there have been great improvements in the field of NCs, and NCs have been playing an important and active role in bio-label area. However, there is still a long way to go to realize NCs’supposed extensive applications in other areas. To realize these applications, it requires NCs have high quality with narrow size distribution, high stability and high quantum yield (QY) on the one hand; on the other hand, it is necessary to combine NCs with various matrix structures to enhance NCs’stability and to integrate their functions. It is challenging to improve the quality of NCs to meet the application requirements, and resolve the problems that lie in the combination of NCs with different polymer structures, such as the oxidation, decomposition, and aggregation of NCs and the resulting quenching of emission.
     The first chapter of the thesis reviews the properties of NCs and the developments in the area ofⅡ-ⅥNCs in recent two decades, including the improvement on the synthesis methods, the evolution on NCs compositions and structures, the exploration of the growth kinetics, the methods to combine NCs with matrix materials and their applications. In the end, the design of the thesis is proposed according to the actuality and the problems that remain to be resolved in this area, which is to prepare stable magic-size NCs with single size distribution and narrow bandgap emission and explore reliable and facile method to combine NCs with various polymer micro-structures and lay foundation for extending their applications.
     The second chapter aims at narrowing down the size distribution of NCs and explores methods to synthesize magic-size CdS NCs. By systematical tuning the experimental parameters, such as, the feed ratio of reactants, reaction temperature and reaction time, a CdS magic-size NCs family with UV absorption at 378 nm was obtained. The magic-size NCs have bandgap emission at 378 nm with nearly zero Stokes shift, and the full width at half maximum have been narrowed to less than 10 nm. The growth kinetics of magic-size CdS NCs were investigated by monitor the isothermal growth process, and it is found that the stability difference between regular NCs and magic-size NCs governed the exclusive generation of magic-size NCs. Solid state nuclear magnetic resonance spectroscopy, X-ray diffraction, 1H-Diffusion ordered spectroscopy (DOSY) nuclear magnetic resonance and transmission electron microscopy were used to characterize the composition, structure and size of the magic-size NCs
     The third to the fifth chapter deals with the methods to combine NCs with various polymer matrix structures, such as microspheres, fibers and micro-capsules. Surface-modifying of the NCs, enhancing the interaction between NCs and polymer matrix, avoiding the NCs in the polymerization process and using proper physical process were applied to prevent the oxidation, decomposition and aggregation of NCs in the matrix and make the combination of NCs with polymer micro-structures controllable. These composite structures will extend the applications of NCs in areas such as bio-label, fluorescence display, waveguide and smart materials.
     The third chapter deals with the methods to combine aqueous CdTe NCs with different size-scaled spheres. As for the synthesis of nanometer-size composite spheres, 40 nm to 100 nm positively charged polystyrene spheres were prepared by adding cationic monomer to emulsifier free emulsion system of styrene, then negatively charged CdTe NCs were adsorbed onto the spheres by static interaction. The amount of CdTe NCs on the spheres was controlled by the feed ratio of NCs to the spheres. NCs preserved good fluorescence properties. Although NCs were on the sphere’s surface, they were more stable than bare NCs. The polymer nanosphere can be used as the carrier of NCs in preparing transparent film. Rayleigh scattering was reduced for the small size of the spheres, and the transparency of the film was guaranteed; also, the mobilization of NCs on the spheres’s surface avoided NCs’aggregation and their fluorescence properties were preserved.
     The above method is very successful in preparing nanometer composite spheres; however, it is difficult to extend the size to sub-micrometer scale. To overcome this problem, acrylic acid was added to the emulsifier free emulsion polymerization system of styrene and a series of polystyrene spheres in the size range of 200 nm to 600 nm were prepared with narrow size distribution. Negatively charged CdTe were extracted to organic solution by cationic surfactant and swollen into the spheres. The swollen efficiency was near 100%. Not only single colored NCs were swollen into the spheres in a controllable way, but also multi-color NCs were swollen into the spheres with desired intensity ratio. NCs were confined to the spheres, water or even organic solution could not wash the NCs out.
     Emulsion polymerization is not applicable any more to prepare micrometer composite spheres. Here, we used post-process method to obtain spheres in micrometer scale. Polymerizable cationic surfactant was used to copolymerize with styrene to prepare cationic polystyrene polymer and extract negatively charged CdTe to form a CdTe NCs-polymer composite. Then the organic composite solution was emulsified into micrometer droplet. After the organic solvent evaporated completely, high fluorescent micrometer composite spheres were obtained.
     The fourth chapter deals with the process of aqueous CdTe NCs-polymer blending solution into polymer nanofibers by electrospinning method. NCs had surprisingly as good dispersibility in the fibers as in water, which was totally different with other composite materials from blending solution. The reason why NCs have so good dispersity was investigated, and it is found that the fast evaporation of the solvents because of the large specific surface area of the fibers, together with the effect of electric field caused the fast solidification of polymer chains and the freeze of NCs in their places. In this way, not only single color emission, but also multicolor emissions of NC-polymer composite fibers can be obtained in a well controllable way. Electrospinning method is also applicable to prepare other NC-polymer composite from blending solution. The application of the composite fibers in the area of responsive materials was investigated. NCs could grow in the solid fibers when treated above the glass transition temperature of the composite while the relaxation of polymer chains brought NCs to bump. For the growth rate was dependent on growth temperature it could be used in heat detector and used for heat induced fluorescence patterns.
     The fifth chapter deals with the incorporation of CdSe/ZnS NCs into poly (cucurbit(6)uril) (poly(CB)6) capsules. Ally-CB6 which can self-assembly into capsules during polymerization with di-thiol molecules was first prepared by a two steps modification of CB6. Mercapto-acid was used to cap CdSe/ZnS by ligand exchange and the NCs were introduced into the UV light irradiation polymerization system. For the interaction of NCs with dithiol, NCs were all brought into the capsules. NCs stand the polymerization conditions and preserved high fluorescence. The liability to surface modification of the host molecules of CB6 makes it possible to be use in bio-systems.
     To sum up, a lot of fundamental work on the preparation of high quality NCs and incorporation of NCs into various polymer micro-structures has been done and it lays foundation for the extension of applications of NCs.
引文
1刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社, 2003.
    2 G. B. Sergeev.纳米化学[M].北京:科学出版社, 2007.
    3李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社, 2003.
    4周兆英,王中林,林立伟.微系统和纳米技术[M].北京:科学出版社, 2007.
    5 Bloch wave. http://en.wikipedia.org/wiki/Bloch_waves.
    6 L. Brus. Electronic wave functions in semiconductor clusters: experiment and theory [J]. J. Phys. Chem., 1986, 90: 2555–2560.
    7 T. Trindade,P. O’Brien, N. L. Pickett. Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives [J]. Chem. Mater., 2001, 13: 3843-3853.
    8 K. Lin , H. Cheng, H. Hsu ,et al. Band gap variation of size-controlled ZnO quantum dotssynthesized by sol–gel method [J]. Chem. Phys. Lett., 2005, 409: 208–211
    9 D. V. Talapin, A. L. Rogach, A. Kornowski, et al. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture [J]. Nano Lett., 2001, 1, 207-211.
    10 L. Medintz, H. T. Uyeda, E. R. Goldman, et al. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nat. Mater., 2005, 4: 435-446.
    11 Streetman, Ben G.; Sanjay Banerjee. Solid State electronic Devices [M] (5th edition.). New Jersey: Prentice Hall. pp. 524. ISBN 0-13-025538-6, 2000.
    12 J. Wu, W. Walukiewicz, H. Lu, et. al. Unusual Properties of the Fundamental Bandgap of InN [J]. Appl. Phys. Lett., 2002,80: 3967-3969.
    13 Madelung, Otfried. Semiconductors - Basic Data [M] (2nd edtion.). Berlin Heidelberg New York: Springer-Verlag. ISBN 3-540-60883-4. 1996.
    14 A. L. Rogach, A. Kornowski, M. Gao, et al. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals [J]. J. Phys. Chem. B, 1999, 103: 3065-3069.
    15 N. Gaponik, D. V. Talapin, A. L. Rogach, et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes [J]. J. Phys. Chem. B,2002, 106: 7177-7185.
    16 D. V. Talapin, A. L. Rogach, et al. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2002, 202: 145–154.
    17 L. Qu, Z. A. Peng, X. Peng. Alternative Routes toward High Quality CdSe Nanocrystals [J]. Nano Lett., 2001, 1: 333-337.
    18 M. Han, X. Gao, J. Z. Su, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nat. Biotech., 2001, 19: 631-635.
    19 J. Lee, V. C. Sundar, J. R. Heine et al. Full color wmission fromⅡ-Ⅳsemiconductor Quantum dot-polymer composite [J]. Adv. Mater., 2000, 12: 1102-1105.
    20 X. Hong, J. Li, M. Wang. Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach [J]. Chem. Mater., 2004, 16: 4022-4027.
    21 Y. Chan, P. T. Snee, J. Caruge, et al. A Solvent-Stable Nanocrystal-Silica Composite Laser [J]. J. Am. Chem. Soc., 2006, 128: 3146-3147.
    22 A. R. Clapp, I. L. Medintz, H. Mattoussi. F?rster Resonance Energy TransferInvestigations Using Quantum-Dot Fluorophores [J]. ChemPhysChem, 2006, 7: 47–57.
    23 A. R. Clapp, I. L. Medintz, J. Matthew Mauro. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors [J]. J. Am. Chem. Soc., 2004, 126: 301-310.
    24 I. Mekis, D. V. Talapin, A. Kornowski, et al. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and“Greener”Chemical Approaches [J]. J. Phys. Chem. B, 2003, 107: 7454-7462.
    25 J. Rodriguez-Viejo, K. F. Jensen, H. Mattoussi, et al. Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites [J]. Appl. Phys. Lett., 1997, 70: 2132-2134.
    26 Xu, D. H. Cui, T. Zhu,et al. Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications [J]. Nanotechnology, 2006, 17: 5428–5434.
    27 J. W. Stouwdam, J. Shan, F. van Veggel,et al. Photostability of Colloidal PbSe andPbSe/PbS Core/Shell Nanocrystals in Solution and in the Solid State [J]. J. Phys. Chem. C, 2007, 111: 1086-1092.
    28 M. A. Hines, P. Guyot-Sionnest. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals [J]. J. Phys. Chem., 1996, 100: 468-471.
    29 S. Kim, B. Fisher, H. J. Eisler, et al. Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell)Heterostructures [J]. J. Am. Chem. Soc., 2003, 125: 11466-11467.
    30 K. Yu, B. Zaman, S. Romanova, et al. Sequential Synthesis of Type II Colloidal CdTe/CdSe Core–Shell Nanocrystals [J]. Small, 2005, 1: 332-338.
    31 C. Chen, C. Cheng, J.Yu, et al. Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core?Shell Semiconductor Synthesized via the CdO Precursor [J]. J. Phys. Chem. B, 2004, 108: 10687-10691.
    32 A. H?sselbarth, A. Eychmüller, R. Eichberger, et al. Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids [J]. J. Phys. Chem., 1993, 97: 5333-5340.
    33 D. Schooss, A. Mews, A. Eychmüller, et al. Quantum-dot quantum well CdS/HgS/CdS: Theroy and experiment [J]. Phys. Rev. B, 1994, 49: 17072-17078.
    34 X. H. Zhong, R. G. Xie, Y. Zhang, et al. High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals [J]. Chem. Mater., 2005, 17: 4038–4042.
    35 P. Reiss, M. Protie`re, L. Li. Core/Shell Semiconductor Nanocrystals [J]. Small, 2009, 5: 154–168
    36 C. T. Cheng, C. Y. Chen, C. W. Lai, et al. Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots [J]. J. Mater. Chem., 2005, 15: 3409–3414.
    37 P. Reiss, S. Carayon, J. Bleuse, et al. Low polydispersity core/shell nanocrystals of CdSe/ZnSe and CdSe/ZnSe/ZnS type: preparation and optical studies [J]. Synth. Met., 2003, 139: 649–652.
    38 R. E. Bailey, S. Nie. Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size [J]. J. Am. Chem. Soc. 2003, 125: 7100-7106.
    39 J. Ouyang, C. I. Ratcliffe, D. Kingston, et al. Gradiently Alloyed ZnxCd1-xS Colloidal Photoluminescent Quantum Dots Synthesized via a Non-injection One-Pot Approach [J]. J. Phys. Chem. C, 2008, 112: 4908-4919.
    40 B. Tang, Fei Yang, Y. Lin, et al. Synthesis and Characterization of Wavelength-Tunable, Water-Soluble, and Near-Infrared-Emitting CdHgTe Nanorods [J]. Chem. Mater., 2007, 19: 1212-1214.
    41 J. S. Steckel, P. Snee, S. Coe-Sullivan, et al. Color-Saturated Green-Emitting QD-LEDs [J]. Angew. Chem. Int. Ed. 2006, 45: 5796–5799.
    42 W. K. Bae, K. Char, H. Hur, et al. Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients [J]. Chem. Mater., 2008, 20: 531–539.
    43 M. Brack. Metal Clusters and magic numbers [J]. Sci. Am., 1997, 277: 50-55.
    44 A. Kasuya, R. Sivamohan, Y. A. Barnakov, et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry [J]. Nat. Mater., 2004, 3: 99-102.
    45 Q. Dai, D. Li, J. Chang, et al. Facile synthesis of magic-sized CdSe and CdTe nanocrystals with tunable existence periods [J]. Nanotechnology, 2007, 18: 405603-405609.
    46 J. Ouyang, Md. B. Zaman, F. J. Yan, et al. Multiple Families of Magic-Sized CdSe Nanocrystals with Strong Bandgap Photoluminescence via Noninjection One-Pot Synthesis [J]. J. Phys. Chem. C, 2008, 112, 13805-13811.
    47 C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites [J]. J. Am. Chem. Soc., 1993, 115: 8706-8715.
    48 D. V. Talapin, A. L. Rogach, I. Mekis, et al. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals [J]. Colloids and Surface A, 2002, 202: 145-154.
    49 Z. A. Peng, X. Peng. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor [J]. J. Am. Chem. Soc., 2001, 123: 183-184.
    50 X. Zhong, Y. Feng, Y. Zhang. Facile and Reproducible Synthesis of Red-Emitting CdSe Nanocrystals in Amine with Long-Term Fixation of Particle Size and Size Distribution [J]. J. Phys. Chem. C, 2007, 111: 526-531.
    51 W. W. Yu and X. Peng. Formation of High Quality Semiconductor Nanocrystals In Non-Coordinating Solvent: Tunable Reactivity of Monomers [J]. Angew. Chem. Int. Ed., 2002, 41: 2368-2371.
    52 S. Asokan, K. M. Krueger, A. Alkhawaldeh et al. The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods [J]. Nanotechnology, 2005, 16: 2000–2011.
    53 J. Liu, J. Fan, Z. Gu, et al. Green Chemistry for Large-Scale Synthesis of Semiconductor Quantum Dots [J]. Langmuir, 2008, 24: 5241– 5244.
    54 B. A. Kairdolf, A. M. Smith, S. Nie. One-Pot Synthesis, Encapsulation, and Solubilization of Size-Tuned Quantum Dots with Amphiphilic Multidentate Ligands [J]. J. Am. Chem. Soc., 2008, 130: 12866–12867
    55 J. M. Pietryga, R. D. Schaller, D. Werder, et al. Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots [J]. J. Am. Chem. Soc., 2004, 126: 11752-11753.
    56 J. Joo, H. B. Na, T. Yu, et al. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals [J]. J. Am. Chem. Soc., 2003, 125: 11100-11105.
    57 S. Kudera, M. Zanella, C. Giannini. Sequential Growth of Magic-Size CdSe Nanocrystals [J]. Adv. Mater., 2007, 19: 548–552.
    58 T. Rajh, O. I. Mi?i?, A. J. Nozik. Synthesis and Characterization of Surface-Modified Colloidal CdTe Quantum Dots [J]. J. Phys. Chem., 1993, 97: 11999-12003.
    59 M. Y. Gao, S. Kirstein, H. Mohwald, et al. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification [J]. J. Phys. Chem. B, 1998, 102: 8360–8363.
    60 H. Bao, Y. Gong, Z. Li et al. Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core-Shell Structure [J]. Chem. Mater., 2004, 16: 3853–3859
    61 H. Zhang, D. Wang, B. Yang et al. Manipulation of Aqueous Growth of CdTe Nanocrystals To Fabricate Colloidally Stable One-Dimensional Nanostructures [J]. J. Am. Chem. Soc., 2006, 128: 10171–10180.
    62 A. Shavel, N. Gaponik, A. Eychmuller, Factors Governing the Quality of Aqueous CdTe Nanocrystals: Calculations and Experiments [J]. J. Phys. Chem. B, 2006, 110: 19280–19284.
    63 C. Li, N. Murase. Surfactant-dependent Photoluminescence of CdTe Nanocrystals in Aqueous Solution [J]. Chem. Lett., 2005, 34: 92–93.
    64 K. Zhao, J. Li, H. Wang,et al. Stoichiometric Ratio Dependent Photoluminescence Quantum Yields of the Thiol Capping CdTe Nanocrystals [J]. J. Phys. Chem. C, 2007, 111: 5618–5621.
    65 L. Li, H. Qian, N. Fang et al. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions [J]. J. Lumin., 2005, 116: 59–66.
    66 A. Shavel, N. Gaponik, A. Eychmuller. Covalent Linking of CdTe Nanocrystals to Amino- Functionalized Surfaces [J]. ChemPhysChem, 2005, 6: 449–451.
    67 L.Zou, Z. Gu, N. Zhang, et al. Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase [J]. J. Mater. Chem., 2008, 18: 2807–2815.
    68 H. Zhang, L. Wang, H. Xiong, et al. Hydrothermal synthesis for high quality CdTe nanocrystals [J]. Adv. Mater., 2003, 15: 1712–1715.
    69 Y. He, L. Sai, H. Lu, et al. Microwave-Assisted Synthesis of Water-Dispersed CdTe Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution [J]. Chem. Mater., 2007, 19: 359-365.
    70 M. B?umle, D. Stamou, J. Segura, et al. Highly Fluorescent Streptavidin-Coated CdSe Nanoparticles: Preparation in Water, Characterization, and Micropatterning [J]. Langmuir, 2004, 20: 3828-3831.
    71 H. Qian, C. Dong, J. Weng, et al. Facile One-Pot Synthesis of Luminescent,Water-Soluble, and Biocompatible Glutathione-Coated CdTe Nanocrystals [J]. Small, 2006, 2: 747– 751.
    72 H. Bao, E. Wang, S. Dong. One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe–Cystine Nanocomposites [J]. Small, 2006, 2: 476–480.
    73 X. Peng, J. Wickham, A. P. Alivisatos. Kinetics of II-VI and III-V ColloidalSemiconductor Nanocrystal Growth:“Focusing”of Size Distributions [J]. J. Am. Chem. Soc., 1998, 120: 5343-5344.
    74 C. D. M.Donegá, S. G. Hickey, S. F. Wuister, et al. Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals [J]. J. Phys. Chem. B, 2003, 107: 489-496.
    75 D. V.Talapin, A. L. Rogach, Haase, M. Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study [J]. J. Phys. Chem. B, 2001, 105: 12278-12285.
    76 W. W.Yu, L. Qu, W.Guo, et al. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals [J]. Chem. Mater. 2003, 15: 2854-2860.
    77 L. Qu X. Peng. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth [J]. J. Am. Chem. Soc., 2002, 124: 2049-2055.
    78 M. Lazell P. O’Brien. Synthesis of CdS nanocrystals using cadmium dichloride and trioctylphosphine sulfide [J]. J. Mater. Chem., 1999, 9: 1381–1382.
    79 K. Yong, Y. Sahoo, M. T. Swihartet al. Shape Control of CdS Nanocrystals in One-Pot Synthesis [J]. J. Phys. Chem. C, 2007, 111: 2447-2458.
    80 J. M. Pietryga, D. J. Werder, D. J. Williams. Utilizing the Lability of Lead Selenide to Produce Heterostructured Nanocrystals with Bright, Stable Infrared Emission [J]. J. Am. Chem. Soc., 2008, 130: 4879-4885.
    81 Z. Yu, J. Li, D. B. O’Connor, et al. Large Resonant Stokes Shift in CdS Nanocrystals [J]. J. Phys. Chem. B, 2003, 107: 5670-5674.
    82 T. Vossmeyer, L. Katsikas, M. Gienig, et al. CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift [J]. J. Phys. Chem., 1994, 98: 7665-7673.
    83 P. O’Brien, S. S. Cummins, D. Darcy, Quantum dot-labelled polymer beads by suspension polymerization [J]. Chem. Commun. 2003, 2532–2533.
    84 Q. Wang, N. Iancu, D. Seo. Preparation of Large Transparent Silica Monoliths with Embedded Photoluminescent CdSe@ZnS Core/Shell Quantum Dots [J]. Chem. Mater.2005, 17, 4762-4764.
    85 Y. Chan, J. P. Zimmer, M. Stroh, et al. Incorporation of luminescent nanocrystals into monodispersed core-shell silica microspheres [J]. Adv. Mater., 2004, 16: 2092-2097.
    86 X. Cao, C. Li, H. Bao,et al. Fabrication of Strongly Fluorescent Quantum Dot-Polymer Composite in Aqueous Solution [J]. Chem. Mater., 2007, 19: 3773-3779.
    87 H. Zhang, Z. Cui, Y. Wang, et al. From water soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composite using polymerizable surfactant [J]. Adv. Mater., 2003, 15: 777-780.
    88 M. Gao, J. Sun, E. Dulkeith. Lateral Patterning of CdTe Nanocrystal Films by the Electric Field Directed Layer-by-Layer Assembly Method [J]. Langmuir, 2002, 18: 4098-4102.
    89 N. Gaponic, I. L. Radtchenko, G. B. Sukhorukov, et al. Towards encoding combinatorial libraries: Charge-driven microencapsulation of semiconductor nanocrystals luminecing in the visible and near IR [J]. Adv. Mater. 2004, 12: 879-882.
    90 D. Wang, A. L. Rogach, F. Caruso. Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly [J]. Nano Lett., 2002, 2: 857-861.
    91 X. Hong, J. Li, M. Wang, et al. Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach [J]. Chem. Mater. 2004, 16: 4022-4027.
    92 X. Gao, S. Nie. Doping Mesoporous Materials with Multicolor Quantum Dots [J]. J. Phys. Chem. B, 2003, 107: 11575-11578.
    93 H. Zhang,C. Wang, M. Li, et al. Fluorescent nonocrystal-polymer composite with flexible processibility [J]. Adv. Mater., 2005, 17: 853-857.
    94 Y. Gong, M. Gao, D. Wang et al. Incorporating Fluorescent CdTe Nanocrystals into a Hydrogel via Hydrogen Bonding: Toward Fluorescent Microspheres with Temperature-Responsive Properties [J]. Chem. Mater., 2005, 17: 2648-2653.
    95 Y. Yang, M. Gao Preparationof fluorescent SiO2 particles with single CdTe cores by the recerse microemulsion method [J]. Adv. Mater., 2005, 17: 2354-2357.
    96 S. T. Selvan, T. T. Tan, J. Y. Ying. Robust non-cytotoxic silica- coated CdSe quantum dots with efficient phototluminecene [J]. Adv. Mater., 2005, 17: 1620-1625.
    97 N. Joumaa, M. Lansalot, A. Théretz, et al. Synthesis of Quantum Dot-Tagged Submicrometer Polystyrene Particles by Miniemulsion Polymerization [J]. Langmuir 2006, 22: 1810-1816.
    98 P. T. Snee, Y. Chan, D. G. Nocera, et al. Whispering-Gallary Mode conductor nanocrystal/microsphere resonator composite [J]. Adv. Mater., 2005, 17: 1131-1136.
    99 F. Fleischhaker, R. Zentel. Photonic Crystals from Core-Shell Colloids with Incorporated Highly Fluorescent Quantum Dots [J]. Chem. Mater., 2005, 17: 1346-1351.
    100 W. U. Huynh, J. J. Dittmer, A. P. Alivisatos. Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer [J]. Science, 2002, 295: 2425-2427.
    101 B. Q. Sun, E. Marx, N. C., Greenham, Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers [J]. Nano Lett., 2003, 3: 961-963.
    102 Y. Kang, N. G. Park, D. Kim. Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer [J]. Appl. Phys. Lett., 2005, 86: 113101-1-113101-3.
    103 R. J. Ellingson, M. C. Beard, J. C. Johnson, et al. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots [J]. Nano lett., 2005, 5: 865-871.
    104 J. Jasieniak, J. Pacifico, R. Signorini, et al. Luminescence and Amplified Stimulated Emissionin CdSe–ZnS-Nanocrystal-Doped TiO2 and ZrO2 Waveguides [J]. Adv. Funct. Mater., 2007, 17: 1654–1662.
    105 H. Liu, J. B. Edel, L. M. Bellan, et al. Electrospun Polymer Nanofibers as Subwavelength Optical Waveguides Incorporating Quantum Dots [J]. Small, 2006, 2: 495–499.
    106 C. Wang, L. Huang, B. A. Parviz, et al. Subdiffraction Photon Guidance by Quantum-Dot Cascades [J]. Nano Lett., 2006, 6: 2549-2553.
    107 L. Pang, K. Tetz, Y. Shen,et al. Photosensitive quantum dot composites and their applications in optical structures [J]. J. Vac. Sci. Technol. B, 2005, 23: 2413-2418.
    108 S. A. Empedocles, R. Neuhauser, K.Shimizu, et al. Photoluminescence from sigle semiconductor nanostructures [J]. Adv. Mater., 1999, 11: 1243-1256.
    109 P. Dagtepe, V.Chikan, J Jasinski. Quantized Growth of CdTe Quantum Dots; Observation of Magic-Sized CdTe Quantum Dots [J]. J. Phys. Chem. C, 2007, 111: 14977-14983.
    110 K. Yu, J. Ouyang, Md. B. Zaman, et al. J. Phys. Chem. C, 2009, accepted.
    111 R. Wang, J. Ouyang, S. Nikolaus, et al. Chem. Commun., 2009, DOI: 10.1039/.
    112 R. Wang, O. Calvignanello, C. I. Ratcliffe, et al. J. Phys. Chem. C, 2009, accepted.
    113 P. Scherrer N. G. W. G?ettingen, Math.-physik.Klasse[M], 1918, 98.
    114 R. J. Bandaranayake, G. W. Wen, J. Y. Lin, et al, Structural phase behavior in II–VI semiconductor nanoparticles [J]. Appl. Phys. Lett., 1995, 67: 831-833.
    115 O. Kohlmann, W. E. Steinmetz, X. Mao, et al. NMR Diffusion, Relaxation, and Spectroscopic Studies of Water Soluble, Monolayer-Protected Gold Nanoclusters [J]. J. Phys. Chem. B, 2001, 105: 8801-8809.
    116 J. Li, X. Hong, Y. Liu, et al. Highly photoluminecent CdTe/ poly(N-isopropylacrylamide) temperature sensitive gels [J]. Adv. Mater., 2005, 17: 163-166.
    117 S. Xu, X. Han. A novel method to construct a third-generation biosensor:self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres [J]. Biosensors and Bioelectronics, 2004, 19: 1117–1120.
    118 R. M. Br Fitch. The homogeneous nucleation of polymer colloids [J]. Polym. J. 1973, 5: 467-483.
    119 D. Munro; A. R.Goodall; M. C. Wilkinson, et al. Study of particle nucleation, flocculation, and growth in the emulsifier-free polymerization of styrene in water by total intensity light scattering and photon correlation spectroscopy.[J]. J Colloid Interface Sci 1979, 68: 1-13.
    120 J. W. Goodwin, J. Hearn, C. C. Ho. The preparation and characterization of polymer latices formed in the absence of surface-active agents [J]. Polym. J. 1973, 5:347-362.
    121 F. Ganachaud, F.Sauzedde, A. Elaissari, et al. Emulsifier-free emulsion copolymerization of styrene with two different amino-containing cationic monomers. I. Kinetic studies [J]. J. Appl. Polym. Sci., 1997, 65: 2315-2330.
    122 J. L. Guillaume, C. Pichot, J. Guillot. Emulsifier-free emulsion copolymerization of styrene and butyl acrylate. II. Kinetic studies in the presence of ionogenic comonomers [J]. J. Polym. Sci.: Polym. Chem., 1988, 26: 1937-1959.
    123 Z. Liu, H. Xiao, N. Wiseman“Emulsifier-free emulsion copolymerization of styrene with quaternary ammonium cationic monomers”, Journal of Applied Polymer Science, 2000 76, 1129–1140
    124 P. H. Wang, C. Pan. Polymer–Metal Composite Particles: Metal Particles on Poly(St-co-MAA) Microspheres [J]. J. of Appl. Polym. Sci., 2000. 75: 1693–1698.
    125 C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: dedign, synthesis and application [J] J. Mater. Chem. 2009, 19, 2884-2901.
    126 S. J. Wilson, M.C. Huley, The optialc properties of‘moth eye’antireflection surfaces [J] Optica Acta 1982,29 993-1009.
    127 S. Xu, X. Han. A novel method to construct a third-generation biosensor: self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres [J]. Biosensors and Bioelectronics, 2004, 19: 1117–1120.
    128张皓碲化镉纳米晶的制备及与聚合物的复合[D]长春:吉林大学化学学院,2004.
    129 Y. Xia, P. Yang, Y. Sun, et al. One-dimensional nanoctructure: synthesis, Characterization, and Applications [J]. Adv. Mater., 2003, 15: 353-389.
    130 J. C. Johnson, H. Yan, P. Yang, et al. Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides [J]. J. Phys. Chem. B, 2003, 107: 8816-8828.
    131 Z. Zhang, X. Sun, M. S. Dresselhaus, et al. Electronic transport properties of single-crystal bismuth nanowire arrays [J]. Phys. Rev. B, 2000, 61: 4850-4861.
    132 M. Law, D. Sirbuly, J. Johnson, et al. Nanoribbon Waveguides for Subwavelength Photonics Integration [J]. Science, 2004, 305: 1269-1273.
    133 P. Pauzauskie, P. Yang. Nanowire photonics [J]. Materials Today, 2006, 9: 36-45.
    134 Y. Li, F. Qian, J. Xiang, et al. Nanowire electronic and optoelectronic devices [J]. Materials Today, 2006, 9: 18-27.
    135 a) S. Ravindran, S. Chaudhary, B. Colburn, et al. Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications [J]. Nano Lett., 2003, 3: 447-453.
    136 H. Zhang, E. W. Edwards, D. Wang, et al. Directing the self-assembly of nanocrystals beyond colloidal crystallization [J]. Phys. Chem. Chem. Phys., 2006, 8: 3288-3299.
    137 A. Formhals, US Patent No 1 975 504. 1934.
    138 Z. Huang, Y. Zhang, M. Kotaki, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Compos. Sci. Technol. 2003, 63: 2223-2253.
    139 C. L. Casper, J. S. Stephens, N. G. Tassi. Hybrid Latex Particles Coated with Silica [J]. Macromolecules 2004, 37: 573-579.
    140 Y. You, B. Min, S. J. Lee, et al. In Vitro Degradation Behavior of Electrospun Polyglycolide, Polylactide, and Poly(lactide-co-glycolide) [J]. J. Appl. Polym. Sci., 2005, 95: 193-200.
    141 D. Li, Y. Xia. Electrospinning of nanofibers: reinventing the wheel? [J]. Adv. Mater., 2004, 16: 1151-1170.
    142 J. Macossay, J. H. Leal, A. Kuang, et al. Electrospun fibers from poly(methyl methacrylate)/vapor grown carbon nanofibers [J]. Polym. Adv. Technol., 2006, 17: 391-394.
    143 D. Li, Y.Wang, Y. Xia. Electrospinning of nanofibers as uniaxially aligned arrays and layer by layer stacked films [J]. Adv. Mater., 2004, 16: 361-366.
    144 D. Sun, C., Chang, S Li, et al. Near-Field Electrospinning [J]. Nano Lett., 2006, 6: 839-842.
    145 B. Ding, H. Kim, S. Lee, et al. Preparation and Characterization of a Nanoscale Poly(vinyl alcohol) Fiber Aggregate Produced by an Electrospinning Method [J]. J. Polym. Sci. Part B: Polym. Phys., 2002, 40: 1261-1268.
    146 L. Yao, T. W. Haas, A. Guiseppi-Elie, et al. Electrospinning and Stabilization ofFully Hydrolyzed Poly(Vinyl Alcohol) Fibers [J]. Chem. Mater., 2003, 15: 1860-1864.
    147 R. Fernández, P. Ferreira-Aparicio, L. Daza. PEMFC electrode preparation: Influence of the solvent composition and evaporation rate on the catalytic layer microstructure [J]. J. Power Sources, 2005, 151: 18-24.
    148 J. S. Stephens, D. B. Chase, J. F. Rabolt. Effect of the Electrospinning Process on Polymer Crystallization Chain Conformation in Nylon-6 and Nylon-12 [J]. Macromolecules, 2004, 37: 877-881.
    149 J. Persello, J. Boisvert, A. Guyard. Structure of Nanometric Silica Clusters in Polymeric Composite Materials [J]. J. Phys. Chem. B, 2004, 108: 9678-9684.
    150 F. C. Lai, M. Huang, D. S. Wong. EHD-Enhanced Water Evaporation [J]. Drying Technol., 2004, 22: 597-608.
    151 K. Nakane, T. Yamashita, K. Iwakura, et al. Properties and Structure of Poly(vinyl alcohol)/Silica Composites [J]. J. Appl. Polym. Sci. 1999, 74: 133–138.
    152 C. Shao, H. Kim, J. Gong. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning [J]. Mater. Lett., 2003, 57: 1579– 1584.
    153 J. Lee, K. H. Choi, H. D. Ghim. Role of Molecular Weight of Atactic Poly(vinyl alcohol) (PVA) in the Structure and Properties of PVA Nanofabric Prepared by Electrospinning [J]. J. Appl. Polym. Sci., 2004, 93: 1638–1646.
    154严瑞.水溶性高分子[M].北京:化学工业出版社,1998.
    155 A. M. Derfus, W. C. W. Chan, S. N. Bhatia. Probing the Cytotoxicity of Semiconductor Quantum Dots [J]. Nano Lett. 2004, 4: 11-18.
    156 A. Hoshino, K. Fujioka, T..Oku, et al. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification [J]. Nano Lett., 2004, 4: 2163-2169.
    157 M. C.Mancini, B. A. Kairdolf, A. M. Smith, et al. Oxidative Quenching and Degradation of Polymer-Encapsulated Quantum Dots: New Insights into the Long-Term Fate and Toxicity of Nanocrystals in Vivo [J]. J. Am. Chem. Soc., 2008, 130: 10836-10837.
    158 R. Xie, D. Battaglia,; X. Peng. Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared [J]. J. Am. Chem. Soc. 2007, 129, 15432-15433.
    159 E. Tasciotti, X. Liu, R. Bhavane, et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications [J]. Nature Nanotech. 2008, 3: 151-157.
    160 B. Wang; Q. Zhao, F. Wang. Biologically Driven Assembly of Polyelectrolyte Microcapsule Patterns To Fabricate Microreactor Arrays [J]. Angew. Chem. Int. Ed. 2006, 45, 1560-1563.
    161 H. Skaff, Y. Lin, R. Tangirala, et al. Crosslinked Capsules of Quantum Dots by Interdacial Assembly and ligand crosslinking [J]. Adv. Mater., 2005, 17: 2082-2086.
    162 G. Schabas,; H. Yusuf, M. G. Moffitt, et al. Controlled Self-Assembly of Quantum Dots and Block Copolymers in a Microfluidic Device [J]. Langmuir 2008, 24: 637-643.
    163 A. Petukhova, Paton, A. S.; Wei, Z.et al. Polymer Multilayer Microspheres Loaded with Semiconductor Quantum Dots [J]. Adv. Funct. Mater. 2008, 18: 1961-1968.
    164 J. Lagona, P. Mukhopadhyay, S. Chakrabarti, et al. The Cucurbit[n]uril Family [J]. Angew. Chem. Int. Ed., 2005, 44: 4844– 4870.
    165 D. Kim, E. Kim, J Kim, et al. Direct Synthesis of Polymer Nanocapsules with a Noncovalently Tailorable Surface [J]. Angew. Chem., Int. Ed. 2007, 46: 3471-3474.
    166 W. A. Freeman, W. L. Mock, N. Y. Shih. Cucurbituril [J]. J. Am. Chem. Soc. 1981, 103: 7367-7368.
    167 K. Kim, N. Selvapalam, Y. H. Ko, et al. Functionalized cucurbiturils and their applications [J]. Chem. Soc. Rev., 2007, 36: 267–279.
    168 J. Kim, I. Jung, S. Kim, et al. New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n =5, 7, and 8) [J]. J. Am. Chem. Soc., 2000, 122: 540-541.
    169 S. Y. Jon, N. Selvapalam, D. H. Oh, et al. Facile Synthesis of Cucurbit[n]uril Derivatives via Direct Functionalization: Expanding Utilization of Cucurbit[n]uril [J]. J. Am. Chem. Soc., 2003, 125: 10186-10187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700