用户名: 密码: 验证码:
半导体纳米材料的真空气相合成及生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,准一维纳米材料的研究已成为纳米材料科学领域的前沿和热点。准一维半导体纳米材料由于其独特的物理化学性质,对基础科学研究和纳米结构器件的构筑都具有非常重要的意义,因而引起科学界的高度重视。准一维半导体纳米材料功能化研究的一个重要方面就是探索和发展有效的、易执行的制备技术。本论文根据化学气相沉积的基本原理,设计了低成本、易操作、无污染的真空化学气相反应体系,发展了一条普适的合成半导体纳米材料的新途径。论文在总结吸收文献经验的基础上,选择硫属化合物和硅这两类重要的半导体材料做为研究对象,围绕其一维纳米材料在真空条件下的生长行为、形貌特征以及生长机理展开了系统的研究。这为构筑其他类别的半导体纳米材料提供了一个崭新的思路。本论文的主要研究内容及创新点如下:
     1、利用真空化学气相反应的方法制备了垂直于平面基底生长的单晶硫化铜纳米盘状结构,为构筑具有特殊形貌的纳米功能器件奠定了理论基础。
     2、合成了硒化亚铜纳米线,结构研究显示其具有面心立方单晶结构,沿[100]方向优势生长。
     3、在真空气相反应体系中,合成了规则排布的单晶硅亚微米线阵列。硅线尖端的催化剂粒子证明了它的VLS生长机制,同时也拓展了硫属化合物的应用空间。
Recently, research on one-dimensional (1D) nanomaterials has become one of the research frontiers and focuses of the nanomaterials field. 1D semiconductor nanomaterials are of great importance for not only fundamental researches but also the construction of functional nanodevices due to their unique physical-chemical properties. They have attracted great attention and developed rapidly in the past twenty years. An essential problem in 1D nanomaterials researches is to develop the efficient and convenient synthesis techniques. In the other hand, inspecting the native growth mechanism of materials will benefit and direct the synthesis work.
     Chemical vapor deposition, an important synthesis method for effective synthesis of nanomaterials, was developed very well in resent years. In this thesis, a novel vacuum chemical vapor reaction (CVR) method, which is low-cost, convenient-operated, and environment-friendly, was designed for the synthesis of semiconductor nanomaterials. Various semiconductor materials have been obtained through this method.
     The two kinds of important semiconductors chalcogenide and silicon were chosen as the study system on the basis of literature. The process of synthesis, morphology characterization and growth mechanism of their nanostructures were investigated in detail. This research is of great importance for the evolution of nano-semiconductor science and technology. The main results presented in the thesis are as follows:
     1. Synthesis of vertical standing CuS nanoplates on flat substrate via vacuum CVR method. This result provided a theoretic foundation for the fabrication of novel structured nanodevices. The morphology and crystal structure were investigated by SEM and TEM. It was found that the orientation of CuS nanoplate perpendicular to the substrate surface was decided by the native anisotropy characterization of CuS.
     2. Through the vacuum CVR process, we prepared flexible Cu2Se nanowires with two different structures that are determined by whether to be catalyzed by gold. The nanowires obtained from the sample that was not catalyzed by gold membrane are mono-dispersed with a global particle at the tip of each wire. It is found that the component of wires and the particles are quite different, thus it is concluded that the nanowires were not epitaxially grown from the particles, however, the particles play the roll of catalyst in the reaction which is similar to the solid-liquid-solid process. The growth direction of gold-catalysed nanowires is well oriented, depending on the crystal structure of the growing center of the nanowires. The two kinds of nanowires both have a uniform diameter of about 50 nm and an average length of 50μm. Our research indicates that the nanowires have a single crystal face-center cubic structure. By using the SEM, it is detected that the growth mechanism of the two kinds of nanowires follows different pathways. The preparation of Cu2Se nanowires represents the experimental template for the exploration and application of 1D nanomaterials. The selenide might become an important substitute for the energy transition materials.
     3. Fabrication of regular oriented single-crystalline silicon sub-micron wire arrays through the CVR method. The existence of Ag2Te particles on the tip of the nanowires indicates the formation of silicon sub-micron wires follows the vapor-liquid-solid growth mechanism. A main difference from the classic VLS mechanism in our experiment is that the vaporous silicon resources were obtained via the prior chemical reaction between silicon substrate and Te vapor at high temperature but not introduced by blowing a Si contianing vapor (such as silane). The results of this study have greatly enriched the VLS growth mechanism and its application, and the vapor reactants of VLS reactions are no longer limited to the gaseous or volatile materials. In addition, the catalyst we choose is Ag2Te, which has not been reported as a catalyst of nanowire growth in literature. So the application of chalcogenides is expanded in the catalytic area.
     The perfect combination of chalcogenides and silicon nanostructures will bring new properties. It is worth being researched further. One significant characteristic of Ag2Te catalyzing is that it changed the common (111) growth direction of silicon wires, representing a new method of controlled synthesis.
引文
[1]Liu D P, Li J X, Chen J S. Spontaneous superlattice formation of ZnO nanocrystals capped with ionic liquid molecules[J]. Chemical Communications, 2007(40): 4131-4133.
    [2]Liu D P, Li G D, Su Y, et al. Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components[J]. Angewandte Chemie International Edition, 2006, 45(44): 7370-7373.
    [3]Gleiter H. Nanocrystalline materials[J]. Progress in Materials Science, 1989, 33(4): 223-315.
    [4]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [5]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2001.
    [6]Li D, Ping D, Ye Q, et al. HREM study of the microstructure in nanocrystalline materials[J]. Materials Letters, 1993, 18(1): 29-34.
    [7]Feynman R P. The Man Who Dared to Think Small[J]. Science, 1991, 254(5036): 1300
    [8]川合知二.图解纳米技术[M].上海:文汇出版社,2004.
    [9]Tong Y H, Liu Y C, Dong L, et al. Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique[J]. The Journal of Physical Chemistry B, 2006, 110(41): 20263-20267.
    [10]Gao P X, Wang Z L. High-Yield Synthesis of Single-Crystal Nanosprings of ZnO[J]. Small, 2005, 1(10): 945-949.
    [11]Qin Y, Wang X D, Wang Z L. Microfibre–nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813.
    [12]Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chemical Reviews, 1989, 89(8): 1861-1873.
    [13]Brus L E. Electronic wave functions in semiconductor clusters: experiment andtheory[J]. The Journal of Physical Chemistry, 1986, 90(12): 2555-2560.
    [14]Halperin W P. Quantum size effects in metal particles[J]. Reviews of Modern Physics, 1986, 58(3): 533-606.
    [15]Leon R, Petroff P M, Leonard D, et al. Spatially Resolved Visible Luminescence of Self-Assembled Semiconductor Quantum Dots[J]. Science, 1995, 267(5206): 1966-1968.
    [16]Ball P, Garwin L. Science at the atomic scale[J]. Natuer, 1992, 355(6363): 761-766.
    [17]Legget A J, Chakravarty S, et.al. Dynamics of the dissipative two-state system[J]. Reviews of Modern Physics, 1987, 59(1): 1-85. [l8]张立德,牟季美.物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域──纳米微粒与纳米固体[J].物理,1992,21(3):167-173. [19张立德.超微粉体制备与应用技术,第一版[M].北京:中国石化出版社,2001.
    [20]倪永红,葛学武,徐相凌,等.纳米材料制备研究的若干新进展[J].无机材料学报,2000,15(1):9-15.
    [21]高瑞平.纳米材料和技术的研究及展望[J].材料导报,2001,15(5):6-7.
    [22]李泉,曾广赋,席时权.纳米粒子[J].化学通报,1995,6:29-34.
    [23]El-Eskandarany M D, Aoki K, Suzuki K. Formation of amorphous aluminum tantalum nitride powders by mechanical alloying[J]. Applied Physics Letters, 1992, 60(13): 1562-1563.
    [24]Venkatachari K R, Huang D, Steven P, et al. A combustion synthesis process for synthesizing nanocrystalline zirconia powders[J]. Journal of Materials Rresearch, 1995, 10(3): 748-755.
    [25]De Guire M R, Dorris S E, Poeppel R B, et al. Coprecipitation synthesis of doped lanthanum chromite[J]. Journal of Materials Rresearch, 1993, 8(9): 2327-2335.
    [26]Peshev P, Pecheva M. Preparation of spinel lithium ferrite by thermal treatment of spray-dried formates[J]. Materials Research Bulletin, 1987, 13(11): 1167-1174.
    [27]Cui Z L, Dong L F, Zhang Z K. Oxidation behavior of nano-Fe prepared byhydrogen ARC plasma method[J]. Nanostructured Materials, 1995, 5(8): 829-833.
    [28]高晓云,陈进,王冕,等.激光气相合成FexSiy超微粉[J].无机材料学报1992,7(4):429-434.
    [29]Pacheco-Malagon G, Garcia-Borquez A, Coster D, et al. TiO2-Al2O3 nanocomposites[J]. Journal of Materials Rresearch, 1995, 10(5): 1264-1269.
    [30]Jay A, Switzer, Michael J, et al. Electrodeposited Ceramic Superlattices[J]. Science, 1990, 247(4941): 444-446.
    [31]叶向阳,郭奇珍.模板合成新进展[J].化学通报,1996,2:1-6.
    [32]Hermn N,Wang Y, Eckert H. Synthesis and characterization of surface-capped, size-quantized cadmium sulfide clusters. Chemical control of cluster size[J]. Journal of the American Chemical Society, 1990, 112(4): 1322-1326.
    [33]Stein A, Ozin G A, Stucky G D. From the molecule to an expanded I-VII semiconductor quantum superlattice: silver, sodium halo-sodalites[J]. Journal of the American Chemical Society, 1990, 112(2): 904-905.
    [34]Heron N J, Wang Y. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties[J]. The Journal of Physical Chemistry, 1991, 95(2):525-532.
    [35]Goldbach A, lton L, Grimsditch M, et al. The Formation of Se2-: A New Resonance Raman Feature in the Photochemistry of Zeolite-Encapsulated Selenium[J]. Journal of the American Chemical Society, 1996, 118(8): 2004-2007.
    [36]Coleman N R B, Moris M A, Spalding T R, et al. The Formation of Dimensionally Ordered Silicon Nanowires within Mesoporous Silica[J]. Journal of the American Chemical Society, 2001, 123(1): 187-188.
    [37]Coleman N R B, O'Sullivan N, Ryan K M, et al. Synthesis and Characterization of Dimensionally Ordered Semiconductor Nanowires within Mesoporous Silica[J]. Journal of the American Chemical Society, 2001, 123(29): 7010-7016.
    [38]Tang Z K, Sun H D, Wang J, et al. Mono-sized single-wall carbon nanotubesformed in channels of AlPO4-5 single crystal[J]. Applied Physics Letters, l998, 73(16): 2287-2289.
    [39]Routkevitch D, Bigioni T, Moskovits M, et al. Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates[J]. The Journal of Physical Chemistry, 1996, 100(33): 14037-14047.
    [40]Zhang Z, Gekhtlllan D, Dresselhaus M Z, et al. Processing and Characterization of Single-Crystalline Ultrafine Bismuth Nanowires[J]. Chemistry of Materials, 1999, 11(7): 1659-1665.
    [41]Prieto A L, Sander M S, Martin-Gonzalez M S, etal. Electrodeposition of Ordered Bi2Te3 Nanowire Arrays[J]. Journal of the American Chemical Society, 2001, 123(29): 7160-7161.
    [42]Xu D S, Chen D P, Xu Y J, et al. Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates[J]. Pure and Applied Chemistry, 2000, 72(1-2): 127-135.
    [43]Dai H, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods[J]. Nature, 1995, 375(6534): 769-772.
    [44]]Han W, Fan S, Li Q, et al. Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction[J]. Science, 1997, 277(5330): 1287-1289.
    [45]Han W,Kohler-Redlich P, Ernst F, et al. Formation of (BN)xCy and BN Nanotubes Filled with Boron Carbide Nanowires[J]. Chemistry of Materials, 1999, 11(12): 3620-3623.
    [46]Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire[J]. Nature, 1998, 391(6669): 775-778.
    [47]Bhattacharrya S, Saha S K, Chakravorty D. Nanowire formation in a polymeric film[J]. Applied Physics Letters, 2000, 76(26): 3896-3898.
    [48]Jana N R, Gearheart L, Murphy C J, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J]. Chemical Communications, 2001(7): 617-618.
    [49]Rao C N R, Govindaraj A, Deepak F L, et al. Surfactant-assisted synthesis of semiconductor nanotubes and nanowires[J]. Applied Physics Letters, 2001, 78(13): 1853-1855.
    [50]Yang S H, Wang S H, Fung K K. One-dimensional growth of rock-salt PbS nanocrystals mediated by surfactant/polymer templates[J]. Pure and Applied Chemistry, 2000, 72(1-2): 119-126.
    [51]Justus B L, Tonucci R J, and Berry A D. Nonlinear optical properties of quantum-confined GaAs nanocrystals in Vycor glass[J]. Applied Physics Letters, 1992, 61(26): 3151-3153.
    [52]Tonucci R J, Justus B L, Campillo A J, et al. Ngnochannel Array Glass[J]. Science, 1992, 258(5083): 783-785.
    [53]Hiruma K, Yazawa M, Katsuyama T, et al. Growth and optical properties of nanometer-scale GaAs and InAs whiskers[J]. Journal of Applied Physics, 1995, 77(2): 447-462.
    [54]Jun Y W, Lee S M, Kang N J, et al. Controlled Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant System[J]. Journal of the American Chemical Society, 2001, 123(21): 5150-5151.
    [55]Muray C B, Noris D J, Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993, 115(19): 8706-8715.
    [56]Yan P, Xie Y, Qian Y T, et al. A cluster growth route to quantum-confined CdS nanowires[J]. Chemical Communications, 1999(14): 1293-1294.
    [57]Pileni M P. Water in oil colloidal droplets used as microreactors[J]. Advances in Colloid and Interface Science, 1993, 46: 139-163.
    [58]张军,孙聆东,钱程,等.CTAB-正己醇-正庚烷-水四元反相胶束体系制备CdS纳米微粒及其光学质[J].科学通报,2001,46(17):1423-1427.
    [59]Marignier J L, Belloni J, Delcourt M O, et al. Microaggregates of non-noble metalsand bimetallic alloys prepared by radiation-induced reduction[J]. Nature, 1985, 317(6035): 344-345.
    [60]Henglein A, Tausch-Treml R. Optical absorption and catalytic activity of subcolloidal and colloidal silver in aqueous solution: A pulse radiolysis study[J]. Journal of Colloid and Interface Science, 1981, 80(1): 84-93.
    [61]陈祖耀,朱英杰,陈敏,等.γ-射线辐照制备金属和金属氧化物纳米级超细粉[J].化学通报,1996(1):44-45.
    [62]Mosseri S, Henglein A, Janata E. Reduction of dicyanoaurate(I) in aqueous solution: formation of nonmetallic clusters and colloidal gold[J]. The Journal of Physical Chemistry, 1989, 93(18): 6791-6795.
    [63]Khatouri J, Mostafavi M, Amblard J, et al. Radiation-induced copper aggregates and oligomers[J]. Chemical Physics Letters, 1992, 191(3-4): 351-356.
    [64]Michaelis M, Henglein A. Reduction of palladium (II) in aqueous solution: stabilization and reactions of an intermediate cluster and palladium colloid formation[J]. The Journal of Physical Chemistry, 1992, 96(11): 4719-4724.
    [65]Ershov B G, Henglein A. Optical spectrum and some chemical properties of colloidal thallium in aqueous solution[J]. The Journal of Physical Chemistry, 1993, 97(13): 3434-3436.
    [66]李廷盛,尹其光.超声化学[M].北京:科学出版社,1995.
    [67]Suslic K S, Chou S B, Cichowlas A A, et al. Sonochemical synthesis of amorphous iron[J]. Nature, 1991, 353(6343): 414-416.
    [68]林金谷.用超声化学方法产生超细非晶态铁微粒[J].科学通报,1995,40(15):1370-1370.
    [69]Gudiksen M S, Wang J F, Lieber C M. Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires[J]. The Journal of Physical Chemistry B, 2001, 105(19): 4062-4064.
    [70]Gudiksen M S, Lieber C M. Diameter-Selective Synthesis of SemiconductorNanowires[J]. Journal of the American Chemical Society, 2000, 122(36): 8801-8802.
    [71]Cui Y, Lauhon L J, Gudiksen M S, et al. Diameter-controlled synthesis of single-crystal silicon nanowires[J]. Applied Physics Letters, 2001, 78(15): 2214-2216.
    [72]Liang C H, Meng G W, Wang G Z, et al. Catalytic Synthesis of Ti2S Nanofibers[J]. Chemistry of Materials, 2001, 13(6): 2150-2153.
    [73]Trentler T J, Hickman K M, Goel S C, et al. Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth[J]. Science, 1995, 270(5243): 1791-1794.
    [74]Buhro W E, Hickman K M, Trentler T J. Turning down the heat on semiconductor growth: Solution-chemical syntheses and the solution-liquid-solid mechanism[J]. Advanced Materials 1996, 8(8): 685-688.
    [75]张登松,施利毅.纳米材料制备的若干新进展[J].化学工业与工程技术,2003,24(5):34-37.
    [76]Hoeppener S, Maoz R, Cohen S R. Metal nanoparticles, nanowires, and contact electrodes self-assembled on patterned monolayer templates a bottom-up chemical apporach[J]. Advanced Materials, 2002, 14(15): 1036-1041.
    [77]杨升红,张小明,张廷杰.微波法制备纳米Ti02粉末.稀有金属材料与工程[J].2000,29(5):354-356.
    [78]袁哲俊.纳米科学和技术的新进展[J].制造技术与机床,2004,8:21-31.
    [79]Pankove J I. Optical processes in semiconductors[M]. New York: Dover Publications Inc., 1970.
    [80]O'ReganB, Graetzel M A. low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films[J]. Natuer, 1991, 353: 737-740.
    [81]Shaheen S E, Brabec C J, Sariciftci N S, et al. 2.5% efficient organic plastic solar cells[J]. Applied Physics Letters, 2001, 78(6): 841-843.
    [82]Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5602): 2425-2427.
    [83]憨勇,郑修麟,刘正堂.化学气相沉积法ZnS块材料的生长[J].无机材料学报,1997,12(3):346-350.
    [84]郭广生,刘颖荣,王志华,等.单分散ZnS及其复合颗粒的制备[J].无机化学学报,2000,16(3):492-495.
    [85]Rana R K, Zhang L Z, Yu J C, Mesoporous Structures from Supramolecular Assembly of in situ Generated ZnS Nanoparticles[J]. Langmuir, 2003, 19(14): 5904-5911.
    [86]Wang Y, Herron N, Mahler W, et al. Linear-and nonlinear-optical properties of semiconductor clusters[J]. Journal of the Optical Society of America B, 1989, 6(4): 808-813.
    [87]Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370(6488): 354-356.
    [88]Klein D L, Roth R, Lim A K L, et al. A single-electron transistor made from a cadmium selenide nanocrystal[J]. Nature, 1997, 389(6652): 699-700.
    [89]Jauffred L, Richardson A C, Oddershede L B. Three-Dimensional Optical Control ofIndividual Quantum Dots[J]. Nano Letters, 2008, 8(10): 3376-3380.
    [90]Bruchez M Jr., Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013-2016.
    [91]Henglein A, Gutieerz M, Fisher C H. Photochemistry of colloidal metal sulfides.6.Kinetics of interfacial reactions at zinc sulfide particles[J]. Berichte der Bunsen-Gesellschaft, 1984, 88: 170-175.
    [92]Nedeljkovic J M, Nenadovic M T, Micic O I, et al. Enhanced photoredox chemistry in quantized semiconductor colloids[J]. The Journal of Physical Chemistry, 1986, 90(1): 12-13.
    [93]Dimitrijevic N M, Li S, Graetzel M. Visible light-induced oxygen evolution in aqueous cadmium sulfide suspensions[J]. Journal of the American Chemical Society,1984, 106(22): 6565-6569.
    [94]吕功煊,李树本,Savinov E N,等.酞菁钴界面修饰的CuxS-CdS复合硫化物光催化剂[J].物理化学学报,1994,10(9):790-795.
    [95]Rapoport L, Feldman Y, Homyonfer M, et al. Inorganic fullerene-like material as additives to lubricants:structuer-function relationship[J]. Wear, 1999, 225: 975-982.
    [96]Chen J, Li S L, Tao Z L, et al. Titanium Disulfide Nanotubes as Hydrogen-Storage Materials[J]. Journal of the American Chemical Society, 2003, 125(18): 5284-5285.
    [97]Chen J, Kuriyama N, Yuan H, et al. Electrochemical Hydrogen Storage in MoS2 Nanotubes[J]. Journal of the American Chemical Society, 2001, 123(47): 11813-11814.
    [98]Zak A, Feldman Y, Lyakhovitskaya V, et al. Alkali Metal Intercalated Fullerene-Like MS2 (M=W,Mo) Nanoparticles and Their Properties[J]. Journal of the American Chemical Society, 2002, 124(17): 4747-4758.
    [99]Ma D D D, Lee C S, Au F C K, et al. Small-Diameter Silicon Nanowire Surfaces[J]. Science, 2003, 299(5614): 1874-1877.
    [100]Qi J F, White J M, Belcher A M, et al. Optical spectroscopy of silicon nanowires[J]. Chemical Physics Letters, 2003, 372(5): 763-766.
    [101]Chung S W, Yu J Y, Heath J R. Silicon nanowire devices[J]. Applied Physics Letters, 2000, 76(15): 2068-2070.
    [102]Au F C K, Wong K W, Tang Y H, et al. Electron field emission from silicon nanowires[J]. Applied Physics Letters, 1999, 75(12): 1700-1702.
    [1]Alivisatos A P, Harris A L, Levinos N J, et al. Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum[J]. The Journal of Chemical Physics, 1988, 89(7): 4001–4011.
    [2]Terukov E I, KhuzhakulovéS. Electron exchange between neutral and ionized germanium centers in PbSe[J]. Semiconductors, 2005, 39(12): 1371–1373.
    [3]Casagrande L G, Juang A, Lewis N S. Photoelectrochemical Behavior of n-GaAs and n-AlxGa1-xAs in CH3CN[J]. The Journal of Physical Chemistry B, 2000, 104(23): 5436–5447.
    [4]Tonkikh A A, Cirlin G E, Dubrovski? V G, et al. Suppression of dome-shaped clusters during molecular beam epitaxy of Ge on Si(100)[J]. Semiconductors, 2004, 38(10): 1202–1206.
    [5]Zhou G T, Wang X C, Yu J C. A Low-Temperature and Mild Solvothermal Route to the Synthesis of Wurtzite-Type ZnS With Single-Crystalline Nanoplate-like Morphology[J]. Crystal Growth & Design, 2005, 5(5):1761–1765.
    [6]Zhang H T, Wu G, Chen X H. Large-Scale Synthesis and Self-Assembly of Monodisperse Hexagon Cu2S Nanoplates[J]. Langmuir, 2005,21(10): 4281–4282.
    [7]Sigman M B Jr., Ghezelbash A, Hanrath T, et al. Solventless Synthesis of Monodisperse Cu2S Nanorods, Nanodisks, and Nanoplatelets[J]. Journal of the American Chemical Society, 2003, 125(51): 16050–16057.
    [8]Porel, S, Singh S, Radhakrishnan T P. Polygonal gold nanoplates in a polymer matrix[J]. Chemical Communications, 2005(18), 2387–2389.
    [9]Zhang C, Zhu Y F. Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts[J]. Chemistry of Materials, 2005, 17(13): 3537–3545.
    [10]Yu J C, Xu A W, Zhang L Z, et al. Synthesis and Characterization of Porous Magnesium Hydroxide and Oxide Nanoplates[J]. The Journal of Physical Chemistry B,2004, 108(1): 64–70.
    [11]Jiang L P, Xu S, Zhu J. M, et al. Ultrasonic-Assisted Synthesis of Monodisperse Single-Crystalline Silver Nanoplates and Gold Nanorings[J]. Inorganic Chemistry, 2004, 43(19): 5877–5883.
    [12]Si R, Zhang Y W, You L P, et al. Rare-Earth Oxide Nanopolyhedra, Nanoplates, and Nanodisks[J] Angewandte Chemie, 2005,117(21): 3320–3324.
    [13]Cao Y C. Synthesis of Square Gadolinium-Oxide Nanoplates[J]. Journal of the American Chemical Society, 2004, 126(24): 7456–7457.
    [14]Ge J P, Wang J, Zhang H X, et al. A General Atmospheric Pressure Chemical Vapor Deposition Synthesis and Crystallographic Study of Transition-Metal Sulfide One-Dimensional Nanostructures[J]. Chemistry - A European Journal, 2004, 10(14): 3525-3530.
    [15]Zhang H X, Ge J P, Wang J, et al. Atmospheric pressure chemical vapour deposition synthesis of sulfides, oxides, silicides and metal nanowires with metal chloride precursors[J]. Nanotechnology, 2006, 17(11): S253-S261.
    [16]Schmitt A L, Bierman M J, Schmeisser D, et al. Synthesis and Properties of Single-Crystal FeSi Nanowires[J]. Nano Letter, 2006, 6(8): 1617-1621.
    [17]Schmitt A L, Zhu L, Schmeiaer D, et al. Metallic Single-Crystal CoSi Nanowires via Chemical Vapor Deposition of Single-Source Precursor[J]. J. Phys. Chem. B2006, 110(37), 18142-18146.
    [18]Song Y, Schmit t A L, Jin S. Ultralong Single-Crystal Metallic Ni2Si Nanowires with Low Resistivity[J] Nano Lett 2007, 7(4): 965-969.
    [19]Szczech J R, Schmitt A L, Bierman M J, et al. Single-Crystal Semiconducting Chromium Disilicide Nanowires Synthesized via Chemical Vapor Transport[J]. Chem. Mater. 2007, 19(13): 3238-3243.
    [20]lachnikR B, Mizller A. The formation of Cu2S from the elements: I. Copper used inform of powders[J]. Thermochimica Acta, 2000, 361(1): 31-52.
    [21]Chivers T. Tellurium compounds of the main-group elements: progress and prospects[J]. Journal of the Chemical Society, Dalton Transactions, 1996(7): 1185-1194.
    [22]Lakshmikumar S T, Rastogi A C. Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source[J]. Solar Energy Materials and Solar Cells, 1994, 32(1): 7-19.
    [23]Chung J S, Sohn H J. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries[J]. Journal of Power Sources, 2002, 108(2): 226–231.
    [24]Mane R S, Lokhande C D. Chemical deposition method for metal chalcogenide thin films[J]. Materials Chemistry and Physics, 2000, 65(1): 1–31.
    [25]Malyarevich A M, Yumashev K V, Posnov N N, et al. Nonlinear optical properties of CuxS and CuInS2 nanoparticles in sol–gel glasses[J]. Journal of Applied Physics, 2000, 87(1): 212–216.
    [26]Raevskaya A. E, Stroyuk A L, Kuchmii SY, et al. Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation[J]. Journal of Molecular Catalysis A, 2004, 212(2): 259–265.
    [27]Kunita M H, Girotto E M, Radovanovic E, et al. Deposition of copper sulfide on modified low-density polyethylene surface: morphology and electrical characterization[J]. Applied Surface Science, 2002, 202(3-4): 223–231.
    [28]Dong X, Potter D, Erkey C. Synthesis of CuS Nanoparticles in Water-in-Carbon Dioxide Microemulsions[J]. Industrial & Engineering Chemistry Research, 2002, 419(18): 4489-4493.
    [29]Lu J, Zhao Y, Chen N, et al. A Novel in situ Template-controlled Route to CuS Nanorods via Transition Metal Liquid Crystals[J]. Chemistry Letters, 2003, 32(1): 30-31.
    [30]Lu Q, Gao F, Zhao D. One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple OrganicAmine-Assisted Hydrothermal Process[J]. Nano Letters, 2002, 2(7): 725-728.
    [31]Chen X, Wang Z, Wang X, et al. Synthesis of novel copper sulfide hollow spheres generated from copper (II)–thiourea complex[J]. Journal of Crystal Growth, 2004, 263(3): 570-574.
    [32]Wang C, Tang K, Yang Q, et al. Synthesis of CuS Millimeter-Scale Tubular Crystals[J]. Chemistry Letters, 2001, 30(6): 494-495.
    [33]Jiao S H, Xu L F, Jiang K, et al. Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating[J]. Advanced Materials, 2006, 18(9), 1174-1177.
    [34]Wu C, Yu S H, et al. Complex Concaved Cuboctahedrons of Copper Sulfide Crystals with Highly Geometrical Symmetry Created by a Solution Process[J]. Chemistry of Materials, 2006, 18(16): 3599-3601.
    [35]Gotsis H J, Barnes A C, Strange P. Experimental and theoretical investigation of the crystal structure of CuS[J]. Journal of Physics: Condensed Matter, 1992, 4(50): 10461–10468.
    [36]Matysina Z A. The relative surface energy of hexagonal close-packed crystals[J]. Materials Chemistry and Physics, 1999, 60(1): 70–78.
    [1]Shafizade R B, Ivanova I V, Kazinets M M. Electron diffraction study of phase transformations of the compound CuSe[J]. Thin Solid Films, 1978, 55(2): 211-220.
    [2]Graeia V M, Nair P K, Nair M T S. Copper selenide thin films by chemical bath deposition[J]. Journal of Crystal Growth, 1999, 203(1): 113-124.
    [3]Lakshmi M, Bindu K, Bini S, et al. Chemical bath deposition of different phases of copper selenide thin films by controlling bath parameters[J]. Thin Solid Films, 2000, 370(1): 89- 95.
    [4]Lakshmi M, Bindu K, Bini S, et al. Reversible Cu2?xSe?Cu3Se2 phase transformation in copper selenide thin films prepared by chemical bath deposition[J]. Thin Solid Films, 2001, 386(1): 127-132.
    [5]Heyding R D, Murray R M. The crystal structures of Cu1.8Se, Cu3Se2,α- andγCuSe, CuSe2, and CuSe2II[J]. Canadian Journal of Chemistry. 1976, 54(6): 841-848.
    [6] Haram S K, Santhanam K S V, Spallart m N, et al. Electroless deposition on copper substrates and characterization of thin films of copper (I) selenide[J]. Materials Research Bulletin, 1992,27(10): 1185-1191.
    [7]Lakshmikumar S T, Rastogi A C. Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source[J]. Solar Energy Materials and Solar Cells, 1994, 32(1): 7-19.
    [8]Clément C L, Spallart M N, Haram S K, et al. Chemical bath deposition of cubic copper (I) selenide and its room temperature transformation to the orthorhombic phase[J].Thin Solid Films, 1997, 302(1): 12-16.
    [9]Bhuse V M, Hankare P P, Garadkar K M, et al. A simple, convenient, low temperature route to grow polycrystalline copper selenide thin films[J]. Materials Chemistry and Physics, 2003, 80(1): 82-88.
    [10]Ohtani T, Motoki M, Koh K, et al. Synthesis of binary copper chalcogenides by mechanical alloying[J]. Materials Research Bulletin, 1995, 30:1495-1504.
    [11]Qiao Z P, Xie Y, Xu J G, et al. Synthesis of nanocrystalline Cu2– xSe at room temperature by -irradiation[J]. Canadian Journal of Chemistry, 2000, 78(9): 1143-1147.
    [12]Zhu J J, Palchik O, Chen S G, et al. Microwave Assisted Preparation of CdSe,PbSe,and Cu2-xSe NanoPartieles[J]. The Journal of Physical Chemistry B, 2000, 104(31): 7344一7347.
    [13]Ohtani T, Nonaka T, Araki M. Sonochemical Synthesis of Copper and Silver Chalcogenides[J]. Journal of Solid State Chemistry, 1998, 138,131.
    [14]Xie Y, Zheng X W, Jiang X C, et al. Sonochemical Synthesis and Mechanistic Study of Copper Selenides Cu2-xSe,β-CuSe, and Cu3Se2[J]. Inorganic Chemistry, 2002, 41(2): 387-392.
    [15]Kemmler M, Lazell M, O’Brien P, et al. The growth of thin films of copper chalcogenide films by MOCVD and AACVD using novel single-molecule precursors[J]. Journal of Materials Science: Materials in Electronics, 2002, 13(9): 531-535.
    [16]Córdova R, López C, Orellana M, et al. Electrosynthesis of Cu?Se Films on Copper Electrodes in Alkaline Media: A Voltammetric, Electrochemical Quartz Crystal Microbalance and I/t Transient Study[J]. The Journal of Physical Chemistry B, 2005, 109(8): 3212-3221.
    [17]Dhanam M, Manoj P K, Prabhu R R. High-temperature conductivity in chemical bath deposited copper selenide thin films[J]. Journal of Crystal Growth, 2005, 280(3): 425-435.
    [18]Yi H C, Moore J J. Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials[J]. Journal of Materials Science, 1990, 25(2): 1159-1168.
    [19]Parkin I. P., Solid State Metathesis Reaction for Metal Borides, Silicides, Pnictide and Chalcogenides: Ionic or Elemental Pathways[J]. Chemical Society Reviews, 1996, 25(3): 199-208.
    [20]Henshaw G, Parkin, I P, Shaw G. Convenient, low-energy synthesis of metal sulfides and selenides; PbE, Ag2E, ZnE, CdE (E = S, Se)[J]. Chemical Communications, 1996(10): 1095-1096.
    [21]Henshaw, G., Parkin, I. P., and shaw, G., Convenient, room-temperature liquid ammonia routes to metal chalcogenides[J]. Dalton Transactions, 1997(2): 231-236.
    [22]Steigerwald M L, Alivisatos A P, Gibson J M, et al. Surface derivatization and isolation of semiconductor cluster molecules[J]. Journal of the American Chemical Society, 1988, 110(10): 3046-3050.
    [23]Ptatschek V, Schreder B, Herz K, et al. Sol-gel synthesis and spectroscopic properties of thick nanocrystalline CdSe films[J]. The Journal of Physical Chemistry B, 1997, 101(44): 8898-8906.
    [24]Hambrock J, Birkner A, Fischer R A. Synthesis of CdSe nanoparticles using various organometallic cadmium precursors[J]. Journal of Materials Chemistry, 2001, 11(12): 3197-3201.
    [25]Malik M A, Revaprasadu N, O'Brien P. Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles[J]. Chemistry of Materials, 2001, 13(3): 913-920.
    [26]Li Y D, Liao H W, Ding Y, et al. Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod[J]. Inorganic Chemistry, 1999, 38(7): 1382-1387.
    [27]Wang W Z, Geng Y, Qian Y T, et al. A novel room temperature method to nanocrystalline Ag2Se[J]. Materials Research Bulletin, 1999, 34(6): 877-882.
    [28]Su H L, Xie Y, Li B, et al. A simple, convenient, mild hydrothermal route to nanocrystalline CuSe and Ag2Se[J]. Materials Research Bulletin, 2000, 35: 465-469.
    [29]Zhang W X, Zhang X M, Zhang L, et al. A redox reaction to synthesize nanocrystalline Cu2-xSe in aqueous solution[J]. Inorganic Chemistry, 2000, 39(9): 1838-1839.
    [30]Yu S H, Yang J, Wu Y S, et al. A new low temperature one-step route to metalchalcogenide semiconductors: PbE, Bi2E3 (E = S, Se, Te)[J]. Journal of Materials Chemistry, 1998, 8(9): 1949-1951.
    [31]Xie Y, Su H L, Li B, et al. A direct solvothermal route to nanocrystalline selenides at low temperature[J]. Materials Research Bulletin, 2000, 35(3): 459-464.
    [32]Wang W Z, Geng Y, Yan P, et al. A novel mild route to nanocrystalline selenides at room temperature[J]. Journal of the American Chemical Society, 1999, 121(16): 4062-4063.
    [33]Ding T, Wang H, Xu S, et al. Sonochemical synthesis and character izations of monodispersed PbSe nanocrystals in polymer solvent[J]. Journal of Crystal Growth, 2002, 235(1-4): 517-522.
    [34]Zhu J J, Wang H, Xu S, et al. Sonochemical method for the preparation of monodisperse spherical and rectangular lead selenide nanoparticles[J]. Langmuir, 2002, 18(8): 3306-3310.
    [35]Li B, Xie Y, Huang J, et al. Sonochemical synthesis of silver, copper and lead selenides[J]. Ultrasonic Sonochemistry, 1999, 6(4): 217-220.
    [36]Zhan J H, Yang X G, Li S D, et al. Synthesis of Ag2Se by sonochemical reaction of Se with AgNO3 in non-aqueous solvent[J]. International Journal of Inorganic Materials, 2001, 3 (1): 47-49.
    [37]Xu S, Wang H, Zhu J J, et al., Sonochemical synthesis of copper selenides nanocrystals with different phases[J]. Journal of Crystal Growth, 2002, 234(1): 263-266.
    [38]Xie Y, Zhang X W, Jiang X C, et al. Sonochemical synthesis and mechanistic study of copper selenides Cu2-xSe, beta-CuSe, and Cu3Se2[J]. Inorganic Chemistry, 2002, 41(2): 387-392.
    [39]Palchik O, Kerner R, Gedanken A, et al. Microwave-assisted polyol method for the preparation of CdSe“nanoballs”[J]. Journal of Materials Chemistry, 2001, 11(3): 874-878.
    [40]Zhu J J, Palchik O, Chen S G, et al. Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles[J]. The Journal of Physical Chemistry B, 2000, 104(31): 7344-7347.
    [41]Ge S W, Ni Y H, Liu H R, et al.γ-Irradiation preparation of cadmium selenide nano-particles in ethylenediamine system[J]. Materials Research Bulletin, 2001, 36(9):1609-1613.
    [42]Qiao Z P, Xie Y, Xu J G, et al. Synthesis of nanocrystalline Cu2-xSe at room temperature by gamma-irradiation[J] Canadian Journal of Chemistry, 2000, 78(9): 1143-1146.
    [1]Hu J T, Odom, T W, Lieber, C M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes[J]. Acc. Chem. Res. 1999, 32(5): 435-445.
    [2]Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
    [3]Baughman R H, Zakhidov A A, de Heer W A. Carbon Nanotubes--the Route Toward Applications[J]. Science, 2002, 297(5582): 787-792.
    [4]Rao C N R, Deepak F L, Gundiah G, et al. Inorganic nanowires[J]. Progress in Solid State Chemistry, 2003, 31(1): 5-147.
    [5]Rao C N R, Nath M. Inorganic nanotubes[J]. Dalton Transactions, 2003(1): 1-24.
    [6]Fert A, Piraux L. Magnetic nanowires[J]. Journal of Magnetism and Magnetic Materials, 1999, 200(1): 338-358.
    [7]Pan Z W, Dai Z R, Wang Z L. Nanobelts of Semiconducting Oxides[J]. Science, 2001, 291(5510): 1947-1949.
    [8]Suenaga K, Colliex C, Demoncy N, et al. Synthesis of Nanoparticles and Nanotubes with Well-Separated Layers of Boron Nitride and Carbon[J]. Science, 1997, 278(5338): 653-655.
    [9]Zhang Y, Suenaga K, Colliex C, et al. Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon[J.] Science, 1998, 281(5379): 973-975.
    [10]Li Q, Wang C R. Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation[J]. Applied Physics Letters, 2003, 82(9): 1398-1400.
    [11]Li Y, Bando Y, Golberg D. SiC-SiO2-C Coaxial Nanocables and Chains of Carbon Nanotube-SiC Heterojunctions[J]. Advanced Materials, 2004, 16(1): 93-96.
    [12]Hu J Q, Bando Y, Liu Z W, et al. Epitaxial Heterostructures: Side-to-Side Si?ZnS, Si?ZnSe Biaxial Nanowires, and Sandwichlike ZnS?Si?ZnS Triaxial Nanowires[J].Journal of the American Chemical Society, 2003, 125(37): 11306-11313.
    [13]Park W I, Yi G C, Kim M Y, et al. Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures[J]. Advanced Materials, 2003, 15(6): 526-529.
    [14]Wu Y Y, Fan R, Yang P D. Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires[J]. Nano Letters, 2002, 2(2): 83-86.
    [15]Lao J Y, Huang J Y, Wang D Z, et al. ZnO Nanobridges and Nanonails[J]. Nano Letters, 2003, 3(2): 235-238.
    [16]Gao P X, Wang Z L. Self-Assembled Nanowire?Nanoribbon Junction Arrays of ZnO[J]. The Journal of Physical Chemistry B, 2002, 106(49): 12653-12658.
    [17]Xia Y N, Yang P D, Sun Y G, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications[J]. Advanced Materials, 2003,15(5),353-389.
    [18]成会明.碳纳米管制备,结构物性及应用,北京:化学工业出版社,2002.
    [19]方俊鑫,陆栋.固体物理学(下册)[M].上海:上海科学技术出版社,1985.
    [20]陈维德,李秀琼.硅基发光材料和器件的研究进展[J].光电子技术与信息,2000,13(2):13-19.
    [21]isrchlllna K D,Tsybeskov L,Duttagupta S P, et al. Silicon-based visible light-emitting devices integrated into microelectronic circuits[J]. Nature, 1996, 384(6607): 338-341.
    [22]Pavesi L,Negro L D,Mazzoleni C, et al. Optical gain in silicon nanocrystals[J]. Nature,2000,408(6811): 440-444.
    [23]Canham L T,Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Applied Physics Letters,1990, 57(10): 1046-1048.
    [24]Teo B K.Doping chemistry on low-dimensional silicon surfaces:silicon nanowires as platforms and templates[J]. Coordination Chemistry Reviews, 2003, 246(4): 229-246.
    [25]Perepichka D F, Rosei F. Silicon nanotubes[J]. Small, 2006, 2(1): 22-25.
    [26]Namatsu H, Horiguchi S, Nagase M, et al. Fabrication of one-dimensional nanowire structures utilizing crystallographic orientation in silicon and their conductancecharacteristics[J]. Journal of Vacuum Science & Technology B, 1997, 15(5): 1688-1696.
    [27]Ali D, Ahmed H. Coulomb blockade in a silicon tunnel junction device[J]. Applied Physics Letters,1994, 64(16): 2119-2120.
    [28]Leobandung, Guo L, Wang Y, et al. Observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperature over 100 K[J]. Applied Physics Letters, 1995, 67(7): 938-940.
    [29]Tang Y H. Synthesis and characterization of silicon and related nanowires[D]. Hong Kong: City University of Hong Kong,2000: 23-45.
    [30]Liu H I, Biegelsen D K, Johnson N M, et al. Self-limiting oxidation of Si nanowires[J]. Journal of Vacuum Science & Technology B, 1993, 11(6): 2532-2537.
    [31]Ono T, Saitoch H H, Esashi M. Si nanowire growth with ultrahigh vacuum scanning tunneling microscopy[J]. Applied Physics Letters, 1997, 70(14): 1852-1854.
    [32]Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 1998, 279(15): 208-211.
    [33]Tang Y H, Zhang Y F, Lee C S, et al. Large scale synthesis of silicon nanowires by laser ablation[J]. Materials Research Society Symposium Proceedings, 1998, 526(18): 73-77.
    [34]Feng S Q, Yu D P, Zhang H Z, et al. The growth mechanism of silicon nanowires and their quantum confinement effect[J]. Journal of Crystal Growth, 2000, 209(2): 513-517.
    [35]Yu D P, Lee C S, Bello I, et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature[J]. Solid State Communication, 1998, 105(4): 403-407.
    [36]Zeng X B, Xu Y Y, Zhang S B, et al. Silicon nanowires grown on a pre-annealed Si substrate[J]. Journal of Crystal Growth, 2003, 247(9): 13-16.
    [37]Liu Z Q, Pan Z W, Sun L F, et al. Synthesis of silicon nanowires using AuPd nanoparticles catalyst on silicon substrate[J]. Journal of Physics and Chemistry ofSolids, 2000, 61(2): 1171-1174.
    [38]Sakulchaicharoen N, Resasco D E. Temperature dependence of the quality of silicon nanowires produced over a titania-supported gold catalyst[J]. Chemical Physics Letters, 2003, 377(8): 377-383.
    [39]Liu Z Q, Xie S S, Zhou W Y, et al. Catalytic synthesis of straight silicon nanowires over Fe containing silica gel substrates by chemical vapor deposition [J]. Journal of Crystal Growth, 2001, 224(3): 230-234.
    [40]冯孙齐,俞大鹏,张洪洲,等.一维硅纳米线的生长机制及其量子限制效应的研究[J].中国科学A辑,1999,29(10):921-926.
    [41]张亚利,郭玉国,孙典亭.纳米线研究进展(1):制备与生长机制[J].材料科学与工程,2001,19(1):131-136.
    [42]Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth, Applied Physics Letters, 1964, 4(5): 89-90.
    [43]Givargizov E I, Stockbabrger crystal growth, Fundamental aspects of VLS growth[J]. Journal of Crystal Growth, 1975, 31,20
    [44]Wu Y Y, Yang P D, Direct Observation of Vapor-Liquid-Solid Nanowire Growth[J]. Journal of the American Chemical Society, 2001, 123(13): 3165-3166.
    [45]Gudiksen M S, Lieber C M. Diameter-Selective Synthesis of Semiconductor Nanowires[J]. Journal of the American Chemical Society, 2000, 122(36): 8801-8802.
    [46]Cui Y, Lauhon L J, Gudiksen M S, et al. Diameter-controlled synthesis of single-crystal silicon nanowires[J]. Applied Physics Letters, 2001, 78(15): 2214-2216.
    [47]Gudiksen M S, Wang J F, Lieber C M. Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires[J]. The Journal of Physical Chemistry B, 2001, 105(19): 4062-4064.
    [48]Givargizov E I. Periodic instability in whisker growth[J]. Journal of Crystal Growth, 1975, 31(2): 20-30.
    [49]Givargizov E I. Fundamental aspects of VLS growth[J]. Journal of Crystal Growth,1973, 20(3): 217-226.
    [50]Lee S T, Zhang Y F, Wang N, et al. Semiconductor nanowires from oxides[J]. Journal of Materials Research, 1999, 14(12): 4503-4507.
    [51]Lee S T, Wang N, Zhang Y F, et al. Oxide-assisted semiconductor nanowire growth[J]. Materials Research Bulletin, 1999, 24(4): 36-42.
    [52]Zhang Y F, Tang Y H, Wang N, et al. One-dimensional growth mechanism of crystalline silicon nanowires[J]. Journal of Crystal Growth, 1999, 197(9): 136-140.
    [53]Yu D P, Xing Y J, Hang Q L, et al. Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid(SLS) mechanism[J]. Physica E, 2001, 9(6): 305-309.
    [54]Tang Q, Liu X, Theodore I, et al. Nucleation of Ti-catalyzed self-assembled kinked Si nanowires grown by gas source MBE[J]. Journal of Crystal Growth, 2003, 251(1): 662-665.
    [55]Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown silicon nanowires[J]. Science, 2000, 287(5): 1471-1473.
    [56]Hanrath T, Korgel B A. Supercritical fluid-liquid-solid(SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals[J]. Advanced Materials, 2003, 15(5): 437-440.
    [57]Lu X M, Hanrath T, Johnston K P, et al. Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate[J].Nano Letters, 2003, 3(1): 93-99.
    [58]Zhang X Y, Zhang L D, Meng G W, et al. Synthesis of Ordered Single Crystal Silicon Nanowire Arrays[J]. Advanced Materials, 2001, 13(16): 1238-1241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700