用户名: 密码: 验证码:
功能氧化物/碳纳米管复合材料的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有独特的一维纳米结构、极高的纵横比和良好的导电性,将这些优异性能集于一身使得它的应用领域非常广泛,尤其在复杂环境下制备多功能特种复合材料时更显出其无可比拟的优越性。高性能碳纳米管纳米复合材料的研究已成为碳纳米管的重要应用研究方向之一,具有重要的基础理论研究意义。本文利用碳纳米管和金属氨络合离子反应制备出ZnO、CuO、Cu2O、Cu、CoO、NiO纳米粒子沉积在碳纳米管表面的复合材料,还得到了花状ZnO和Cu2O纳米粒子只连接在碳纳米管端口形成的异质结。对ZnO/MWNT复合材料的光电性质研究发现,ZnO与碳纳米管之间有光生电荷传递作用,且ZnO与碳纳米管之间的接触面积越大越利于其电荷传递的发生。复合材料的瞬态光伏测试结果显示有极性反转,其中正响应为ZnO自身产生光电压的过程,负响应为ZnO与碳纳米管之间电荷传递的过程。对不同粒径Cu2O修饰的碳纳米管进行紫外-可见吸收光谱测试表明具有较小粒径的Cu2O纳米粒子由于量子限域效应会引起吸收谱带一定程度的蓝移。对CoO/MWNT及NiO/MWNT复合物的磁性研究发现,由于CoO及NiO的小粒径使得这两种复合物在室温都表现出超顺磁性。
Carbon nanotubes (CNTs) with unique structure and excellent chem-physical properties have attracted increasing interest because novel applications have been found for these materials in catalysis, electrode fabrication and gas storage/separation. Recently, as a new hybrid material, metal or metal oxides/CNT composites have received much attention for their promising applications in gas sensors, supercapacitors and so on. In our work, a series of metal or metal oxides/multi-walled carbon nanotube (MWNT) composites with controlled morphology have been obtained via the interaction of M(NH3)x2+ ions and acid-treated MWNTs. The photoelectric and magnetic properties of the obtained products have been studied.
     A simple method has been employed to modify MWNTs with ZnO nanostructures by zinc-ammonitum complex ion covalently attached to the MWNTs through the C?N bonds. When acid-treated MWNTs are soaked in the Zn(NH3)42+ solution at room temperature for a short time, the concentration of the Zn(NH3)42+ on the tips of the MWNTs is rather high due to the presence of a large number of carboxyl groups. As a result, the concentration of CONH2?Zn(NH3)32+ groups formed by the reaction of the amide and carboxyl in the intermediate products is high and favors the formation of flower-like structures on the tips of MWNTs after calcination. When prolonging the soaking time, the Zn(NH3)42+ are dispersed homogeneously around the MWNTs, and the concentration of CONH2?Zn(NH3)32+ groups in the intermediate products is low and prefers the formation of nanoparticles around the MWNTs after calnination. Photoluminescence measurements of the obtained products, strongly influenced by the ZnO nanostructures, have been performed. PL peak of ZnO nanoparticles directly attached to MWNTs is quenched to a considerable extent compared with that of flower-like ZnO in the flower-like ZnO/MWNT heterojunctions. It is due to the interaction of ZnO nanoparticles in excited state and MWNTs in electron transfer process. The photovoltage transient results of both of the hybrid materials display a positive response, which attributed to the photovoltage from ZnO attached to MWNTs, and a negative response which due to the transfer of photoinduced electrons of ZnO to MWNTs.
     CuO/MWNT composites have been prepared by the interaction of Cu(NH3)42+ ions and carboxyl groups on the surface of MWNTs. Cu/MWNT composites have also been prepared by adjusting the calcination temperature. In addition, Cu2O/MWNT composites have been obtained by increasing the amount of NH3?H2O. The morphology of Cu2O/MWNT composites could be controlled by adjusting the soaking time. UV?visible absorption spectra of the obtained Cu2O/MWNT composites present a blue-shift with the decrease of particle size, which could be attributed to the quantum confinement effect.
     Decoration of the MWNTs with CoO and NiO nanoparticles has been achieved via the interaction of M(NH3)x2+ (M = Co, Ni) ions and carboxyl groups on the surface of MWNTs. Both CoO/MWNT and NiO/MWNT composites present superparamagnetic behavior at 300 K, which can be attributed to the small particle size of CoO and NiO nanoparticles.
引文
[1]杨志.碳纳米管纳米复合材料的制备及其性能研究[D].兰州:兰州大学化学学院,2005.
    [2] Komamenis R R, Roy D M. Cation-exchange properties of hydrated cements [J]. Materials Research Society Symposium Proceedings, 1984, 32: 347-349.
    [3]刘结,滕翠青,余木火.纳米复合材料研究进展[J].合成技术与应用, 2000, 04:33-36.
    [4]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [5]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [6]张洁,王旭晖,崔一平,等.聚对苯撑亚乙烯/SiO2块状溶胶-凝胶光学材料制备的研究[J].功能材料,2000,31(6):649-651.
    [7]徐国财,马家举,邢宏龙.纳米粒子的分散及其有机复合材料的复合技术[J].中国科学基金, 2001, 15(2):109-112.
    [8] Gelgali G, Ramesh C, Lele A. A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites [J]. Macromolecules, 2001, 34: 852-858.
    [9]冯西桥.聚合物/层状硅酸盐纳米复合材料的有效模量[J].科学通报, 2001, 46(4):348-351.
    [10] Hackett E, Manias E, Giannelis E P. Computer simulation studies of PEO/layered silicate nanocomposites[J]. Chemistry of Materials, 2000, 12: 2161-2167.
    [11]王荔军,李敏,李铁津,等.植物体内的纳米结构SiO2[J].科学通报, 2001, 46(8):625-632.
    [12] S. Iijima. Helical Microtubules of Graphitic Carbon [J]. Nature, 1991, 354: 56-58.
    [13]韦进全,张先锋,王昆林.碳纳米管宏观体[M].北京:清华大学出版社,2006.
    [14]吴宇平,戴晓兵,马军旗,等.锂离子电池——应用与实践[M].北京:化学工业出版社,2004.
    [15] Zhang X F, Zhang X B, Tendeloo V, et al. Carbon nano-tubes; their formation process and observation by electron microscopy [J]. Journal of Crystal Growth, 1993, 130: 368-382.
    [16] Colbert P T, Zhang J, Mcclure S M, et al. Growth and sintering of fullerence nanotubes[J]. Science, 1994, 266: 1218-1233.
    [17]陈晓红.热解法制备气相生长碳纤维和碳纳米管的研究[D].北京:北京化工大学材料与工程学院,1998.
    [18] Endo M, Takeuchi K, Igarashi S, et al. The production and structure of pyrolytic carbon nanotubes (PCNT) [J]. Journal of Physics and Chemistry of Solids, 1993, 54(12): 1841-1846.
    [19] Lratschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60: a new form of carbon [J]. Nature, 1990, 347: 354-358.
    [20] Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization [J]. Chemical Physics Letters, 1995, 243: 49-54.
    [21] Zhang H Y, Ding Y, Wu C Y, et al. The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature [J]. Physica B, 2003, 325: 224-229.
    [22] Munoz E, Maser W K, Benito A M, et al. Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation [J]. Carbon, 2000, 38: 1445-1451.
    [23] Ren Z F, Huang Z P, Wu J W, et al. AFM and STM investigation of carbon nanotubes produced by high energy ion irradiation of graphite [J]. Nuclera Instruments and Methods in Physics Research B, 1999, 147: 142-147.
    [24] Chernozatoskii L A. New carbon tubelite-ordered film structure of multiplayer nanotubes [J]. Physics Letters A, 1995, 197(1): 40-43.
    [25] Yamamoto K. New method of carbon nanotubes [J]. Physics Letters A, 1995, 197(1): 40-46.
    [26] Laplaze D, Bernier P, Maser W K, et al. Carbon nanotubes: the solar approach [J]. Carbon, 1998, 36(5-6): 685-688.
    [27] Anglaret E, Bendiab N, Guillard T, et al. Raman characterization of single wall carbon nanotubes prepared by the solar energy route [J]. Carbon, 1998, 36(12): 1815-1820.
    [28] Alvarez L, Guillard T, Sauvajol J L, et al. Growth mechanisms and diameter evolution of single wall carbon nanotubes [J]. Chemical Physics Letters, 2001, 342: 7-14.
    [29] Hsu W K, Terrones M, Hare J P, et al. Electrolytic formation of carbon nanostructures [J]. Chemical Physics Letters, 1996, 263: 161-166.
    [30] Bai J B, Hamon A L, Marraud A, et al. Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method [J]. Chemical Physics Letters, 2002, 365: 184-188.
    [31] Randall L, Wal Vander. Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes [J]. Chemical Physics Letters, 2000, 324: 217-223.
    [32] Randall L, Wal Vander. Flame synthesis of Ni-catalyzed nanofibers [J]. Carbon, 2002, 40: 2101-2107.
    [33] Tohji K, Goto T, Takahashi H, et al. Purifying single-walled carbon nanotubes [J]. Nature, 1996, 383: 679-679.
    [34] Hou P X, Bai S, Yang Q H, et al. Multi-step purification of carbon nanotubes [J]. Carbon, 2002, 40: 81-85.
    [35] Ajayan P M, Ebbesen T W, Ichihashi T, et al .Opening carbon nanotubes with oxygen and implications for filling [J]. Nature, 1993, 362: 522-525.
    [36]王敏伟,李凤仪,彭年才.硝酸氧化法对碳纳米管纯化及开管研究[J].江西科学,2002, 20(4): 203-206.
    [37] Brabee C J, Maiti A, Roland C, et al. Growth of carbon nanotubes: a molecular dynamics study [J]. Chemical Physics Letters, 1995, 236: 150-155.
    [38] Ajayan P M, Ebbesen T W. Nanometre-size tubes of carbon [J]. Reports on Progress in Physics, 1997, 60: 1025-1062.
    [39] Ebbesen T W, Ajayan P M, Hiura H, et al. Purification of nanotubes [J]. Nature, 1994, 367: 519-519.
    [40]杨占红,李星海,王红强,等.碳纳米管的纯化[J].材料导报, 1999, 13(13): 29-30.
    [41] Bandow S, Asaka S, Zhao X, et al. Purification and magnetic properties of carbon nanotubes [J]. Appl. Phys. A 1998, 67: 23-27.
    [42] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature, 1994, 372: 159-162.
    [43] Chen Y K, Green M L H, Grifin J L, et al. Purification and opening of carbonnanotubes via bromination [J]. Advanced Materials, 1996, 8: 1012-1015.
    [44] Hiura H, Ebbesen T W, Tanigaki K, Opening and purification of carbon nanotubes in high yields [J]. Advanced Materials, 1995, 7: 275-276.
    [45] Sumanasekera G U, Allen J L, Fang S L, et al. Electrochemical oxidation of single-wall carbon nanotube bundles in sulfuric acid [J]. The Journal of Physical Chemistry B, 1999, 103(21): 4292-4297.
    [46] Ikazaki F, Ohshima S, Uchida K, et al. Chemical purification of carbon nanotubes by use of graphite intercalation compounds [J]. Carbon, 1994, 32: 1539-1542.
    [47] Ago H, Kugler T H, Cacialli F, et al. Workfunction of purified and oxidised carbon nanotubes [J]. Synthetic Metals, 1999, 103: 2494-2495.
    [48]吕德义,陈万喜,徐铸德.纳米碳管的纯化[J].材料科学与工程,2000,18(4):103-106.
    [49] Tohji K, Takahashi H, Shinoda Y, et al. Purification Procedure for Single-Walled Nanotubes [J]. The Journal of Physical Chemistry B, 1997, 101: 1974-1978.
    [50] Bandow S, Rao A M, Williams K A, et al. Purification of Single-Wall Carbon Nanotubes by Microfiltration [J]. The Journal of Physical Chemistry B, 1997, 101: 8839-8842.
    [51] Shelimov K B, Esenaliev R O, Rinzler A G, et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration [J]. Chemical Physics Letters, 1998, 282: 429-434.
    [52] MIzoguti E, Nihey F. Purification of single-wall carbon nanotubes by using ultrafine gold particles [J]. Chemical Physics Letters, 2000, 321: 297-301.
    [53] Holzinger M, Hirsch A, Bernier P, et al. A new purification method for single-wall carbon nanotubes (SWNTs) [J]. Applied Physics A: Materials Science & Processing, 2000, 70: 599-602.
    [54] Li F, Chen H M, Xing Y T, et al. Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons [J]. Carbon, 2000, 38: 2041-2045.
    [55] Hou P X, Liu C, Tong Y, et al. Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method [J]. Journal of Materials Research, 2001, 16: 2526-2529.
    [56] Treacy M M J, Ebbesen W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381: 678-680.
    [57] Wong W E, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277: 1971-1975.
    [58] Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes [J]. Nature, 1996, 382: 54-56.
    [59] Odom T W, Huang J L, Kim p, et al. Atomic structure and electric properties of single walled carbon nanotubes [J]. Nature, 1998, 391: 62-64.
    [60] Dai H, Wong E W, Lieber C M, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes [J]. Science, 1996, 272: 523-526.
    [61] Thess A, Lee R, Nilollaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science, 1996, 273: 483-487.
    [62] Bockrath M, Cobden D H, Mceuen P L, et al. Single-electron transport in ropes of carbon nanotubes [J]. Science, 1997, 275: 1922-1925.
    [63] Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes [J]. Physical Review Letters, 2000, 84(20): 4613-4616.
    [64] Pederson M R, Broughton J Q. Nanocapillarity in fullerene tubules [J]. Physical Review Letters, 1992, 69: 2689-2692.
    [65] Huang Y H, Okada M, Tanaka K, et al. Estimation of superconducting transition temperature in metallic carbon nanotubes [J]. Physical Review B, 1996, 53: 5129-5132.
    [66] Kasumov A Y, Deblock R, Kociak M, et al. Supercurrents through single-walled carbon nanotubes [J]. Science, 1999, 284: 1508-1511.
    [67] Kociak M, Kasumov A Y, Guerin S, et al. Superconductivity in ropes of single-walled carbon nanotubes [J]. Physical Review Letters, 2001, 86: 2416-2419.
    [68] Tang Z K, Zhang l y, Wang N, et al. Superconductivity in 4 angstrom single-walled carbon nanotubes [J]. Science, 2001, 292: 2462-2465.
    [69] Ajayan P M, Terrones M, de la Guardia A, et al. Nanotubes in a flash-Ignition and reconstruction [J]. Science, 2002, 296: 705-707.
    [70] Bachilo S M, Strano M S, Kittrell C, et al. Structure-assigned optical spectra of single-walled carbon nanotubes [J]. Science, 2002, 298(5602): 2361-2366.
    [71] Sun W X, Huang Z P, Zhang L, et al. Luminescence from multi-walled carbonnanotubes and Eu(Ⅲ)/multi-walled carbon nanotube composite [J]. Carbon, 2002, 41: b1645-b1687.
    [72] Riggs J E, Guo A X, Carroll D L, et al. Strong luminescence of solubilized carbon nanotubes [J]. Journal of the American Chemical Society, 2000, 122(24): 5879-5880.
    [73] Lebedkin S, Hennrich F, Skipa T, et al. Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method [J]. The Journal of Physical Chemistry B, 2003, 107: 1949-1956.
    [74] Brennan M E, Coleman J N, in het Panhuis M, et al. Nonlinear photoluminescence in multiwall carbon nanotubes [J]. Synthetic Metals, 2001, 119: 641-642.
    [75] Vivien L, Lancon P, Riehl D, et al. Carbon nanotubes for optical limiting [J]. Carbon, 2002, 40: 1789-1797.
    [76] Bonard J M, Stockli T, Maier F, et al. Field-emission-induced luminescence from carbon nanotubes [J]. Physical Review Letters, 1998, 81(7): 1441-1444.
    [77] Wei J Q, Zhu H W, Wu D H, et al. Carbon nanotubes filaments in household light bulbs [J]. Applied Physics Letters, 2004, 84(24): 4869-4871.
    [78]吴胜伟.碳纳米管的填充、切割及其若干复合材料的研制与应用[D].上海:中国科学院上海应用物理研究所,2005.
    [79] Pederson M R, Broughton J Q. Nanocapillarity in fullerene tubules [J]. Physical Review Letters, 1992, 69: 2689-2692.
    [80] Zhang Z L, Li B, Shi Z J, et al. Filling of single-walled carbon nanotubes with silver [J]. Journal of Materials Research, 2000, 15(12): 2658-2661.
    [81] Hsin Y L, Hwang K C, Chen F R, et al. Production and in-situ metal filling of carbon nanotubes in water [J]. Advanced Materials, 2001, 13(11): 830-833.
    [82] Liang C H, Meng G W, Zhang L D, et al. Carbon nanotubes filled partially of completely with nickel [J]. Journal of Crystal Growth, 2000, 218: 136-139.
    [83] Liu Z J, Chen R C, Xu Z D, et al. Preparation of Fe-fillling carbon nanotubes by catalytic decomposition of cyclohexane [J]. Synthetic Metals, 2002, 128(2): 191-195.
    [84] Ajayan P M, Lijima S. Capillarity-induced filling of carbon nanotubes [J]. Nature 1993, 361: 333-334.
    [85] Ugrate U, Chatelain A, Heer W A. Nanocapillarity and Chemistry in CarbonNanotubes [J]. Science, 1996, 274: 1897-1899.
    [86] Chen Y K, Green M L H, Tsang S C. Synthesis of carbon nanotubes filled with long continuous crystals of molybdenum oxides [J]. Chemical Communications, 1996, 24: 89-90.
    [87] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature, 1994, 372: 159-162.
    [88]陈小华,颜永红,张高明,等.Ni-Co合金包覆碳纳米管的研究[M].微细加工技术,1999,2:17-22.
    [89]陈小华,张高明,李宏健,等.碳纳米管的化学镀银及SEM研究[M].湖南大学学报,1999,26(6):14-18.
    [90] Sun S H, Yang D Q, Zhang G X, et al. Synthesis and characterization of platinum nanowire-carbon nanotube heterostructures [J]. Chemistry of Materials, 2007, 19(26): 6376-6378.
    [91]董树荣,涂江平,张孝彬.纳米碳管增强铜基复合材料的力学性能和物理性能[J].材料研究学报, 2000, 14(增刊):132-136.
    [92]董树荣,张孝彬.纳米碳管增强铜基复合材料的滑动磨损特性研究[J].摩擦学学报, 1999, 19(1):1-6.
    [93] Kuzumaki T, Ujiie O, Ichinose H, et al. Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite [J]. Advanced Engineering Materials, 2000, 2: 416-418.
    [94]李霞,马希骋,李士同,等.碳纳米管的化学镀Au研究[J].材料科学与工程学报,2002,22(1):51-54.
    [95] Planeix J M, Coustel N, Coq B, et al. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis [J]. Journal of the American Chemical Society, 1994, 116: 7935-7936.
    [96] Hrapovic S, Liu Y, Male K B, et al. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes [J]. Analytical Chemistry, 2004, 76: 1083-1088.
    [97] Cha S I, Kim K T, Arshad S N, et al. Field-emission behavior of a carbon-nanotube-implanted Co nanocomposite fabricated from pearl-necklace-structured carbon nanotube/Co powders [J]. Advanced Materials, 2006, 18: 553-558.
    [98] Zhang W D, Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays [J]. Nanotechnology, 2006, 17: 1036-1040.
    [99] Jitianu A, Cacciaguerra T, Benoit R, et al. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites [J]. Carbon, 2004, 42:1147-1151.
    [100] Jiang L Q, Gao L. Carbon nanotubes-magnetite nanocomposites from solvothermal processes: formation, characterization, and enhanced electrical properties [J]. Chemistry of Materials, 2003, 15: 2848-2853.
    [101] An G M, Yu P, Xiao M J, Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors [J]. Nanotechnology, 2008, 19: 275709.
    [102] Jia B P, Gao L. Fabrication of“tadpole”-like magnetite/multiwalled carbon nanotube heterojunctions and their self-assembly under external magnetic field [J]. The Journal of Physical Chemistry B, 2007, 111: 5337-5343.
    [103] Matsui K, Pradhan B K, Kyotani T, et al. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes [J]. The Journal of Physical Chemistry B, 2001, 105: 5682-5688.
    [104] Whitsitt E A, Barron A R. Silica coated single walled carbon nanotubes. Nano Letters, 2003, 3(6): 775-778.
    [105] Yu H T, Quan X, Chen S, et al. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability [J]. The Journal of Physical Chemistry C, 2007, 111: 12987-12991.
    [106] Liu J W, Li X J, Dai L M. Water-assisted growth of aligned carbon nanotube–ZnO heterojunction arrays [J]. Advanced Materials, 2006, 18: 1740-1744.
    [107] Haremza J M, Hahn M A, Krauss T D. Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes [J]. Nano Letters, 2002, 2(11): 1253-1258.
    [108] Ravindran S, Chaudhary S, Colburn B, et al. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications [J]. Nano Letters, 2003, 3(4): 447-453.
    [109] Li X L, Liu Y Q, Fu L, et al. Efficient synthesis of carbon nanotube–nanoparticle hybrids [J]. Advanced Functional Materials, 2006, 16: 2431-2437.
    [110] Kim H, Sigmunda W. Zinc oxide nanowires on carbon nanotubes [J]. AppliedPhysics Letters, 2002, 81(11): 2085-2087.
    [111] Han W Q, Zettl A. Coating single-walled carbon nanotubes with tin oxide [J]. Nano Letters, 2003, 3(5): 681-683.
    [112] Green J M, Dong L, Gutu T, et al. ZnO-nanoparticle-coated carbon nanotubes demonstrating enhanced electron field-emission properties [J]. Journal of Applied Physics, 2006, 99: 094308.
    [113] K Yu, Y S Zhang, F Xu, et al. Significant improvement of field emission by depositing zinc oxide nanostructures on screen-printed carbon nanotube films [J]. Applied Physics Letters, 2006, 88: 153123.
    [114] Ma R Z, Wu J, Wei B Q, et al. Processing and properties of carbon nanotubes-nano-SiC ceramic [J]. Journal of Materials Science, 1998, 33: 5243-5246.
    [115] Zhu Y W, Elim H I, Foo Y L, et al. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching [J]. Advanced Materials, 2006, 18: 587–592.
    [116] Yan X B, Tay B K, Yang Y, et al. Fabrication of three-dimensional ZnO-carbon nanotube (CNT) hybrids using self-assembled CNT micropatterns as framework [J]. The Journal of Physical Chemistry C, 2007, 111(46): 17254-17259.
    [117] Fu L, Liu Z M, Liu Y Q, et al. Beaded cobalt oxide nanoparticles along carbon nanotubers: towards more highly integrated electronic devices [J]. Advanced Materials, 2005, 17(2): 217-221.
    [118]万淼.多壁碳纳米管的制备与表面修饰[D].武汉:华中师范大学物理科学与技术学院,2005.
    [119]吴胜伟.碳纳米管的填充、切割及其若干复合材料的研制与应用[D].上海:中国科学院上海应用物理研究所,2005.
    [120] Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source [J]. Science, 1995, 270: 1179-1180.
    [121] Sun Y F, Huang X J, Meng F L, et al. Study of influencing factors of the dynamic measurements based on SnO2 gas sensor [J], Sensors, 2004, 4(6-7): 95-104.
    [122]张颖.碳纳米管及其复合材料电化学储锂性能研究[D].天津:南开大学化学学院,2004.
    [123]卢肖永.碳纳米管与二氧化锰复合材料在超级电容器中的应用研究[D].贵州:贵州大学材料学院,2005.
    [124] Liang K, An K, Lee Y. Nickle oxide/carbon nanotubes nanocomposite for electrochemical capacitance [J]. Journal of Materials Science British Technology, 2005, 21(3): 292-296.
    [125] Ye J S, Cui H F, Liu X, et al. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors [J]. Small, 2005, 1(5): 560-565.
    [126] Riggs J E,Guo Z X,Sun Y P, et al. Strong luminescence of solubilized carbon nanotubes [J]. Journal of the American Chemistry Society, 2000, 122: 5879-5880.
    [127] Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes [J]. Science, 2000, 290: 1331-1334.
    [128] Andrews R, Jacques D, Rao A M, et al. Nanotube composite carbon fibers [J]. Applied Physics Letters, 1999, 75: 1329-1331.
    [129] L. Jin, C. Bower, O.Zhou. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching [J]. Applied Physics Letters, 1998, 73: 1197-1199.
    [130] Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites [J]. Applied Physics Letters, 2000, 76: 2868-2870.
    [131] Dalton A B, Stephan C, Coleman J N, et al. Selective interaction of a semiconjugated organic polymer with single-wall nanotubes [J]. The Journal of Physical Chemistry B, 2000, 104: 10012-10016.
    [132]贾志杰,王正元,徐才录.碳纳米管的加入对PMMA强度和导电性能的影响[J].材料开发与应用, 1998, 13(6):22-26.
    [133] Allaouia A, Baia S, Cheng H M, et al. Mechanical and electrical properties of a MWNT/epoxy composite [J]. Composites Science and Technology, 2002, 62: 1993-1998.
    [134] Curran S, Davey A P, Coleman J, et al. Evolution and evaluation of the polymer/nanotube composite [J]. Synthetic Metals, 1999, 103: 2559-2562.
    [135] Tang B Z, Xu H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes [J]. Macromolecules, 1999, 32: 2569-2576.
    [136] Carthy B M, Coleman J N, Czerw R, et al. Complex nano-assemblies of polymers and carbon nanotubes [J]. Nanotechnology, 2001, 12: 187-190.
    [1] Conley J F, Stecker J L, Ono Y. Directed integration of ZnO nanobridge devices on a Si substrate [J]. Applied Physics Letters, 2005, 87: 223114.
    [2] Goldberger J, Sirbuly D J, Law M, et al. ZnO nanowire transistors [J]. The Journal of Physical Chemistry B, 2005, 109: 9-14.
    [3] Chu X, Jiang D, Aleksandra B D, et al. Gas-sensing properties of thick film based on ZnO nano-tetrapods [J]. Chemical Physics Letters, 2005, 401: 426-429.
    [4] Hoffman R L, Norris B J, J. F. Wager. ZnO-based transparent thin-film transistors [J]. Applied Physics Letters, 2003, 82: 733-735.
    [5] Reynolds D C, Look D C, Jogai B. Optically pumped ultraviolet lasing from ZnO [J]. Solid State Communications, 1996, 99: 873-875.
    [6] Kind H, Yan H, Yang P, et al. Nanowire Ultraviolet Photodetectors and Optical Switches [J]. Advanced Materials, 2002, 14(2): 158-160.
    [7] Lao C S, Liu J, Gao P, and et al. ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across Au electrodes [J]. Nano Letters, 2006, 6(2): 263-266.
    [8] Liu J W, Li X J, Dai L M. Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays [J]. Advanced Materials, 2006, 18: 1740-1744.
    [9] Zhu Y W, Elim H I, Foo Y L, et al. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching [J]. Advanced Materials, 2006, 18: 587-592.
    [10] Lu J G, Ye Z Z, Huang J Y, et al. ZnO quantum dots synthesized by a vapor phase transport process [J]. Applied Physics Letters, 2006, 88: 063110.
    [11] Spanhel L, Anderson M A. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids [J]. Journal of the American Chemical Society, 1991, 113: 2826-2833.
    [12] Wang Z L. Nanostructures of zinc oxide [J]. Materials Today, 2004, 7: 26-33.
    [13] Yan H, He R, Yang P, et al. Morphogenesis of one-dimensional ZnO nano- andmicrocrystals [J]. Advanced Materials, 2003, 15: 402-405.
    [14] Yan H, He R, Johnson J. Dendritic nanowire ultraviolet laser array [J]. Journal of the American Chemical Society, 2003, 125, 4728-4729.
    [15] Lao J Y, Huang J Y, Wang D Z, et al. ZnO nanobridges and nanonails [J]. Nano letters, 2003, 3: 235-238.
    [16] Hughes W L, Wang Z L. Nanobelts as nanocantilevers [J]. Applied Physics Letters, 2003, 82: 2886-2888.
    [17] Gao P X, Wang Z L. Self-assembled nanowire?nanoribbon junction arrays of ZnO [J]. The Journal of Physical Chemistry B, 2002, 106 (49): 12653-12658.
    [18] Gao P X, Wang Z L, Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process [J]. The Journal of Physical Chemistry B, 2004, 108: 7534-7537.
    [19] Yang C, Lin Y H, C Nan W. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density [J]. Carbon, 2009, 47: 1096-1101.
    [20] Balasubramanian K, Burghard Marko. Chemically functionalized carbon nanotubes [J]. Small, 2005, 1(2): 180-192.
    [21] Ravindran S, Chaudhary S, Colburn B, et al. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications [J]. Nano Letters, 2003, 3: 447-453.
    [22] Zhang J, Sun L D, Pan H Y, et al. ZnO nanowires fabricated by a convenient route [J]. New Journal of Chemistry, 2002, 26: 33-34.
    [23] Z. L. Wang. Zinc oxide nanostructures: growth, properties and applications [J]. Journal of Physics: Condensed Matter, 2004, 16: R829-R858.
    [24] Wang Z L, Kong X Y, Zuo J M. Induced growth of asymmetric nanocantilever arrays on polar surfaces [J]. Physical Review Letter, 2003, 91: 185502.
    [25] Matsui K, Pradhan B K, Kyotani T, et al. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes [J]. The Journal of Physical Chemistry B, 2001, 105: 5682-5688.
    [26] Vietmeyer F, Seger B, Kamat P V. Anchoring ZnO particles on functionalized single wall carbon nanotubes. Excited state interactions and charge collection [J]. Advanced Materials, 2007, 19: 2935–2940.
    [27] Robel I, Bunker B A, Kamat P V. Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transferinteractions [J]. Advanced Materials, 2005, 17: 2458–2463.
    [28] Guldi D M, Marcaccio M, Paolucci D. Single-wall carbon nanotube–ferrocene nanohybrids: observing intramolecular electron transfer in functionalized SWNTs [J]. Angewandte Chemie International Edition, 2003, 42: 4206–4209.
    [29] Guldi D M, Rahman G M A, Jux N. Integrating single-wall carbon nanotubes into donor–acceptor nanohybrids [J]. Angewandte Chemie International Edition, 2004, 43: 5526–5530.
    [30] Bae S Y, Seo H W, Choi H C, et al. Heterostructures of ZnO nanorods with various one-dimensional nanostructures [J]. The Journal of Physical Chemistry B, 2004, 108: 12318-12326.
    [31] Kongkanand A, Kamat P V. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions [J]. ACS Nano, 2007, 1: 13-21.
    [32]魏霄.利用瞬态光伏技术研究功能材料的光电行为[D].长春:吉林大学化学学院,2008.
    [1] Zheng X G, Xu C N, Y. Tomokiyo. Observation of charge stripes in cupric oxide [J]. Physical Review Letters, 2000, 85: 5170-5173.
    [2] Borgohain K, Mahamuni S. Formation of single-phase CuO quantum particles [J]. Journal of Materials Research, 2002, 17: 1220-1223.
    [3] Gao X P, Bao J L, Pan G L. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery [J]. The Journal of Physical Chemistry B, 2004, 108: 5547-5551.
    [4] Zheng X G, Kubozono H, Yamada H. Giant negative thermal expansion in magnetic nanocrystals [J], Nature Nanotechnology, 2008, 3: 724-726.
    [5] Wang W, Wang G, Wang X, et al. Synthesis and characterization of Cu2O nanowires by a novel reduction route [J]. Advanced Materials, 2002, 14: 67-69.
    [6] Hara M,Kondo T,Komoda M. Cu2O as a photocatalyst for overall water splitting under visible light irradiation [J]. Chemical Communications, 1998, 3: 357-358.
    [7] Jongh P E D, Vanmaekelbergh D, Kelly J J. Cu2O: a catalyst for the photochemical decomposition of water? [J]. Chemical Communications, 1999, 12: 1069–1070.
    [8] Fernando C A N, Bandara T M W J, Wethasingha S K. H2 evolution from a photoelectrochemical cell with n-Cu2O photoelectrode under visible light irradiation [J]. Solar Energy Materials and Solar Cells, 2001, 70: 121-129.
    [9] Lu C, Qi L, Yang J, et al. One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route [J]. Advanced Materials, 2005, 17: 2562–2567.
    [10] Liu R, Oba F, Bohannan E W, et al. Shape control in epitaxial electrodeposition: Cu2O nanocubes on InP(001) [J]. Chemistry of Materials, 2003, 15: 4882-4885.
    [11] Zhang J T, Liu J F, Peng Q, et al. Nearly monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors [J]. Chemistry of Materials, 2006, 18: 867-871.
    [12] Switzer J A, Maune B M, Raub E R, et al. Negative differential resistance inelectrochemically self-assembled layered nanostructures [J]. The Journal of Physical Chemistry B, 1999, 103: 395-398.
    [13] Zhang L S, Li J L, Chen Z G, et al. Preparation of fenton reagent with H2O2 generated by solar light-illuminated nano-Cu2O/MWNTs composites [J]. Applied Catalysis A: General, 2006, 299: 292-297.
    [14] Yu Y, Ma L L, Huang W Y, et al. Coating MWNTs with Cu2O of different morphology by a polyol process [J]. Journal of Solid State Chemistry, 2005, 178: 1488-1494.
    [15] Chai G, Sun Y, Sun J, et al. Mechanical properties of carbon nanotube–copper nanocomposites [J]. Journal of Micromechanics and Microengineering, 2008, 18: 035013.
    [16] Reddy K R, Sin B C, Yoo C H, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles [J]. Scripta Materialia, 2008, 58: 1010-1013.
    [17] Wong S S, Woolley A T, Joselevich E, et al. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy [J]. Journal of the American Chemical Society, 1998, 120: 8557-8558.
    [18] Ravindran S, Chaudhary S, Colburn B, et al. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications [J]. Nano Letters, 2003, 3: 447-453.
    [19] Haremza J M, Hahn M A, Krauss T D. Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes [J]. Nano Letters, 2002, 2: 1253-1258.
    [20] Liu C C, Teng H. Cu/MCM-41 for selective catalytic NO reduction with NH3—comparison of different Cu-loading methods [J]. Applied Catalysis B, 2005, 58: 69-77.
    [21] Suárez S, Martín J A, Yates M, et al. N2O formation in the selective catalytic reduction of NOx with NH3 at low temperature on CuO-supported monolithic catalysts [J]. Journal of Catalysis, 2005, 229: 227-236.
    [22] Chen Z Z, Shi E W, Zheng Y Q, et al. Growth of hex-pod-like Cu2O whisker under hydrothermal conditions [J]. Journal of Crystal Growth, 2003, 249: 294-300.
    [23] He P, Shen X H, Gao H C. Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption [J]. Journal of Colloid andInterface Science, 2005, 284: 510-515.
    [1]李国栋.当代磁学[M].北京:中国科学技术大学出版社,1999.
    [2] Sun X C, Kang S S, Harrell J W, et al. Synthesis, chemical ordering, and magnetic properties of FePtCu nanoparticle films [J]. Journal of Applied Physics, 2003, 93(10): 7337-7339.
    [3] Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. Journal of Applied Physics, 1988, 64: 6044-6047.
    [4]袁巨龙,刘盛辉,邢彤.纳米技术的应用及发展动向[J].浙江工业大学学报,2000,9:243-249.
    [5] Roth W L. Manetic structures of MnO, FeO, CoO, and NiO [J]. Physical Review, 1958, 110: 1333-1341.
    [6] Tachiki M. Susceptibility and antiferromagnetic resonce in cobaltous oxide [J]. Journal of the Physical Society of Japan, 1964, 19: 454-460.
    [7] Uchida E, Fukuoka N, Kondoh H, et al. Magnetic anisotropy measurements of CoO single crystal [J]. Journal of the Physical Society of Japan, 1964, 19: 2088-2095.
    [8] Nakamichi T. Magnetostrictive behavior of antiferromagnetic CoO single crystal in magnetic field [J]. Journal of the Physical Society of Japan, 1965, 20: 720-726.
    [9] Saito S, Nakahigashi K, Yasumitsu S. X-ray diffraction study on CoO [J]. Journal of the Physical Society of Japan, 1966, 21: 850-860.
    [10] Zheng H P. Electronic structure of CoO [J]. Physica B, 1995, 212: 125-138.
    [11] Mackay J L, Henrich V E. Electronic properties of CoO (110) surface: defects and chemisorption [J]. Physical Review B, 1989, 39: 6156-6158.
    [12]郭林,吴波,庄亚辉,等.钴氧化物纳米催化剂的制备及对N2O的分解[J].环境科学学报, 1998, 18:457-459.
    [13] Petra S, Miroslav T. New green pigments: ZnO-CoO [J]. Dyes and Pigments, 1999, 40: 83-86.
    [14] Koshizaki N, Yasumto K, Sasaki T. Gas-sensing CoO/SiO2 Nanocomposite [J].Nanostructured Materials, 1999, 12(5): 971-974.
    [15] Oshitani M, Yufu H, Takashima K, et al. Development of a pasted nickel electrode with high active material utilization [J]. Journal of The Electrochemical Society, 1989, 136(6): 1590-1593.
    [16] Logothetis E M, Park K, Meitzler A H, et al. Oxygen sensors using CoO ceramics [J]. Applied Physics Letters, 1975, 26(4): 209-211.
    [17] Thorm?hlen P, Skoglundh M, Fridell E, et al. Low-Temperature CO Oxidation over Platinum and Cobalt Oxide Catalysts [J]. 1999, 188(2): 300-310.
    [18] Pan T, Spratt G W D, Tang L, et al. Magnetic properties and microstructure of evaporated Co oxide tape media [J]. Journal of Magnetism and Magnetic Materials, 1996, 155: 309-311.
    [19] Zou B S, Wang L, Lin J G. The electronic structures of NiO nanoparticles coated with stearates [J]. Solid State Communications, 1995, 94(10): 847-850.
    [20]李亚栋,李成韦,郑化桂,等.混合溶剂中纳米级NiO的制备及表征[J].高等学校化学学报, 1997, 18(12):1921-1923.
    [21] Tomczyk P, Sato H, Yamada K, et al. Oxide electrodes in molten carbonates Part 1. Electrochemical behaviour of nickel in molten Li+K and Na+K carbonate eutectics[J]. Journal of Electroanalytical Chemistry, 1995, 391: 125-132.
    [22] Polzot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407: 496-499.
    [23] Biju V, Abdul K M. Analysis of AC electrical properties of nanocrystalline oxide [J]. Materials Science and Engineering, 2001, A304-306: 814-817.
    [24]汪国忠,张立德,牟季美.纳米氧化镍微粉的制备及光吸收谱[J].物理化学报,1997,13(5):445-448.
    [25] Yang C, Lin Y H, C Nan W. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density [J]. Carbon, 2009, 47: 1096-1101.
    [26] Xu C K, Liu Y K, Xu G D, et al. Fabrication of CoO nanorods via thermal decomposition of CoC2O4 precursor [J]. Chemical Physics Letters, 2002, 366: 567-571.
    [27] Melendres C A, Xu S. In situ laser Raman spectroscopic study of anodiccorrosion films on nickel and cobalt [J]. Journal of The Electrochemical Society, 1984, 131: 2239-2243.
    [28] Lu H W, Li D, Sun K, et al. Carbon Nanotube Reinforced NiO Fibers for Rechargeable Lithium Batteries [J]. Solid State Sciences, 2009, doi:10.1016/j.solidstatesciences.2009.02.014.
    [29] Wong S S, Woolley A T, Joselevich E, et al. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy [J]. Journal of the American Chemical Society, 1998, 120: 8557-8558.
    [30] Ravindran S, Chaudhary S, Colburn B, et al. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications [J]. Nano Letters, 2003, 3: 447-453.
    [31]李国栋.我们生活在磁的世界里─—物质的磁性和应用[M].北京:清华大学出版社,暨南大学出版社,2000.
    [32] Zhang L Y, Xue D S, Gao C X. Anomalous magnetic properties of antiferromagnetic CoO nanoparticles [J]. Journal of Magnetism and Magnetic Materials, 2003, 267: 111-114.
    [33] Zhang H T, Chen X H. Controlled synthesis and anomalous magnetic properties of relatively monodisperse CoO nanocrystals [J]. Nanotechnology, 2005, 16: 2288-2294.
    [34] Makhlouf S A, Parker F T, Spada F E, et al. Magnetic anomalies in NiO nanoparticles [J]. Journal of Applied Physics, 1997, 81: 5561-5563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700