用户名: 密码: 验证码:
汽车用高性能聚合物纳米复合材料的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preparation and Study of Polymer Nanocomposite Materials for Automobile Technology
  • 作者:马海松
  • 论文级别:博士
  • 学科专业名称:高分子化学与物理
  • 学位年度:2009
  • 导师:那辉
  • 学科代码:070305
  • 学位授予单位:吉林大学
  • 论文提交日期:2009-06-01
  • 答辩委员会主席:莫志深
摘要
纳米技术已经逐渐成为二十一世纪主导技术,为汽车发展提供了强大的技术支撑。纳米技术能够从汽车车身应用到车轮,几乎涵盖了汽车的全部。纳米技术在汽车上的广泛应用,将降低汽车各部件磨损,降低汽车消耗,减少汽车使用成本;一定程度上,还能消除汽车尾气污染,改善排放。
     在论文的第一部分,利用电化学沉积法,我们在聚合物电解质多层膜修饰的ITO导电玻璃上得到了Cu和Ag的纳米分形结构。SEM结果显示随着实验中不同参数的改变我们可以得到不同形貌的Cu和Ag的纳米分形结构。在试验过程中,我们研究发现有聚合物多层膜修饰的ITO更宜于金属分形结构的生长,并且所得到的分形结构比较坚固,不易脱离基底。所制备的纳米分形金属有望作为汽车尾气净化三效催化剂使用。
     在论文的第二部分,以间同聚丁二烯(s-PB)为原料,首次利用电纺丝技术制备了s-PB纤维膜和粒子膜。膜内纤维的直径约为100-500nm,粒子的直径约为10-15μm;并利用电纺丝技术制备了间同聚1-丁烯粒子膜,膜内粒子的直径约为5μm;以紫外照射和加热等方法研究s-PB膜的交联过程,结果表明,紫外照射对交联无明显作用,而在偶氮二异丁腈存在的情况下用加热的方法,可以促使交联,而且交联完全;对交联前后的s-PB膜和聚1-丁烯膜进行接触角的测试,结果表明,在交联前后的s-PB纤维膜和聚1-丁烯粒子膜均为超疏水膜,有望在汽车挡风玻璃或者涂漆表面作为疏水膜使用。
     在论文的第三部分,采用高压静电技术在磺化聚醚醚酮酮膜中引入静电场,成功的实现了由球到纤维的转变。引入电场后聚合物纤维膜表现出更好的相分离结构和更好的质子传导性能。该方法将在电动汽车燃料电池特别是电极材料中有很好的应用前景。
Nanoscale one dimensional (1D) materials have been popular in the field of nanoscience and nanotechnology due to their novel electrical transport, optical and magnetic properties, and potential applications in nanoscale elelctronic device, nanophotonics, sensors, energy storage and transform. However, most of the common polymers are processable but is rare in functionability. Therefore, the combination of polymers and functional nanoparticles can combine their properties. On the other hand, combination of two different materials with correlative properties may produce more excellent properties.
     Owing to quantum-confinement effects, nanoparticles usually exhibit unique properties different from their bulk materials. Especially for the optical properties, nanoparticles have more predominance than the bulks in applications, such as optoelectronic conversion, photocatalysis, fluorescent labels, sensors and biomedical imaging et al. However, compared with the bulk ones, nanoparticles tend to aggregate or undergo Ostwald ripening because of their high surface energy. To stabilize nanoparticles, appropriate surface modifications are quite necessary. Fractal nano-stucture is a spectial nano-stucture with many advantages. On the first part of the dissertation, Cu nano-stucture based on multilay membrane fuctionalized ITO solid substrates has been successfully prepared. SEM observation was used to prove these results.
     On the second part of the dissertation, preparation of polydiene electrospun membranes was studied. Present work studies started with preparation of syndiotactic polybutadiene membranes via electrospinning, the effect of preparation conditions on the morphology of products have been examined. The hydrogenated and crosslinked electrospun membranes with polybutadiene as raw material are also prepared. The hydrophobic qualities of these electrospun membranes were also investigated. The conclusion is following: Syndiotactic 1,2-polybutadiene (s-PB) membranes are successfully prepared by the electrospinning method. It is found that dichloromethane is a unique suitable solvent for the electrospinning of s-PB fibers. With the increment in the concentration of the s-PB solution, the morphologies are changed from sphere to fiber. The diameter of spheres and fibers is ranged from 100-500 nm and 10-15μm. Syndiotactic polybutane-1(s-polybutane-1) is obtained through hydrogenating s-PB, and s-polybutane-1 sphere membranes are also prepared by electrospinning method. The average diameter of spheres is 5μm. Cross linking process of s-PB membranes are studied by ultraviolet irradiation and heat approaches. The results show that ultraviolet irradiation has no effect on crosslinking and s-PB membranes are entirely crosslinked by heating method. Contact angles of s-PB membranes, crosslinked s-PB membranes and polybutane-1 membranes were measured. The results show that these membranes have the superhydrophobic performance.
     On the third part of the dissertation, fabrication of sulfonated poly (arylene ether ketone) electrospun membranes was studied. Recently, researches have been focused on elctrospinning because of the preparation of ultrafine and uniform polymer fibers or sphere membranes. So far, more than fifty different polymers have been successfully elctrspun into ultrafine fiber or sphere membranes. However, there is no work related to electrospinning of any kinds of sulfonated poly(arylene ether ketone). SPAEK usually contain two domain regions: hydrophilic and hydrophobic ones. The hydrophobic domains formed by none sulfonated polymer segment provide materials with mechanical strength whereas the hydrophilic domains contain sulfonated groups ensure the proton conductivity. Here, we reported the preparation of SPEEKK membranes by electrospinning for the first time. The results showed that all of the membranes can be easily obtained via electrospinning method. The morphology of resulted membranes varies from nanospheres to nanofibers with increasing concentration of SPEEKK. The results showed that the electrospun membranes had much more clearly phase separation structures than the convenient SPEEKK membranes according to their SAXS studies, and the proton conductivity of all membranes obtained by electrospinning was much higher than that of membranes prepared by solutions casting. The membranes prepared by this method should hold immense promise for the PEMFC applications.
引文
[1]冯美斌.汽车工程, 2006(28), No.3: 213~220.
    [2]陈渤.天津汽车. 2002, 3: 25~28.
    [3]刘晓蕾,刘孝波,等.高分子材料科学与通讯, 2004, 20(2): 28~31.
    [4] Roy R, Kormarneni S, et al. Mater Res Soc Symp Proc., 1984, 32: 347.
    [5] Saujanya C, Radhakrishan S. Polymer, 2001, 42: 6723.
    [6] Rong Minzhi, Zhang Mingqiu, et al. Polymer, 2001, 42: 167.
    [7] Rong Min Zhi, Zhang Ming Qiu, et al. Polymer, 2001, 42: 3301.
    [8] Vaia R A, Giannelis E P. Ploymer, 2001, 42: 1281.
    [9] Kim G M, Lee O H, et al. Polymer, 2000, 42: 1095.
    [10] Suh D J, Lim Y T, Park O O. Polymer, 2000, 41: 8557.
    [11] Li Jianxiong, Wu Jingshen, Chan Chiming. Polymer, 2000, 41: 6935.
    [12]漆宗能,等. [P].中国专利: CN 1138593A, 1996.
    [13]陈光明,沈德言,等.高等学校化学报, 2000, 21(4): 657.
    [14]周重光,李桂枝,等.高分子材料科学与工程, 2000, 15(2): 109.
    [15]董云彩,孟卫,等.塑料工业, 1999, 27(6): 37.
    [16]刘立敏,朱晓光,漆宗能.高分子学报, 1999, 3:274.
    [17]苏中俊,陈光明,漆宗能.塑料工业, 2000. 28(3): 24.
    [18]严海标,陈明华,等.工程塑料应用, 1999, 27(8): 38~39.
    [19]郭磊,李红岩,等.绝缘材料, 2005, No.4: 55~64.
    [20]川合知二,图解纳米技术,文汇出版社,2004。
    [21]张立德,牟其美,纳米材料和纳米结构,科学出版社,2001。
    [22]曹茂盛,关长斌,徐甲强,纳米材料导论,哈尔滨工业大学出版社,2001。
    [23]Iwamoto T, et al. J Mat Sci, 1995, 30: 2566.
    [24] Chen Yunfa(陈运法), et al. Chin J Proc Eng(过程工程学报), 2002, 2(4): 3
    [25]杨红梅,郑强.功能材料, 2003, 3(34): 235~237.
    [26] Kojima Y, et al. J Polym Sci Chem Ed, 1993, 31: 983.
    [27] Kojima Y, et al. J Polym Sci Chem Ed, 1993, 31: 1755.
    [28] Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, and Kamigaito T, J. Mater. Res., 1993, 8: 1174
    [29] Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, and Kamigaito T, J. Mater. Res., 1993, 8: 1179.
    [30] A. Okada, M. Kawasumi, T. Kurauchi, et al. Polymer Preprint. 1987, 28: 44.
    [31] L. Liu, Z. Qi, and X. Zhu. J.Appl. Polym. Sci., 1999, 71: 1133.
    [32] Cho J W, Paul D R. Polymer, 2001, 42: 1083.
    [33] Yoon P J, Fornes T D, Paul D R. Polymer, 2002, 43: 6727.
    [34] J.W. Gilman, T. Kashiwagi, J.D. Lichtenhan. SAMPE J., 1997, 33: 40.
    [35] Y. Kojima, A. Usuki, et.al., J. Appl. Polym. Sci.,1993, 49: 1259.
    [36] Moet A, Akelah A. Mater Lett, 1993, 18: 97.
    [37] Kawasumi M;Hasegawa N;Kato M;Usuki A;Okada A. Macromolecules, 1997, 30: 6333.
    [38] Sun T, Garces J M. Adv Mater, 2002, 14: 128.
    [39]王德禧,国外塑料, 2004, 22(2): 30.
    [40]张志三,《漫谈分形》,湖南教育出版社1993.
    [41] Philip Ball,“Designing the molecular World: Chemistry at the Frontier”, 1994 Princeton University Press
    [42] B. B. Mandelbrot, Les objets fractals: forme, hazard et dimension Flammarion, 1975.
    [43] C. Leger, J. Elezgaray, F. Argoul, Phys. Rev. E 2000, vol. 61, 5452-5463; D.A. Weitz, M. Oliveria, Phys. Rev. Lett. 1984, 52, 1433-1436.
    [44] H.-C. Shin, J. Dong, M. L. Liu, Adv. Mater. 2003, 15, 1610-1614.
    [45] C. Leger, L. Servant, J. L. Bruneel, F. Argoul, Physica A 1999, 263, 305-314.
    [46] R. Saliba, C. Mingotaud, F. Argoul, S. Ravaine, J. Electrochem. Soc. 2001, vol. 148 (1), C65-C69.
    [47] M. Wang, S. Zhong, X. Yin, J. Zhu, R. Peng, Y. Wang, K. Zhang, N. Ming, Phys. Rev. Lett. 2001,vol. 86, 3827-3830.
    [48] V. Fleury, W. A. Watters, L. Allam, T. Devers, Nature 2002, 416, 716-719.
    [49] S. Nakabayashi, H. Sakaguchi, R. Baba, E. Fukushima, Nano. Lett. 2001, Vol. 1 , 507-510.
    [50] Y. Luo, G. Wang, J. A. Theobald, P. H. Beton, Surf. Sci. 2003, vol. 537, 241–246.
    [51] Y. C. Liu, K. H. Yang , C. C. Wang, J. Electroanal. Chem. 2003, 549, 151-155.
    [52] A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, J. R. Lakowic, J. Phys. Chem. B 2003, 107, 8829-8833.
    [53] V. Fleury, Nature 1997, vol. 390, 145-148.
    [54] M. S. El-Deab, T. Ohsaka, Electrochimica Acta 2002, vol. 47, 4255-4261.
    [55] G. Ye, A. Xia, G. Gao,Y. Lao, X. Tao, Phys. Rev. B 2001,vol. 63, 125405.
    [56] S. Zhong, Y. Wang, M. Wang, M. Zhang, X. Yin, R. Peng, N. Ming, Phys. Rev. E 2003, 67, 061601.
    [57] H. Martin, P. Carro, A. Hernandez Creus, S. Gonzalez, G. Andreasen, R. C. Salvarezza, A. J. Arvia, Langmuir 2000, 16, 2915-2923.
    [58] M. Nazzarro, F. Nieto, A. J. Ramirez-Pastor, Surface Science 2002, vol. 497, 275–284.
    [59] V. Fleury, M. Rosso, J.-N. Chazalviel, Phys. Rev. A 1991, 43, 6908; J. M. Huth, H. L. Swinney, W. D. McComick Phys. Rev. E 1995, 51, 3444-3458.
    [60] R. Saliba, C. Mingotaud, F. Argoul, S. Ravaine, J. Electroanal. Chem. 2003, Vol. 544, 129-135.
    [61] T. C. Halsey Physics Today 2000, Vol. 53, Issue 11.
    [62] G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press: London, 1981.
    [63] A. W. Adamson, Physical Chemistry of Surfaces, 4th ed.; Wiley: New York, 1982.
    [64] V. Fleury, J. Mater. Res. 1991, Vol. 6, No. 6, 1169.
    [65] A. R. Imre, L. Balazs, Fractals-Complex Geometry Patterns and Scaling in Nature and Society 2000, 8 (4), 349-353.
    [66] S. Wang, K. Zhang, Q. Xu, M. Wang. R. Peng, Z. Zhang, N. Ming, J. Phys. Soc. Jap. 2003, Vol. 72, 1574–1580.
    [67] Q. Yang , F. Wang , K. Tang, C. Wang , Z. Chen, Y. Qian, Mater. Chem. and Phys. 2002, vol. 78, 495–500.
    [68] Q. Guo, P. Fallon, J. Yin, R. E. Palmer, Nick Bampos, J. M. Sanders, Adv. Mater. 2003, vol. 15, 1084-1087.
    [69] R. M. Brady, R. C. Ball, Nature 1984, Vol. 309, 225-229.
    [70] E. Herrero, L. J. Buller, H. D. Abruna, Chem. Rev. 2001, 101, 1897
    [71] M. D. Lay, J. L. Stickney, J. Am. Chem. Soc. 2003; ASAP Article
    [72] J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, W. L. Vos, Adv. Mater. 2000, 12, 888.
    [73] G. Decher, Science 1997, 277, 1232.
    [74] X. Zhang, J. C. Shen, Adv. Mater. 1999, 11, 1139.
    [75] Fleischman M, Hendra P J, Hendra A J, Chem. Phys. Lett., 1974, 26:163
    [76] Jeanmaire D L, Van Duyne R P, J Electroanal. Chem., Interjacial Electrachem., 1977, 84:1
    [77]吴征铠,唐敖庆《分子光谱学专论》山东科学技术出版社1999.
    [78]刘太奇,《纳米空气净化技术》[M]北京:化学工业出版社,2004.
    [79] A. Formhals, U. S. Patent No. 1,975,504, 1934.
    [80] H. L. Simons, U.S. Patent No. 3,280,299, 1966
    [81] P. K. Baumgarten, J. Colloid and Interface Sci. 1971; 36:71
    [82] Doshi J, Reneker D.H. Electrospinning process and applications of electrospun fibers. J electrostatics, 1995, 35(2-3), 151-160
    [83] Matthews J A, Wnek G E,Simpson D C,et al. Elecrospinning of Collagen Nanofibers. Biomacromolecules, 2002, 3(2), 232-138
    [84] Zong X, Kim K, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002, 43(16), 4403-4412.
    [85] G. I. Taylor, Proc. Roy. Soc. London A ,1964, 280, 383.
    [86] U.S. P., 459,378
    [87] S. Megelski, J. S. Stephens, D. Chase, et al. Macromolecules 2002, 35, 8456.
    [88] W. Dittman and K. Hamann. Chem-Zt. 1971, 95(15-16), 684.
    [89] X. Z. Zong, K. Kim, D. Fang, Polymer 2002, 43, 4403.
    [90] G. Verreck, I. Chun, J. Peeters, Pharmaceutical Research 2003, 20, 810.
    [91] G. Verreck, I. Chun, J. Rosenblatt, J. Controlled Release 2003, 92, 349.
    [92] S. Madhugiri, A. Dalton, J. Gutierrez, J. Am. Chem. Soc. 2003, 125, 14531.
    [1] J. G. Grasselli, B. J. Bulkin, Analytical Raman Spectroscopy ( Chapter 9), Wiley, New York, 1991, P295; K. Bandyopadhyay, K. Vijayamohanan, Langmuir 1999, 15, 5314; E. Hesse, J. A. Creighton, Langmuir 1999, 15, 3545; M. Baibarac, M. Cochet, M. Lapkowski, L. Mihut, S. Lefrant, I. Baltog, Synth. Met. 1998, 96, 63; T. M. Devine, T. E. Furtak, S. H. Macomber, J. Electroanal. Chem. 1984, 164, 299.
    [2] M. L. Patternson and M. J. Weaver, J. Phys. Chem. 1985, 89, 5046.
    [3] J. A. Creoghton, M. S. Alvarea, D. A. Weltz, S. Garoff, and M. W. Kim, J. Phys. Chem.1983, 87, 4793.
    [4] J. Pate, A. Leiden and B. J. Bozlee, J. Raman Spectrosc. 1991, 22, 477.
    [5] F. R. Dollish, W. G. Fateley, F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds, JOHN WILLEY & SONS, NEW YORK, 1973
    [1] J. G. Grasselli, B. J. Bulkin, Analytical Raman Spectroscopy ( Chapter 9), Wiley, NewYork, 1991, P295;
    [2] K. Bandyopadhyay, K. Vijayamohanan, Langmuir 1999, 15, 5314; E. Hesse, J. A.Creighton, Langmuir 1999, 15, 3545;
    [3] M. Baibarac, M. Cochet, M. Lapkowski, L. Mihut, S. Lefrant, I. Baltog, Synth. Met. 1998,96, 63;
    [4] T. M. Devine, T. E. Furtak, S. H. Macomber, J. Electroanal. Chem. 1984, 164, 299.
    [5] M. L. Patternson and M. J. Weaver, J. Phys, Chem. 1985, 89, 5046.
    [6] J. A. Creoghton, M. S. Alvarea, D. A. Weltz, S. Garoff, and M. W. Kim, J. Phys. Chem.1983,87,4793.
    [7] J. Pate, A. Leiden and B. J. Bozlee, J. Raman Spectrosc. 1991, 22, 477.
    [8] F. R. Dollish, W. G. Fateley, F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds, JOHN WILLEY & SONS, NEW YORK, 1973.
    [9] G. Decher, Science 1997, 277, 1232.
    [10] X. Zhang, J. C. Shen,Adv. Mater. 1999, 11, 1139.
    [11] Fleischman M, Hendra P J, Hendra A J, Chem. Phys. Lett, 1974, 26:163
    [12] Jeanmaire D L, Van Duyne R P, J Electroanal. Chem., Interjacial Electrachem., 1977,84:1
    [13]吴征铠,唐敖庆《分子光谱学专论》山东科学技术出版社1999.
    [14] Q. Yang , F. Wang , K. Tang, C. Wang , Z. Chen, Y. Qian, Mater. Chem. and Phys. 2002,vol. 78, 495-500.
    [15] Q. Guo, P. Fallon, J. Yin, R. E. Palmer, Nick Bampos, J. M. Sanders, Adv.Mater. 2003,vol. 15, 1084-1087. [16] R. M. Brady, R. C. Ball, Nature 1984, Vol. 309, 225-229.
    [1] Ashitaka H , Ishikawa H , Ueno H , et al . Syndiotactic-1, 2-polybutdiene with Co2CS2 catalyst system. J Polym Sci Polym Chem Ed, 1983, 21: 1853-1859.
    [2] Ricci G, Bat tistella M, Bertin F, et al. 1, 2- syndiotactic polybutadiene of controlledcrystallinity by butadiene2isoprene copolymerization wit h CrCl2 ( dmpe )2-MAO. Polymer Bulletin, 2002, 48: 25-31.
    [3] N K Kalfoglou, H L Williams. Temperature and microstructure dependence of the reho-optical properties of polybutadienes. J Appl Polym Sci, 1970, 14(10): 2481 -2498.
    [4] Y Obata, C Tosaki, M Ikeyama. Bulk properities of syndiotactic 1, 2- polybutadieneΙthermal and viscoelastic properties. Polym J , 1975 , 7 (2) : 207 -216.
    [5] Y Obata, C Homma, C Tosaki, et al. Bulk properities of syndiotactic 1 ,2-polybutadieneⅡmechanical properties of uniaxially and biaxially stretched films in ralation to molecular orientation. Polym J, 1975, 7(2): 217 -227.
    [6] Y Obata, C Homma, C Tosaki. Bulk properities of syndiotactic 1 ,2- polybutadieneⅢmelting and crystallization properties. Poym J, 1975 , 7 (3) : 312- 219.
    [7] Zheng-Ming Huang, Y.-Z. Zhang, Compos. Sci. Technol. 63 (2003) 2223.
    [8] G. Natta, P. Corradini, Ibid 20 (1956) 251.
    [9] Nakajima A, Hashimoto K, Watanabe T. Monatsh Chem, 200l, 132(1):3l
    [10] Nakajima A, Abe K, Hashimoto K, W atanabe T. Thin Solid Films,2000,376(1-2):l40.
    [11] Feng L,Li S,Li Y,Zhang L,Zhai J,Song Y,Liu B,Jiang L,Zhu D.Adv Mater,2002,14(24):1857
    [12]金美花,冯琳,封心建,翟锦,江雷,白玉白,李铁津.高等学校化学学报(Jin M H,Feng L,Feng X J,Zhai J, Jiang L,Bai Y B,Li T J.Chem J Chin Univ),2004,25(7):1375.
    [1] H. Fong, D.H. Reneker, J. Polym. Sci. Part B. 37 (1999) 3488.
    [2] H. Fong, L. Weidong, C. S. Wang, R. A. Vaia, Polymer. 43 (2002) 775.
    [3] L. Huang, A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, Chaik of EL, Macromolecules. 33 (2000) 2989.
    [4] M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellweg, C. Schwarte, A. Schaper, J. H.Wendorff, A. Greiner, Adv. Mater. 12 (2000) 637.
    [5] C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin, Polymer. 40 (1999) 7397.
    [6] X. F. Li, X. F. Hao, D Xu, G. Zhang, S. L. Zhong, H. Na*, D.Y. Wang, Fabrication of sulfonated poly(ether ether ketone ketone) membranes with high proton conductivity, J. Membr. Sci. 281 (2006) 1.
    [7] X. F. Hao, X. F. Lu, Z. Y. Li, Y. Y Zhao, T. C. Shang, Q. B Yang, C. Wang, L. J. Li, J. Appl. Polym. Sci. 102 (2006) 2889.
    [8] X. F. Hao, Z. Y. Li, D. M. Li, C Wang, Chem. J. Chinese U. 26 (2005) 385.
    [9] X.F. Li, C. P. Liu, H. Lu, C.J. Zhao, Z. Wang, W. Xing, H. Na, Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application, J. Membr. Sci. 255 (2005) 149–155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700