用户名: 密码: 验证码:
超疏水材料的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,超疏水材料的制备与应用受到了人们的广泛关注。在一些应用领域中,超疏水材料展示了其特有的优势,对工农业生产、国防建设以及人们的日常生活产生了巨大的影响。在本文中,我们首先结合组内的工作制备了一种柔性的可以折叠弯曲转移的超疏水薄膜,突破了以往只能在刚性材料表面构筑超疏水结构的限制。然后,我们将超疏水材料的应用拓展到了油水分离领域中,利用无电位沉积方法和溶液浸泡方法制备了两种同时具有超疏水和超亲油性质的铜网,相对于传统的分液漏斗而言,我们所制备的铜网分离效率更高,仪器更为简单。最后,我们利用原电池的方法制备了超疏水金属材料并将其应用到防腐蚀领域中,这样我们就将抗腐蚀材料的制备和电能的产生有机地结合在了一起,具有重要的理论意义和实际价值。
Recently, preparation and application of superhydrophobic materials have drawn more and more applications due to its special advantage in some application fields, such as reducing flow resistance in microfluidic channels, separation of oil and water and self-cleaning surface. Further study revealed that the wettability of a surface was governed mainly by its chemical composition and geometrical structure. Accordingly, superhydrophobic surfaces have been constructed usually based on two essential concerns: (i) micro- and nano-scale hierarchical structures to increase the roughness of surface; (ii) chemical modification to reduce the surface energy of a rough surface. Based on these two principles, various techniques have been established to engineer superhydrophobic surfaces, with notable examples including layer-by-layer technique, electrochemical deposition, chemical vapor deposition and solution-immersion method. Through these approaches, lots of superhydrophobic materials have been fabricated. In this issue, we use lift-up soft-lithography and solution-immersion method to prepare a series of superhydrophobic materials. And then, these materials have been applied in the fields of corrosion resistance and separation of oil and water.
     In chapter 2, we have successfully fabricated a flexible superhydrophobic surface with a micrometer-level and nanometer-level hierarchical structure on PDMS films. Lift-up soft-lithography and chemical reduction led to the presence of a raspberry-like structure on the PDMS films; the hierarchical structure originated from coating ordered silica spheres with Ag NPs. SEM images have been used to evaluate the roughness of the PDMS films patterned with silica spheres which were decorated with Ag NPs. After modification of hydrophobic agent, the film displayed superhydrophobicity, the contact angle was about 154°and the sliding angle was about 4°. The effects of the amount of Ag NPs and the size of silica spheres on the wettability of the PDMS films have been investigated: the former played a major role on the wettability. Our superhydrophobic films could be easily transferred to a number of smooth substrates with different curvature. During the transfer process, the superhydrophobicity kept intact. Thus, our flexible superhydrophobic films could be used many times to satisfy a wide range of applications.
     In chapter 3, we have fabricated the two kinds of metal mesh which could be used for separating diesel oil and water by a solution-immersion process (including electroless galvanic deposition and dilute nitric acid etching). The surface of commercial copper mesh formed hierarchical structures which increased the roughness.
     After being modified by low surface energy agent such as HDT, the surfaces displayed superhydrophobicity and superoleophilicity simultaneously. The effect of pore size and pH values on wettability was investigated: the as-prepared meshes kept stable superhydrophobic and superoleophilic properties in the wide pore size ranging from 44μm to 490μm and in all range of pH values including extreme condition of pH = 0 and 14 for mesh prepared by solution-immersion method; while the application pH scope for mesh prepared by electroless galvanic deposition was from 1 to 14. If the PDT instead of HDT was grafted on the surface of as-prepared mesh, the surface showed superhydrophobicity and oleophobicity, which led to failure of separation of oil and water. The method present here was high efficiency, inexpensive and time-saving; it had potential for large scale production.
     In chapter 4, we have successfully fabricated metallic superhydrophobic materials by primary cell, with concurrent electric power generation. The superhydrophobicity of the Cu and Zn plates was very well preserved up to a month under ambient conditions. The superhydrophobic Cu plate has showed corrosion resistance over a whole range of pH values from 0 to 14; while the Zn plate could bear pH values from 3 to 13. Under the salt spray condition, the superhydrophobicity of Cu plate was kept up to 15 h, while the fabricated Zn plate was not resistant to the salt spray condition. The possible mechanism of the corrosion resistance was proposed: both the surface structure and self-assembled monolayer played important roles. The method presented here features facile fabrication of corrosion resistant materials, and more importantly, the materials fabrication process involved power generation, which was of great significance in both fundamental research and industrial applications. The present approach had promising potential in the commercialization of the corrosion protection of metallic materials.
引文
[1] Young, T.; An Essay on the Cohesion of Fluids Philos, Trans. R. Soc. London 1805, 95, 65.
    [2] Feng, X. J.; Jiang, L.; Design and Creation of Superwetting/Antiwetting Surfaces, Adv. Mater. 2006, 18, 3063.
    [3] Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L.; Bioinspired Surfaces with Special Wettability, Acc. Chem. Res. 2005, 38, 644.
    [4] Li, X. M.; Calama, M. C.; Reinhoudt, D. N.; What Do We Need for A Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces, Chem. Soc. Rev. 2007, 36, 1350.
    [5] Zhang, X.; Shi, F.; Niu, J.; Jiang, Y. G.; Wang, Z. Q.; Superhydrophobic Surfaces: from Structural Control to Functional Application, J. Mater. Chem. 2008, 18, 621.
    [6]江雷;冯琳;仿生智能纳米界面材料,北京:化学工业出版社,2005.
    [7] Wang, L. F. ; Zhao, Y.; Wang, J. M.; Hong, X.; Zhai, J.; Jiang, L.; Wang, F. S.; Ultra-Fast Spreading on Superhydrophilic Fibrous Mesh with Nanochannels, Appl. Surf. Sci. 2009, 255, 4944.
    [8] Kollias, K.; Wang, H. Y.; Song, Y.; Zou, M.; Production of A Superhydrophilic Surface by Aluminum-Induced Crystallization of Amorphous Silicon, Nanotechnology 2008, 19, 465304.
    [9] Song, S.; Jing, L. Q.; Li, S. D.; Fu, H. G.; Luan, Y. B.; Superhydrophilic Anatase TiO2 Film with the Micro- and Nanometer-Scale Hierarchical Surface Structure, Mater. Lett. 2008, 62, 3503.
    [10] Liu, X. M.; Du, X.; He, J. H.; Hierarchically Structured Porous Films of Silica Hollow Spheres via Layer-by-Layer Assembly and Their Superhydrophilic and Antifogging Properties, Chemphyschem 2008, 9, 305.
    [11] Wu, Z. Z.; Lee, D.; Rubner, M.; Cohen, R.; Structural Color in Porous, Superhydrophilic, and Self-Cleaning SiO2/TiO2 Bragg stacks, Small 2007, 3, 1445.
    [12] Tang, K. J.; Wang, X. F.; Yan, W. F.; Yu, J. H.; Xu, R. R.; Fabrication of Superhydrophilic Cu2O and CuO Membranes, J. Membrane Sci. 2006, 286, 279.
    [13] Wang, S. T.; Zhu, Y.; Xia, F.; Xi, J. M.; Wang, N.; Feng, L.; Jiang, L.; The Preparation of A Superhydrophilic Carbon Film from A Superhydrophobic Lotus Leaf, Carbon 2006, 44, 1848.
    [14] Zhong, W. B.; Liu, S. M.; Chen, X. H.; Wang, Y. X.; Yang, W. T.; High-Yield Synthesis of Superhydrophilic Polypyrrole Nanowire Networks, Macromolecular 2006, 39, 3224.
    [15] Premkumar, J. R.; Khoo, S. B.; Electrochemically Generated Super-Hydrophilic Surfaces, Chem. Comm. 2005, 640.
    [16] Boinovich, L.; Emelyanenko, A.; Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions, Langmuir 2009, 25, 2907.
    [17] Yang, C. W.; Hao, P. F.; He, F.; Effect of Upper Contact Line on Sliding Behavior of Water Droplet on Superhydrophobic Surface, Chinese Sci. Bull. 2009, 54, 727.
    [18] Rao, V. V.; Latthe, S. S.; Nadargi, D. Y.; Hirashima, H.; Ganesan, V.; Preparation of MTMS Based Transparent Superhydrophobic Silica Films by Sol-Gel Method, J. Colloid Interface Sci. 2009, 332, 484.
    [19] Bhushan, B.; Jung, Y. C.; Koch, K.; Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces, Langmuir 2009, 25, 3240.
    [20] Ling, X. Y.; Phang, I. Y.; Vancso, G. J.; Huskens, J.; Reinhoudt, D. N.; Stable and Transparent Superhydrophobic Nanoparticle Films, Langmuir 2009, 25, 3260.
    [21] Synytska, A.; Ionov, L.; Grundke, K.; Stamm, M.; Wetting on FractalSuperhydrophobic Surfaces from“Core-Shell”Particles: A Comparison of Theory and Experiment, Langmuir 2009, 25, 3132.
    [22] Lee, S.; Hwang, W.; Ultralow Contact Angle Hysteresis and No-Aging Effects in Superhydrophobic Tangled Nanofiber Structures Generated by Controlling the Pore Size of A 99.5% Aluminum Foil, J. Micromech. Microeng. 2009, 19, 035019.
    [23] McHale, G.; Shirtcliffe, N. J.; Evans, C. R.; Newton, M. I.; Terminal Velocity and Drag Reduction Measurements on Superhydrophobic Spheres, Appl. Phys. Lett. 2009, 94, 064104.
    [24] Martell, M. B. ; Perot, J. B.; Rothstein, J. P.; Direct Numerical Simulations of Turbulent Flows Over Superhydrophobic Surfaces, J. Fluid Mech. 2009, 620, 31.
    [25] Qian, Z.; Zhang, Z. C.; Song, L. Y.; Liu, H. R.; A Novel Approach to Raspberry-Like Particles for Superhydrophobic Materials, J. Mater. Chem. 2009, 19, 1297.
    [26] Crick, C. R.; Parkin, I. P.; A Single Step Route to Superhydrophobic Surfaces through Aerosol Assisted Deposition of Rough Polymer Surfaces: Duplicating the Lotus Effect, J. Mater. Chem. 2009, 19, 1074.
    [27] Yang, T. S ; Tian, H.; Chen, Y. Q.; Preparation of Superhydrophobic Silica Films with Honeycomb-Like Structure by Emulsion Method, J. Sol-Gel Sci. Techn. 2009, 49, 423.
    [28] Kuan, W. F.; Chen, L. J.; The Preparation of Superhydrophobic Surfaces of Hierarchical Silicon Nanowire Structures, Nanotechnology 2009, 20, 035605.
    [29] Ng, C. O.; Wang, C. Y.; Stokes Shear Flow over A Grating: Implications for Superhydrophobic Slip, Phys. Fluids 2009, 21, 013602.
    [30] Basu, B. B. J.; Paranthaman, A. K.; A Simple Method for the Preparation of Superhydrophobic PVDF-HMFS Hybrid Composite Coatings, Appl. Surf. Sci.2009, 255, 4479.
    [31] Ji, Y. Y.; Kim, S. S.; Kwon, O. P.; Lee, S. H.; Easy Fabrication of Large-Size Superhydrophobic Surfaces by Atmospheric Pressure Plasma Polymerization with Non-Polar Aromatic Hydrocarbon in An In-Line Process, Appl. Surf. Sci. 2009, 255, 4575.
    [32] Xu, Q. F.; Wang, J. N.; Smith, I. H.; Sanderson, K. D.; Superhydrophobic and Transparent Coatings Based on Removable Polymeric Spheres, J. Mater. Chem. 2009, 19, 655.
    [33] Feuillebois, F; Bazant, M. Z.; Vinogradova, O. I.; Effective Slip over Superhydrophobic Surfaces in Thin Channels, Phys. Rev. Lett. 2009, 102, 026001.
    [34] Liu, X. K.; Dai, B. Y.; Zhou, L.; Sun, J. Q.; Polymeric Complexes as Building Blocks for Rapid Fabrication of Layer-by-Layer Assembled Multilayer Films and Their Application as Superhydrophobic Coatings, J. Mater. Chem. 2009, 19, 497.
    [35] Chen, X. H.; Kong, L. H.; Dong, D.; Yang, G.. B.; Yu, L. G.; Chen, J. M.; Zhang, P. Y.; Synthesis and Characterization of Superhydrophobic Functionalized Cu(OH)2 Nanotube Arrays on Copper Foil, Appl. Surf. Sci. 2009, 255, 4015.
    [36] Tian, H.; Yang, T. S.; Chen, Y. Q.; Fabrication and Characterization of Superhydrophobic Thin Films Based on TEOS/RF Hybrid, Appl. Surf. Sci. 2009, 255, 4289.
    [37] Sakai, M.; Yanagisawa, T.; Nakajima, A.; Kameshima, Y.; Okada, K.; Effect of Surface Structure on the Sustainability of An Air Layer on Superhydrophobic Coatings in A Water-Ethanol Mixture, Langmuir 2009, 25, 13.
    [38] Nadargi, D. Y.; Latthe, S. S.; Hirashima, H.; Rao, A. V.; Studies on Rheological Properties of Methyltriethoxysilane (MTES) Based Flexible Superhydrophobic Silica Aerogels, Micropor. Micropor. Mater. 2009, 117, 617.
    [39] Xiu, Y. H.; Xiao, F.; Hess, D. W.; Wong, C. P.; Superhydrophobic Optically Transparent Silica Films Formed with A Eutectic Liquid, Thin Solid Films 2009, 517, 1610.
    [40] Feuillebois, F.; Bazant, M. Z.; Vinogradova, O. I.; Effective Slip over Superhydrophobic Surfaces in Thin Channels, Phys. Rev. Lett. 2009, 102, 026001.
    [41] Yang, J. X.; Pi, P. H.; Wen, X. F., Zheng, D. F.; Xu, M. Y.; Chen, J.; Yang, Z. R.; A Novel Method to Fabricate Superhydrophobic Surfaces Based on Well-Defined Mulberry-Like Particles and Self-Assembly of Polydimethylsiloxane, Appl. Surf. Sci. 2009, 255, 3507.
    [42] Pan, Q. M.; Cheng, Y. X.; Superhydrophobic Surfaces Based on Dandelion-Like ZnO Microspheres, Appl. Surf. Sci. 2009, 255, 3904.
    [43] Song, W.; Zhang, J. J.; Xie, Y. F.; Cong, Q.; Zhao, B.; Large-Area Unmodified Superhydrophobic Copper Substrate Can Be Prepared by An Electroless Replacement Deposition, J. Colloid Interface Sci. 2009, 332, 208.
    [44] Xu, Q. F.; Wang, J. N.; Smith, I. H.; Sanderson K. D.; Directing the Transportation of A Water Droplet on A Patterned Superhydrophobic Surface, Appl. Phys. Lett. 2008, 93, 233112.
    [45] Ma, M.; Hill, R. M.; Rutledge, G. C.; A Review of Recent Results on Superhydrophobic Materials Based on Micro- and Nanofibers, J. Adhes. Sci. Technol. 2008, 22, 1799.
    [46] Bai, H.; Li, C.; Shi, G. Q.; Electrochemical Fabrication of Superhydrophobic Surfaces on Metal and Semiconductor Substrates, J. Adhes. Sci. Technol. 2008, 22, 1819.
    [47] Shiu, J. Y.; Whang, W. T.; Chen, P. L.; Superhydrophobic Coatings for Microdevices, J. Adhes. Sci. Technol. 2008, 22, 1883.
    [48] Xiu, Y. H.; Hess, D. W.; Wong, C. P.; UV-Resistant and SuperhydrophobicSelf-Cleaning Surfaces Using Sol-Gel Processes, J. Adhes. Sci. Technol. 2008, 22, 1907.
    [49] Lu, X. Y.; Jin, Y.; Tan, S. X.; Zhang, L.; Liu, Y.; Zhang, X. L.; Xu, J.; A Simple Approach for Fabricating A Superhydrophobic Surface Based on Poly(Methyl Methacrylate), J. Adhes. Sci. Technol. 2008, 22, 1841.
    [50] Wu, D.; Ming, W.; Van Benthem, R. A. T. M.; De With, G.; Superhydrophobic Fluorinated Polyurethane Films, J. Adhes. Sci. Technol. 2008, 22, 1869.
    [51]顾惕人;朱步瑶;李外郎;马季铭;戴乐蓉;程虎民;表面化学,北京:科学出版社,2001.
    [52] Ellison, A. H.; Fox, H. W.; Zisman, W. A.; Wetting of Fluorinated Solids by Hydrogen-Bonding Liquids, J. Phys. Chem. 1953, 57, 622.
    [53] Hare, E. F.; Zisman, W. A.; Autophobic Liquids and the Properties of Their Adsorbed Films, J. Phys. Chem. 1955, 59, 335.
    [54] Johnson, R. E.; Detter, R. H.; Washington, DC: American Chemistry Society 1964, 43, 112.
    [55] Johnson, R. E.; Detter, R. H.; Washington, DC: American Chemistry Society 1964, 43, 136.
    [56] De Gennes P. G.; Wetting: Statics and Dynamics, Rev. Mod. Phys. 1985, 57, 827.
    [57] Dussan, V. E. B.; Chow, R. T. P.; On the Ability of Drops or Bubbles to Stick to Non-Horizontal. Surfaces of Solids, J. Fluid. Mesh. 1983, 137, 1.
    [58] Wenzel, R. N.; Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem. 1936, 28, 988.
    [59] Wenzel, R. N.; Surface Roughness and Contact Angle, J. Phys. Chem. 1949, 53, 1466.
    [60] Cassie, A. B. D.; Baxter, S.; Sruface Roughness and Contact Angle, Trans. Faraday Soc. 1944, 40, 546.
    [61] Cassie, A. B. D.; Contact Angles, Discus. Faraday Soc. 1948, 3, 11.
    [62] Shibuichi, S.; Onda, T.; Satoh, N.; Tsujii, K.; Super Water-Repellent Surfaces Resulting from Fractal Structure, J. Phys. Chem. 1996, 100, 19512.
    [63] Johnson, J. R. E.; Detree, R. H.; Contact Angle Hysteresis, Part I, Study of An Idealized Rough Surfaces, Adv. Chem. Ser. 1964, 43, 112.
    [64] Herminghaus, S.; Roughness-Induced Non-Wetting, Europhys. Lett. 2000, 52, 165.
    [65] Bormashenko, E.; Stein, T.; Whyman, G.; Bormashenko, Y.; Pogreb, R.; Wetting Properties of the Multiscaled Nanostructured Polymer and Metallic Superhydrophobic Surfaces, Langmuir 2006, 22, 9982.
    [66] Patankar, N. A.; Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars, Langmuir 2004, 20, 8209.
    [67] Barthlott, W.; Neinhuis, C.; Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces, Planta 1997, 202, 1.
    [68] Roach, P.; Shirtcliffe, N. J.; Newton, M. I.; Progess in Superhydrophobic Surface Development, Soft Matter 2008, 4, 224.
    [69] Zhao, Y.; Li, M.; Lu, Q. H.; Shi, Z. Y.; Superhydrophobic Polyimide Films with A Hierarchical Topography: Combined Replica Molding and Layer-by-Layer Assembly, Langmuir 2008, 24, 12651.
    [70] Liao, K. S. ; Wan, A.; Batteas, J. D.; Bergbreiter, D. E.; Superhydrophobic Surfaces Formed Using Layer-by-Layer Self-Assembly with Aminated Multiwall Carbon Nanotubes, Langmuir 2008, 24, 4245.
    [71] Zhao, N.; Shi, F.; Wang, Z. Q.; Zhang, X.; Combining Layer-by-Layer Assembly with Electrodeposition of Silver Aggregates for Fabricating Superhydrophobic Surfaces, Langmuir 2005, 21, 4713.
    [72] Zhang, L. B.; Chen, H.; Sun, J. Q.; Shen, J. C.; Layer-by-Layer Deposition of Poly(diallyldimethylammonium chloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate-Facile Method to Prepare A SuperhydrophobicSurface, Chem. Mater. 2007, 19, 948.
    [73] Zhang, L. B.; Li, Y; Sun, J. Q.; Shen, J. C.; Layer-by-Layer Fabrication of Broad-Band Superhydrophobic Antireflection Coatings in Near-Infrared Region, J. Colloid Interface Sci. 2008, 219, 312.
    [74] Pan, Q. M.; Wang, M.; Chen, W. T.; Hydrophobization of Metal Surfaces by Covalent Grafting of Aromatic Layer via Aryldiazonium Chemistry and Their Application in the Fabrication of Superhydrophobic Surfaces, Chem. Lett. 2007, 36, 1312.
    [75] Yu, M.; Gu, G. T.; Meng, W. D.; Qing, F. L.; Superhydrophobic Cotton Fabric Coating Based on A Complex Layer of Silica Nanoparticles and Perfluorooctylated Quaternary Ammonium Silane Coupling Agent, Appl. Surf. Sci. 2007, 253, 3669.
    [76] Zhang, X.; Shi, F.; Yu, X.; Liu, H.; Fu, Y.; Wang, Z. Q.; Jiang, L.; Li, X. Y.; Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: toward Super-Hydrophobic Surface, J. Am. Chem. Soc. 2004, 126, 3064.
    [77] Zhai, L.; Cebeci, F. C.; Cohen, R. E.; Rubner, M. F.; Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers, Nano. Lett. 2004, 4, 1349.
    [78] Ji, J.; Fu, J. H.; Shen, J. C.; Fabrication of A Superhydrophobic Surface from the Amplified Exponential Growth of A Multilayer, Adv. Mater. 2006, 18, 1441.
    [79] Wang, S. T.; Feng, L.; Jiang, L.; One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces, Adv. Mater. 2006, 18, 767.
    [80] Pan, Q. M.; Jin, H. Z.; Wang, H.; Fabrication of Superhydrophobic Surfaces on Interconnected Cu(OH)2 Nanowires via Solution-Immersion, Nanotechnology 2007, 18, 355605.
    [81] Li, S. H.; Zhang, S. B.; Wang, X. H.; Fabrication of SuperhydrophobicCellulose-Based Materials through A Solution-Immersion Process, Langmuir 2008, 24, 5585.
    [82] Xu, W. G.; Liu, H. Q.; Lu, S. X.; Xi, J. M.; Wang, Y. B.; Fabrication of Superhydrophobic Surfaces with Hierarchical Structure through A Solution-Immersion Process on Copper and Galvanized Iron Substrates, Langmuir 2008, 24, 10895.
    [83] Liu, J. P.; Huang, X. T.; Li, Y. Y.; Li, Z. K.; Chi, Q. B.; Li, G. Y.; Formation of Hierarchical CuO Microcabbages as Stable Bionic Superhydrophobic Materials via A Room-Temperature Solution-Immersion Process, Solid State Sci. 2008, 10, 1568.
    [84] Qu, M. N.; Zhang, B. M.; Song, S. Y.; Chen, L.; Zhang, J. Y.; Cao, X. P.; Fabrication of Superbydrophobic Surfaces on Engineering Materials by A Solution-Immersion Process, Adv. Funct. Mater. 2007, 17, 593.
    [85] Larmour, J. A.; Bell S. E. j.; Saunders, G. C.; Remarkably Simple Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition, Angew. Chem. Int. Ed. 2007, 46, 1710.
    [86] Cao, Z. W.; Xiao, D. B.; Kang, L. T.; Wang, Z. L.; Zhang, S. X.; Ma, Y.; Fu, H. B.; Yao, J. N.; Superhydrophobic Pure Silver Surface with Flower-Like Structures by A Facile Galvanic Exchange Reaction with [Ag(NH3)2]OH, Chem. Commun. 2008, 2692.
    [87] Gu, C. D.; Zhang, T. Y.; Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces, Langmuir 2008, 24, 12010.
    [88] Wang, M. F.; Raghunathan, N.; Ziaie, B.; A Nonlithographic Top-Down Electrochemical Approach for Creating Hierarchical (Micro?Nano) Superhydrophobic Silicon Surfaces, Langmuir 2007, 23, 2300.
    [89] Wang, L.; Guo, S. J.; Hu, X. G.; Dong, S. J.; Facile Electrochemical Approach to Fabricate Hierarchical Flowerlike Gold Micro Structures: ElectrodepositedSuperhydrophobic Surface, Electrochem. Commun. 2008, 10, 95.
    [90] Wang, L.; Hu, X. G.; Dong, S. J.; Facile Electrochemical Route to Directly Fabricate Hierarchical Spherical Cupreous Micro Structures: toward Superhydrophobic Surface, Electrochem. Commun. 2008, 10, 655.
    [91] Li, M.; Zhai, J.; Liu, H.; Song, Y. L.; Jiang, L.; Zhu, D. B.; Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films, J. Phys. Chem. B 2003, 107, 9954.
    [92] Tian, Y.; Liu, H. Q.; Deng, Z. F.; Electrochemical Growth of Gold Pyramidal Nanostructures: Toward Super-Amphiphobic Surfaces, Chem. Mater. 2006, 18, 5820.
    [93] Jiang, L.; Zhao, Y.; Zhai, J.; A Lotus-Leaf-like Superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics, Angew Chem. Int. Ed. 2004, 43, 4338.
    [94] Yuan, Z. Q.; Chen, H.; Tang, J. X.; Gong, H. F.; Liu, Y. J.; Wang, Z. X.; Shi, P.; Zhang, J. D.; Chen, X.; J. Phys. D: Appl. Phys. 2007, 40, 3485.
    [95] Feng, L.; Song, Y. L.; Zhai, J.; Liu, B. Q.; Xu, J.; Jiang, L.; Zhu, D. B.; Creation of a Superhydrophobic Surface from An Amphiphilic Polymer, Angew Chem. Int. Ed. 2003, 42, 800.
    [96] Feng, L.; Li, S. H.; Li, H. J.; Zhai, J.; Song, Y. L.; Jiang, L.; Zhu, D. B.; Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers, Angew Chem. Int. Ed. 2002, 41, 1221.
    [97] Guo, C.; Feng, L.; Zhai, J.; Wang, G.; Song, Y. L.; Jiang, L.; Zhu, D. B.; Large-Area Fabrication of A Nanostructure-Induced Hydrophobic Surface from A Hydrophilic Polymer, ChemPhysChem 2004, 5, 750.
    [98] Yao, T. J.; Wang, C. X.; Lin, Q.; Li, X.; Chen, X. L.; Wu, J.; Zhang, J. H.; Yu, K.; Yang, B.; Fabrication of Flexible Superhydrophobic Films by Lift-up Soft-Lithography and Decoration with Ag Nanoparticles, Nanotechnology 2009,20, 065304.
    [99] Liu, B.; He, Y. N.; Fan, Y.; Wang, X. G.; Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting, Macromol. Rapid Commun. 2006, 27, 1859.
    [100] Ma, M. L.; Mao, Y.; Gupta, M.; Gleason, K. K.; Rutledge, G. C.; Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition, Macromolecular 2005, 38, 9742.
    [101] Chung, J. W.; An, B. K.; Kim, J. W.; Kim, J. J.; Park, S. Y.; Photoluminescence and Electroluminescence of Hexaphenylsilole are Enhanced by Pressurization in the Solid State, Chem. Commun. 2008, 2989.
    [102] Saini, G.; Sautter, K.; Hild, F. E.; Pauley. J.; Linford, M. R.; Two-Silane Chemical Vapor Deposition Treatment of Polymer (nylon) and Oxide Surfaces that Yields Hydrophobic (and superhydrophobic), Abrasion-Resistant Thin Films, J. Vac. Sci. Technol. A 2008, 26, 1224.
    [103] Li, G.; Wang, B.; Liu, Y.; Tan, Y.; Song, X. M.; Yan, H.; Fabrication of Superhydrophobic ZnO/Zn Surface with Nanowires and Nanobelts Structures Using Novel Plasma Assisted Thermal Vapor Deposition, Appl. Surf. Sci. 2008, 255, 3112.
    [104] Li, S.; Li, H.; Wang, Y.; Song, Y. L.; Liu, Y.; Jiang, L.; Zhu, D. B.; Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes, J. Phys. Chem. B 2002, 106, 9274.
    [105]李书宏,冯琳,李欢军,宋延林,江雷,朱道本高等学校化学学报, 2003,24,340.
    [106] Song, X. Y.; Zhai, J.; Wang, Y. L.; Jiang, L.; Self-Assembly of Amino-Functionalized Monolayers on Silicon Surfaces and Preparation of Superhydrophobic Surfaces Based on Alkanoic Acid Dual Layers and Surface Roughening, J. Colloid Interface Sci. 2006, 298, 267.
    [107] Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; Mckinley, G. H.; Gleason, K. K.; Superhydrophobic Carbon Nanotube Forests, Nano. Lett. 2003, 3, 1701.
    [108] Hozumi, A.; Takai, O.; Preparation of Ultra Water-Repellent Films by Microwave Plasma-Enhanced CVD, Thin Solid Film, 1997, 303, 222.
    [109] Wu, Y.; Sugimura, H.; Inoue, Y.; Takai, O.; Thin Films with Nanotextures for Transparent and Ultra Water-Repellent Coatings Produced from Trimethylmethoxysilane by Microwave Plasma CVD, Chem. Vap. Deposition, 2002, 8, 47.
    [110] Wu, Y.; Inoue, Y.; Sugimura, H.; Takai, O.; Kato, H.; Murai, S.; Oda, H.; Characteristics of Ultra Water-Repellent Thin Films Prepared by Combined Process of Microwave Plasma-Enhanced CVD and Oxygen-Plasma Treatment, Thin Solid Film, 2002, 407, 45.
    [111] Wu, Y.; Bekke, M.; Inoue, Y.; Sugimura, H.; Kitaguchi, H.; Liu, C.; Takai, O.; Mechanical Durability of Ultra-Water-Repellent Thin Film by Microwave Plasma-Enhanced CVD, Thin Solid Film, 2004, 457, 122.
    [112] Tavana, H.; Amirfazli, A.; Neumann, A. W.; Fabrication of Superhydrophobic Surfaces of n-Hexatriacontane, Langmuir, 2006, 22, 5556.
    [113] Ner, D.; Mccarthy, T. J.; Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir 2000, 16, 7777.
    [114] Zhang, X.; Sato, O.; Fujishima, A.; Water Ultrarepellency Induced by Nanocolumnar ZnO Surface, Langmuir 2004, 20, 6065.
    [115] Meng, X. Q.; Zhao, D. X.; Zhang, J. Y.; Sehn, D. Z.; Lu, Y. M.; Dong, L.; Xiao, Z. Y.; Liu, Y. C.; Fan, X. W.; Wettability Conversion on ZnO Nanowire Arrays Surface Modified by Oxygen Plasma Treatment and Annealing, Chem. Phys. Lett. 2005, 413, 450.
    [116] Yin, S.; Sato, T.; Mild Solution Synthesis of Zinc Oxide Films withSuperhydrophobicity and Superhydrophilicity, J. Mater. Chem, 2005, 15, 4584.
    [117] Zhang, J. L.; Huang, W. H.; Han, Y. C.; Water Ultrarepellency Induced by Nanocolumnar ZnO Surface, Langmuir 2006, 22, 6065.
    [118] Balaur, E.; Macak, J. M.; Tsuchiya, H.; Schmuki, P.; Wetting Behaviour of Layers of TiO2 Nanotubes with Different Diameters, J. Mater. Chem, 2005, 15, 4488.
    [119] Wang, R.; Jiang, L.; Iyoda, T.; Tryk, D. A.; Hashimoto, K.; Fujishima, A.; Investigation of the Surface Morphology and Photoisomerization of an Azobenzene-Containing Ultrathin Film, Langmuir 1996, 12. 2052.
    [120] Jiang, W. H.; Wang, G. J.; He, Y. N.; Wang, X. G.; Song, Y. L.; Zhu, D. B.; Computer Simulation of Ionic and Nonionic Mixed Surfactants in Aqueous Solution, ChemPhysChem 2006, 7, 575.
    [121] Rosario, R.; Gust, D.; Garcia, A. A.; Hayes, M.; Taraci, J. L.; Clement, T.; Dailey, J. W.; Picraux, S. T.; Lotus Effect Amplifies Light-Induced Contact Angle Switching, J. Phys. Chem. B 2004, 108, 12640.
    [122] Ichimura, K.; Oh, S.; Nakagawa, M.; Light-Driven Motion of Liquids on A Photoresponsive Surface, Science 2000, 288, 1624.
    [123] Verheijen, H. J. J.; Prins, M. W. J.; Reversible Electrowetting and Trapping of Charge: Model and Experiments, Langmuir 1999, 15, 6616.
    [124] Pollack, M. G.; Fair, R. B.; Shenderov, A. D.; Electrowetting-Based Actuation of Liquid Droplets for Microfluidic Applications, Appl. Phys. Lett. 2003, 77, 1725.
    [125] Krupenkin, T. N.; Taylor, J. A.; Schneider, T. M.; Tang, S.; From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces, Langmuir 2004, 20, 3824.
    [126] Krupenkin, T. N.; Tang, S.; Mach, P.; Tunable Liquid Microlens, Appl. Phys. Lett. 2003, 82, 316.
    [127] Tang, S.; Krupenkin, T. N.; Mach, P.; Chandross, E.; Tunable and LatchableLiquid Microlens with Photopolymerizable Components, Adv. Mater. 2003, 15, 940.
    [128] Hayes, R. A.; Feenstra, B. J.; Video-Speed Electronic Paper Based on Electrowetting, Nature 2003, 425, 383.
    [129] Lahann, J.; Mitragotri, S.; Tran T. N.; Kaido, H.; Sundaram, J.; Choi, I. S.; Hoffer, S.; Somorjai, G.; Langer, R.; A Reversibly Switching Surface, Science 2003, 299, 371.
    [130] Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; ?ner, D.; Youngblood, J.; Mccarthy, T. J.; Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples, Langmuir 1999, 15, 3395.
    [131] Takeda, K.; Nakajima, A.; Hashimoto, K.; Watanabe, T.; Jump of Water Droplet from A Super-Hydrophobic Film by Vertical Electric Field, Surf. Sci. 2002, 519, L589.
    [132] S-Huethorst, J. A. M.; Fokkink, L. G. J.; Potential-Dependent Wetting of Electroactive Ferrocene-Terminated Alkanethiolate Monolayers on Gold, Langmuir, 1994, 10, 4380.
    [133] Abbott, N. L.; Gorman, C. B.; Whitesides, G. M.; Active Control of Wetting Using Applied Electrical Potentials and Self- Assembled Monolayers, Langmuir 1995, 11, 16.
    [134] Isaksson, J.; Tengstedt, C.; Fahlman, M.; Robinson, N.; Berggren, M.; A Solid-State Organic Electronic Wettability Switch, Adv. Mater. 2004, 16, 319.
    [135] Xu, L. B; Chen, W.; Mulchandani, A.; Yan, Y. S.; Reversible Conversion of Conducting Polymer Films from Superhydrophobic to Superhydrophilic, Angew Chem Int Ed 2005, 44, 6009.
    [136] Xu, L. B; Chen, Z. W.; Chen, W.; Mulchandani, A.; Yan, Y. S.; Electrochemical Synthesis of Perfluorinated Ion Doped Conducting Polyaniline Films Consisting of Helical Fibers and Their Reversible Switching between Superhydrophobicityand Superhydrophilicity, Macromol. Rapid Commun. 2008, 29, 832.
    [137] Zhang, J. L.; Lu, X. Y.; Huang, W. H.; Han, Y. C.; Reversible Superhydrophobicity to Superhydrophilicity Transition by Extending and Unloading An Elastic Polyamide Film, Macromol. Rapid Commun. 2005, 26, 477.
    [138] Wang R.; Hashimoto, K.; Fujishima, A; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T.; Light-Induced Amphiphilic Surfaces, Nature 1997, 288, 431.
    [139] Wang R.; Sakai, N.; Fujishima, A; Watanabe, T.; Hashimoto, K.; Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces, J. Phys. Chem. B 1999, 103, 2188.
    [140] Sakai, N.; Wang R.; Fujishima, A; Watanabe, T.; Hashimoto, K.; Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces, Langmuir 1998, 14, 5918.
    [141] Machida, M.; Norirmoto, K.; Watanabe, T.; Hashimoto, K.; Fujishima, A; The Effect of SiO2 Addition in Super&Hyphen: Hydrophilic Property of TiO2 Photocatalyst, J. Mater. Sci. 1999, 34, 2569.
    [142] Machida, M.; Nakajima, A.; Hashimoto, K.; Watanabe, T.; A Highly Hydrophilic Thin Film Under 1μW/cm2 UV Illumination, Adv. Mater. 2000, 12, 1923.
    [143] Sakai, N.; Fujishima, A; Watanabe, T.; Hashimoto, K.; Enhancement of the Photoinduced Hydrophilic Conversion Rate of TiO2 Film Electrode Surfaces by Anodic Polarization, J. Phys. Chem. B 2001, 105, 3023.
    [144] Nakajima, A.; Koizumi, S.; Watanabe, T.; Hashimoto, K.; Photoinduced Amphiphilic Surface on Polycrystalline Anatase TiO2 Thin Films, Langmuir 2000, 16, 7048.
    [145] Wang, R.; Hashimoto, K.; Fujishima, A; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T.; Photogeneration of Highly Amphiphilic TiO2Surfaces, Adv. Mater. 1998, 10, 135.
    [146] Highfield, J. G.; Grtzel, M.; Discovery of Reversible Photochromism in Titanium Dioxide Using Photoacoustic Spectroscopy: Implications for the Investigation of Light-Induced Charge-Separation and Surface Redox Processes in Titanium Dioxide, J. Phys. Chem. 1988, 92, 464.
    [147] Henderson, M. A.; Structural Sensitivity in the Dissociation of Water on TiO2 Single-Crystal Surfaces, Structural Sensitivity in the Dissociation of Water on TiO2 Single-Crystal Surfaces, Langmuir 1996, 12, 5093.
    [148] Henderson, M. A.; An HREELS and TPD Study of Water on TiO2(110): the Extent of Molecular Versus Dissociative Adsorption, Surf. Sci. 1996, 355, 151.
    [149] Fujishima, A; Hashimoto, K.; Watanabe, T.; Tokyo BKC inc 1999, 60.
    [150] Sakai, N.; Fujishima, A; Watanabe, T.; Hashimoto, K.; Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle, J. Phys. Chem. B 2003, 107, 1028.
    [151] Stevens, N.; Pieda, N.; Hishita, S.; Mitsuhashi, T.; Nakajima, A.; Watanabe, T.; Hashimoto, K.; Reversible Wettability Control of TiO2 Surface by Light Irradiation, Surf. Sci. 2002, 511, 401.
    [152] Nakajima, A.; Koizumi, S.; Watanabe, T.; Hashimoto, K.; Effect of Repeated Photo-Illumination on the Wettability Conversion of Titanium Dioxide, J. Photochem. Photobio. A: Chemistry, 2001, 146, 129.
    [153] Miyauchi, M.; Nakajima, A.; Fujishima, A; Watanabe, T.; Hashimoto, K.; Photoinduced Surface Reactions on TiO2 and SrTiO3 Films: Photocatalytic Oxidation and Photoinduced Hydrophilicity, Chem. Mater. 2000, 12, 3.
    [154] Nakajima, A.; Koizumi, S.; Watanabe, T.; Hashimoto, K.; Photoinduced Amphiphilic Surface on Polycrystalline Anatase TiO2 Thin Films, Langmuir 2000, 16, 7048.
    [155] Langlet, A.; Permpoon, S.; Riassetto, D.; Berthome, G.; Pernot, E.; Joud, J. C.;Photocatalytic Activity and Photo-Induced Superhydrophilicity of Sol–Gel Derived TiO2 Films, J. Photochem. Photobio. A: Chemistry, 2006, 181, 203.
    [156] Takeuchi, M.; Sakamoto, K.; Martra, G.; Coluccia, S.; Anpo, M.; Mechanism of Photoinduced Superhydrophilicity on the TiO2 Photocatalyst Surface, J. Phys. Chem. B 2005, 109, 15422.
    [157] Setzer, W. N.; Liou, S.; Easterling, G. E.; Simmons, R. C.; Gullion, L. M.; Meehan, E. J.; Synthesis and Structural Studies of Hydrophilic Mesocyclic Trithioethers, Heteroatom Chemistry 1998, 9, 123.
    [158] Zhang, Y. R.; Asahina, S.; Suzuki, M.; Yoshihara, S.; Shirakashi, T.; Formation of Super-Hydrophilic Surface of Hydroxyapatite by Ion Implantation and Plasma Treatment, Surf. Coat. Tech. 2005, 196, 303.
    [159] Gao, Y. F.; Masuda, Y.; Koumoto, K.; Light-Excited Superhydrophilicity of Amorphous TiO2 Thin Films Deposited in An Aqueous Peroxotitanate Solution, Langmuir 2004, 20, 3188.
    [160] Shibata T.; Irie, H.; Hashimoto, K. J.; Enhancement of Photoinduced Highly Hydrophilic Conversion on TiO2 Thin Films by Introducing Tensile Stress, J. Phys. Chem. B 2003, 107, 10696.
    [161] Pinzari, F.; Ascarelli, P.; Cappelli, E.; Giorgi, R. Wettability Modification of Titanium Sheets Induced by Activated Surface Treatment, Langmuir 2002, 18, 5457.
    [162] Du, Y. K.; Gan, Y. Q.; Yang, P.; Zhao, F.; Hua, N. P.; Jiang, L.; Improvement in the Heat-Induced Hydrophilicity of TiO2 Thin Films by Doping Mo(VI) Ions, Thin Solid Films 2005, 491, 133.
    [163] Irie, H.; Mori, H.; Hashimoto, K. V.; Interfacial Structure Dependence of Layered TiO2/WO3 Thin Films on the Photoinduced Hydrophilic Property, Vacuum 2004, 74, 625.
    [164] Guan, K. S.; Lu, B. J.; Yin, Y. S.; Enhanced Effect and Mechanism of SiO2Addition in Super-Hydrophilic Property of TiO2 Films, Surf. Coat. Tech. 2003, 173, 219.
    [165] Liu, Q. J.; Wu, X. H.; Wang, B. L.; Liu, Q.; Preparation and Super-Hydrophilic Properties of TiO2/SnO2 Composite Thin Films, Mater. Res. Bull, 2002, 37, 2255.
    [166] Yu, J. C.; Yu, J. G.; Tang, H. Y.; Zhang, l. Z.; Effect of Surface Microstructure on the Photoinduced Hydrophilicity of Porous TiO2 Thin Films, J. Mater. Chem. 2002, 12, 81.
    [167] Yu, J. G.; Zhao, X. J.; Zhao, Q. G.; Wang, G.; Preparation and Characterization of Super-Hydrophilic Porous TiO2 Coating Films, Mater. Chem. Phys. 2001, 68, 253.
    [168] Yu, J. G.; Zhao, X. J.; Effect of Surface Microstructure on the Super-Hydrophilic Property of the Sol-Gel Derived Porous TiO2 Thin Films, J. Mater. Sci. Lett. 2001, 20, 671.
    [169] Yu, J. C.; Yu, J. G.; Ho, W. K.; Zhao, J. C.; Light-Induced Super-Hydrophilicity and Photocatalytic Activity of Mesoporous TiO2 Thin Films, J. Photochem. Photobio. A: Chemistry, 2002, 148, 331.
    [170] Yu, J. G.; Yu, J. C.; Ho, W. K.; Jiang, Z. T.; Effects of Calcination Temperature on the Photocatalytic Activity and Photo-Induced Super-Hydrophilicity of Mesoporous TiO2 Thin Films, New J. Chem. 2002, 26, 607.
    [171] Censo, D. D.; Exnar, I.; Graetzel, M.; Non-Corrosive Electrolyte Compositions Containing Perfluoroalkylsulfonyl Imides for High Power Li-Ion Batteries, Electrochem. Commun. 2005, 7, 1006.
    [172] Kommireddy, D. S.; Patel, A. A.; Shutava, T. G.; Mills, D. K.; Lvov, Y. M.; Layer-by-Layer Assembly of TiO2 Nanoparticles for Stable Hydrophilic Biocompatible Coatings, J. Nanosci. Nanotech. 2005, 5, 1081.
    [173] Miyauchi, M.; Nakajima, A.; Hashimoto, K.; Watanabe, T.; A HighlyHydrophilic Thin Film Under 1μW/cm2 UV Illumination, Adv. Mater. 2000, 12, 1923.
    [174] Cai, R.; Van, G. M.; Aw, P. K.; Itoh, K.; Solar-Driven Self-Cleaning Coating for a Painted Surface, Comptes. Rendus. Chimie. 2006, 9, 829.
    [175] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y.; Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science 2001, 293, 269.
    [176] Dohshi, S.; Takeuchi, M.; Anpo, M.; Effect of the Local Structure of Ti-Oxide Species on the Photocatalytic Reactivity and Photo-Induced Super-Hydrophilic Properties of Ti/Si and Ti/B Binary Oxide Thin Films, Catalysis Today, 2003, 85, 199.
    [177] Kang, M. S.; The Superhydrophilicity of Al–TiO2 Nanometer Sized Material Synthesized Using A Solvothermal Method, Mater. Lett. 2005, 59, 3122.
    [178] Ren, D. S.; Bei, Z. M.; Shen, J.; Yang, X. L.; Zhang, Z. J.; The Structure Change and the Superhydrophilicity of the Sb-Doped Titanium Dioxide Thin Films, J. Sol-gel Sci Technol 2005, 34, 123.
    [179] Bei, Z. M.; Ren, D. S.; Cui, X. L.; Shen, J.; Yang, X. L.; Zhang, Z. J.; Photoelectrochemical Properties and Crystalline Structure Change of Sb-Doped TiO2 Thin Films Prepared by the Sol-Gel Method, J. Mater. Res. 2004, 19, 3189.
    [180] Ren, D. S.; Bei, Z. M.; Huang, L.; Shen, J.; Cui, X. L.; Yang, X. L.; Zhang, Z. J.; The Effect of Dopant Sb on the Superhydrophilicity and the Microstructure of the Nanoscale TiO2 Thin Film, J. Acta Physico-Chimica Sinica 2004, 20, 414.
    [181] Yu J. G.; Zhou, M. H.; Yu, H. G.; Zhang, Q.; L.; Yu, Y.; Enhanced Photoinduced Super-Hydrophilicity of the Sol–Gel-Derived TiO2 Thin Films by Fe-Doping, Mater. Chem. Phys. 2006, 95, 193.
    [182] Premkumar, J.; Development of Super-Hydrophilicity on Nitrogen-Doped TiO2 Thin Film Surface by Photoelectrochemical Method under Visible Light, Chem. Mater. 2004, 16, 3980.
    [183] Weng, W. J.; Ma, M.; Du, P. Y.; Zhao, G. L.; Shen, G.; Wang, J. X.; Han, G. R.; Superhydrophilic Fe Doped Titanium Dioxide Thin Films Prepared by A Spray Pyrolysis Deposition, Surf. Coat. Technol. 2005, 198, 340.
    [184] Kuo, C. S.; Tseng, Y. H.; Li, Y. Y.; Wettability and Superhydrophilic TiO2 Film Formed by Chemical Vapor Deposition, Chem. Lett. 2006, 35, 356.
    [185] Cebeci, F. C.; Wu, Z. Z.; Zhai, L.; Robert, E.; Cohen, R. E.; Rubner, M. F.; Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings, Langmuir 2006, 22, 2856.
    [186] Karuppuchamy, S.; Jeong, J. M.; Amalnerkar, D. P.; Minoura, H.; Photoinduced Hydrophilicity of Titanium Dioxide Thin Films Prepared by Cathodic Electrodeposition, Vacuum 2006, 80, 494.
    [187] Karuppuchamy, S.; Jeong, J. M.; Super-Hydrophilic Amorphous Titanium Dioxide Thin Film Deposited by Cathodic Electrodeposition, Mater. Chem. Phys. 2005, 93, 251.
    [188] Yamashita, H.; Nishio, S.; Katayama, I.; Nishiyama, N.; Fujii, H.; Photo-Induced Super-Hydrophilic Property and Photocatalysis on Transparent Ti-Containing Mesoporous Silica Thin Films, Catalysis Today 2006, 111, 254.
    [189] Gu, Z. Z.; Fujishima, A.; Sato, O.; Biomimetic Titanium Dioxide Film with Structural Color and Extremely Stable Hydrophilicity, Appl. Phys. Lett. 2004, 85, 5067.
    [190] Asthana, Y.; Kim, D. P.; A Novel Formulation for the Modification of Transition Metal Oxide Surfaces for Antifogging Optical Application, Mater. Sci. Forum. 2006, 510/511, 42.
    [191] Zhang, X. T.; Sato, O.; Taguchi, M.; Einaga, Y.; Murakami, T.; Fujishima, A.; Self-Cleaning Particle Coating with Antireflection Properties, Chem. Mater. 2005, 17, 696.
    [192] Cebeci, F. C.; Wu, Z. Z.; Zhai, L.; Cohen, R. E.; Rubner, M. F.;Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings, Langmuir 2006, 22, 2856.
    [193] Sun, R. D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K.; Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films, J. Phys. Chem. B 2001, 105, 1984.
    [194] Abbott, S.; Ralston, J.; Reynolds, G.; Hayes, R.; Reversible Wettability of Photoresponsive Pyrimidine-Coated Surfaces, Langmuir 1999, 15, 8923.
    [195] Feng, C.; Zhang, Y. J.; jin, J.; Song, Y. L.; Xie, L. Y.; Qu, G. R.; Jiang, L.; Zhu, D. B.; Reversible Wettability of Photoresponsive Fluorine-Containing Azobenzene Polymer in Langmuir?Blodgett Films, Langmuir 2001, 17, 4593.
    [196] Lim, H. S.; Kwak, D. H.; Lee, D. Y.; Lee, S. G.; Cho, K. L.; Mammalian Cell Surface Imaging with Nitrile-Functionalized Nanoprobes: Biophysical Characterization of Aggregation and Polarization Anisotropy in SERS Imaging, J. Am. Chem. Soc. 2007, 129, 14.
    [197] Feng, X. J.; Feng, L.; Jin, M. H.; Zhai, J.; Jiang, L.; Zhu, D. B.; Reversible Super-Hydrophobicity to Super-Hydrophilicity Transition of Aligned ZnO Nanorod Films, J. Am. Chem. Soc. 2004, 126, 62.
    [198] Feng, X. J.; Zhai, J.; Jiang, L.; The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films, Angew. Chem. Ind. Ed. 2005, 44, 5115.
    [199] Zhu, W. Q.; Feng, X. J.; Feng, L.; Jiang, L.; UV-Manipulated Wettability between Superhydrophobicity and Superhydrophilicity on A Transparent and Conductive SnO2 Nanorod Film, Chem. Commun. 2006, 2753.
    [200] Liu, H.; Feng, L.; Zhai, J.; Jiang, L.; Zhu, D. B.; Reversible Wettability of A Chemical Vapor Deposition Prepared ZnO Film between Superhydrophobicity and Superhydrophilicity, Langmuir 2004, 20, 5659.
    [201] Wang S. T.; Feng, X. J.; Yao, J. N.; Jiang, L.; Controlling Wettability andPhotochromism in A Dual-Responsive Tungsten Oxide Film, Angew. Chem. Ind. Ed. 2006, 45, 1264.
    [202] Zhang, X.; Sato, O.; Fujishima, A.; Water Ultrarepellency Induced by Nanocolumnar ZnO Surface, Langmuir 2004, 20, 6065.
    [203] Meng, X. Q.; Zhao, D. X.; Zhang, J. Y.; Shen, D. Z.; Lu, Y. M.; Dong, L.; Xiao, Z. Y.; Liu, Y. C.; Fan, X. W.; Wettability Conversion on ZnO Nanowire Arrays Surface Modified by Oxygen Plasma Treatment and Annealing, Chem. Phys. Lett. 2005, 413, 450.
    [204] Yin, S.; Sato, T.; Mild Solution Synthesis of Zinc Oxide Films with Superhydrophobicity and Superhydrophilicity, J. Mater. Chem. 2005, 15, 4584.
    [205] Zhang, J. L.; Huang, W. H.; Han, Y. C.; Wettability of Zinc Oxide Surfaces with Controllable Structures, Langmuir 2006, 22, 2946.
    [206] Balaur, E.; Macak, J. M.; Tsuchiya, H.; Schmuki, P.; Wetting Behaviour of Layers of TiO2 Nanotubes with Different Diameters, J. Mater. Chem. 2005, 15, 4488.
    [207] Wang, R.; Jiang, L.; Iyoda, Y.; Tryk, D. A.; Hashimoto, K.; Fujishima, A.; Investigation of the Surface Morphology and Photoisomerization of An Azobenzene-Containing Ultrathin Film, Langmuir 1996, 12, 2052.
    [208] Ge, H. L.; Wang, G. J.; He, Y. N.; Wang, X. G.; Song, Y. L.; Jiang, L.; Zhu, D. B.; Photoswitched Wettability on Inverse Opal Modified by A Self-Assembled Azobenzene Monolayer, ChemPhysChem 2006, 7, 575.
    [209] Rosario, R.; Gust, D.; Garcia, A. A.; Hayes, M.; Taraci, J. L.; Clementy, T.; Dailey, J. W.; Picraux, S. T.; Lotus Effect Amplifies Light-Induced Contact Angle Switching, J. Phys. Chem. B 2004, 108, 12640.
    [210] Sun, T. L.; Wang, G. J.; Feng, L.; Liu, B. Q.; Ma, Y. M.; Jiang, L.; Zhu, D. B.; Reversible Switching between Superhydrophilicity and Superhydrophobicity, Angew Chem. Int. Ed. 2004, 43, 357.
    [211] Fu, Q.; Rao, G. V. R.; Basame, S. B.; Keller, D. J.; Artyushkova, K.; Fulghun, J. E.; Lopez, G. P.; Reversible Control of Free Energy and Topography of Nanostructured Surfaces, J. Am. Chem. Soc. 2004, 126, 8904.
    [212] Sun, T. L.; Liu, H.; Song, W. L.; Wang, X.; Jiang, L.; Li, L.; Zhu, D. B.; Responsive Aligned Carbon Nanotubes, Angew Chem. Int. Ed. 2004, 43, 4663.
    [213] Sun, T. L.; Song, W. L.; Jiang, L.; Control over the Responsive Wettability of Poly(N-isopropylacrylamide) Film in Large Extent by Introducing An Irresponsive Molecule, Chem. Commun. 2005, 1723.
    [214] Hu, Z.; Chen, Y.; Wang, C.; Zheng, Y.; Li, Y.; Polymer Gels with Engineered Environmentally Responsive Surface Patterns, Nature 1998, 393, 149.
    [215] Shirtcliffe, N. J.; Mchale, G.; Newton, M. I.; Perry, C. C.; Roach, P.; Porous Materials Show Superhydrophobic to Superhydrophilic Switching, Chem. Commun. 2005, 3135.
    [216] Hu, S. X.; Cao, X. Y.; Song, Y. L.; Li, C.; Xie, P.; Jiang, L.; Porous Materials Show Superhydrophobic to Superhydrophilic Switching, Chem. Commun. 2008, 2025.
    [217] Hou, Z.; Abbott, N. L.; Stroeve, P.; Self-Assembled Monolayers on Electroless Gold Impart pH-Responsive Transport of Ions in Porous Membranes, Langmuir 2000, 16, 2401.
    [218] Liu, Y.; Zhao, M.; Bergbreiter, D. E.; Crooks, R. M.; PH-Switchable, Ultrathin Permselective Membranes Prepared from Multilayer Polymer Composites, J. Am. Chem. Soc. 1997, 119, 8720.
    [219] Holmes-Farley, S. R.; Bain, C. D.; Whitesides, G. M.; Wetting of Functionalized Polyethylene Film Having Ionizable Organic Acids and Bases at the Polymer-Water Interface: Relations between Functional Group Polarity, Extent of Ionization, and Contact Angle with Water, Langmuir 1988, 4, 921.
    [220] Bain, C. D.; Whitesides, G. M.; A Study by Contact Angle of the Acid-BaseBehavior of Monolayers Containing Omega-Mercaptocarboxylic Acids Adsorbed on Gold: An Example of Reactive Spreading, Langmuir 1989, 5, 1370.
    [221] Ionov, L.; Houbenov, N.; Sidorenko, A.; Stamm, M.; Luzinov, I.; Minko, S.; Inverse and Reversible Switching Gradient Surfaces from Mixed Polyelectrolyte Brushes, Langmuir 2004, 20, 9916.
    [222] Jiang, Y. G.; Wang, Z. Q.; Yu, X.; Shi, F.; Xu, H. P.; Zhang, X.; Self-Assembled Monolayers of Dendron Thiols for Electrodeposition of Gold Nanostructures: toward Fabrication of Superhydrophobic/Superhydrophilic Surfaces and pH-Responsive Surfaces, Langmuir 2005, 21, 1986.
    [223] Yu, X.; Wang, Z. Q.; Jiang, Y. G.; Shi, F.; Zhang, X.; Reversible pH-Responsive Surface: From Superhydrophobicity to Superhydrophilicity, Adv. Mater. 2005, 17, 1289.
    [224] Minko, S.; Patil, S.; Datsyuk, V.; Simon, F.; Eichhorn, K.; Motornov, M.; Usov, D.; Tokarev, I.; Stamm, M.; Synthesis of Adaptive Polymer Brushes via“Grafting to”Approach from Melt, Langmuir 2002, 18, 289.
    [225] Xia, F.; Feng, L.;Wang, S. T.; Song, W. L.; Jiang, W. H.; Jiang, L.; Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes Based on CuI Complexes, Adv. Mater. 2006, 18, 432.
    [226] Xia, F.; Ge, H.; Hou, Y.; Sun, T. L.; Zhang, G. Z.; Jiang, L.; Multiresponsive Surfaces Change between Superhydrophilicity and Superhydrophobicity, Adv. Mater. 2007, 19, 2520.
    [227] Lu, X.; Zhang, J.; Zhang, C.; Han, Y.; Low-Density Polyethylene (LDPE) Surface With A Wettability Gradient by Tuning Its Microstructures, Macromol. Rapid Commun. 2005, 26, 637.
    [228] Granville, A. M.; Brittain, W. J.; Stimuli-Responsive Semi-Fluorinated Polymer Brushes on Porous Silica Substrates, Macromol. Rapid Commun. 2004, 25,1298.
    [229] Tan, H.; Sun, T.; Li, J.; Guo, M.; Xie, X.; Zhang, Y.; Fu, Q.; Jiang, L.; Nonaggregated Zinc Phthalocyanine in Mesoporous Nanocrystalline TiO2 Thin Films, Macromol. Rapid Commun. 2004, 25, 1418.
    [230] Isaksson, J.; Tengstede, C.; Fahlman, M.; Robinson, N.; Berggren, M.; A Solid-State Organic Electronic Wettability Switch, Adv. Mater. 2004, 16, 319.
    [231] Ou, J.; Perot, B.; Rothstein, J. P.; The Physics of Evaporative Instability in Bilayer Systems: Weak Nonlinear Theory, Phy. Fluids 2004, 16, 4653.
    [232] Shi, F.; Niu, J.; Liu, J. L.; Liu, F.; Wang, Z. Q.; Feng, X. Q.; Zhang, X.; Towards Understanding Why A Superhydrophobic Coating Is Needed by Water Striders, Adv. Mater. 2007, 19, 2257.
    [233]汪家道,禹营,陈大荣,科学通报2006,51,2097.
    [234] Liu, K. S.; Zhang, M. L.; Zhai, J.; Wang, J.; Jiang, L.; Bioinspired Construction of Mg–Li Alloys Surfaces with Stable Superhydrophobicity and Improved Corrosion Resistance, Appl. Phys. Lett. 2008, 92, 183103
    [235] Zhang, F. Z.; Zhao, L. L.; Chen, H. Y.; Xu, S. L.; Evans, D. G.; Duan, X.; Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum, Angew. Chem. Int. Ed. 2008, 47, 2466.
    [236] Liu, T.; Cheng, S. G.; Cheng, S.; Tian, J. T.; Chang, X. T.; Yin, Y. S.; Corrosion Behavior of Super-Hydrophobic Surface on Copper in Seawater, Electrochim. Acta 2007, 52, 8003.
    [237] Barkhudarov, P. M.; Shah, P. B.; Watkins, E. B.; Doshi, D. A.; Brinker, C. J.; Majewski, J.; Corrosion Inhibition Using Superhydrophobic Films, Corros. Sci. 2008, 50, 897.
    [238] Qu, M. N.; Zhang, B. M.; Song, S. Y.; Chen, L.; Zhang, J. Y.; Cao, X. P.; Fabrication of Superhydrophobic Surfaces on Engineering Materials by A Solution-Immersion Process, Adv. Funct. Mater. 2007, 17, 593.
    [239] Khorasani, N. T.; Mirzadeh, H.; In vitro Blood Compatibility of Modified PDMS Surfaces As Superhydrophobic and Superhydrophilic Materials, J. Appl. Polymer. Sci. 2004, 91, 2042.
    [240] Gao, X. F.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J. H.; Yang, B.; Jiang, L.; The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography, Adv. Mater. 2007, 19, 2213.
    [241] Gao, X. F.; Jiang, L.; Biophysics: Water-Repellent Legs of Water Striders, Nature 2004, 432, 36.
    [242] Zhu, Y.; Hu, D.; Wan, M. X.; Jiang, L.; Wei, Y.; Conducting and Superhydrophobic Rambutan-like Hollow Spheres of Polyaniline, Adv. Mater. 2007, 19, 2092.
    [243] Artus, G. R. J.; Jung, S.; Zimmermann, J.; Gautschi, H. P.; Marquardt, K.; Seeger, S.; Silicone Nanofilaments and Their Application as Superhydrophobic Coatings, Adv. Mater. 2006, 18, 2758.
    [244] Kumar, A.; Whitesides, G. M.; Features of Gold Having Micrometer to Centimeter Dimensions Can be Formed through A Combination of Stamping with An Elastomeric Stamp and An Alkanethiol“Ink”Followed by Chemical Etching, Appl. Phys. Lett. 1993, 63, 2002.
    [245] Kumar, A.; Biebuyck, H. A.; Whitesides, G. M.; Patterning Self-Assembled Monolayers: Applications in Materials Science, Langmuir 1994, 10, 1498.
    [246] Xia, Y.; Zhao, X. M.; Kim, E.; Whitesides, G. M.; A Selective Etching Solution for Use with Patterned Self-Assembled Monolayers of Alkanethiolates on Gold, Chem. Mater. 1995, 7, 2332.
    [247] Kumar, A.; Abbott, N. L.; Biebuyck, H. A.; Kim, E.; Whitesides, G. M.; Patterned Self-Assembled Monolayers and Meso-Scale Phenomena, Acc. Chem. Res. 1995, 28, 219.
    [248] Wilbur, J. L.; Kumar, A.; Kim, E.; Whitesides, G. M.; Microfabrication byMicrocontact Printing of Self-Assembled Monolayers, Adv. Mater. 1994, 6, 600.
    [249] Delamarche, E.; Geissler, M.; Wolf, H.; Michel, B.; New Phosphate Fluorosurfactants for Carbon Dioxide, J. Am. Chem. Soc. 2002, 124, 3834.
    [250] Love, J. C.; Wolfe, D. B.; Chabinye, M. L.; Paul, K. E.; Whitesides, G. M.; Self-Assembled Monolayers of Alkanethiolates on Palladium Are Good Etch Resists, J. Am. Chem. Soc. 2002, 124, 1576.
    [251] Koide, Y.; Such, M. W.; Basu, R.; Evmenenko, G.; Cui, J.; Dutta, P.; Hersam, M. C.; Marks, T. J.; Hot Microcontact Printing for Patterning ITO Surfaces. Methodology, Morphology, Microstructure, and OLED Charge Injection Barrier Imaging, Langmuir 2003, 19, 86.
    [252] Yan, X.; Yao, J. M.; Lu, G.; Li, X.; Zhang, J. H.; Han, K.; Yang, B.; Fabrication of Non-Close-Packed Arrays of Colloidal Spheres by Soft Lithography, J. Am. Chem. Soc. 2005, 127, 7688.
    [253] Yao, J. M.; Yan, X.; Lu, G.; Zhang, K.; Chen, X.; Jiang, L.; Yang, B.; Patterning Colloidal Crystals by Lift-up Soft Lithography, Adv. Mater. 2004, 16, 81.
    [254] Lu, G.; Chen, X.; Yao, J. M.; Li, W.; Zhang, G.; Zhao, D.; Yang, B.; Shen, J. C.; Fabricating Ordered Voids in a Colloidal Crystal Film-Substrate System by Using Organic Liquid Patterns as Templates, Adv. Mater. 2002, 14, 1799.
    [255] Lu, G.; Li, W.; Yao, J. M.; Zhang, G.; Yang, B.; Fabricating Ordered Two-Dimensional Arrays of Polymer Rings with Submicrometer-Sized Features on Patterned Self-Assembled Monolayers by Dewetting, Adv. Mater. 2002, 14, 1049.
    [256] Yan, X.; Yao, J. M.; Lu, G.; Chen, X.; Zhang, K.; Yang, B.; Microcontact Printing of Colloidal Crystals, J. Am. Chem. Soc. 2004, 126, 10510.
    [257] Xia, Y. N.; Whitesides, G. M.; Soft Lithography, Angew. Chem. Int. Ed. 1998, 37, 550.
    [258] St?ber, W.; Fink, A.; Bohn, E.; Controlled Growth of Monodisperse SilicaSpheres in the Micron Size Range, J. Colloid Interface Sci. 1968, 26, 62.
    [259] Chen, Z. M.; Chen, X.; Zheng, L. L.; Gang, T.; Cui, T. Y.; Zhang, K.; Yang, B.; A Simple and Controlled Method of Preparing Uniform Ag Midnanoparticles on Tollens-Soaked Silica Spheres, J. Colloid Interface Sci. 2005, 285, 146.
    [260] Chen, Z. M.; Gang, T.; Yan, X.; Li, X.; Zhang, J. H.; Wang, Y. F.; Chen, X.; Sun, Z. Q.; Zhang, K.; Zhao, B.; Yang, B.; Ordered Silica Microspheres Unsymmetrically Coated with Ag Nanoparticles, and Ag-Nanoparticle-Doped Polymer Voids Fabricated by Microcontact Printing and Chemical Reduction, Adv. Mater. 2006, 18, 924.
    [261] Micheletto, R.; Fukuda, H.; Ohtsu, M.; A Simple Method for the Production of Two-Dimensional, Ordered Array of Small Latex Particles, Langmuir 1995, 11, 3333.
    [262] Blaaderen, A. V.; Kentgens, A. P. M.; Particle Morphology and Chemical Microstructure of Colloidal Silica Spheres Made from Alkoxysilanes J. Non-Cryst. Solids 1992, 149, 161.
    [263] Costa, C. A. R.; Leite, C. A. P.; Galembeck, F.; Size Dependence of St?ber Silica Nanoparticle Microchemistry, J. Phys. Chem. B 2003, 107, 4747.
    [264] Zhang, Z. P.; Zhang, L. D.; Wang, S. X.; A Convenient Route to Polyacrylonitrile/Silver Nanoparticle Composite by Simultaneous Polymerization–Reduction Approach, Polymer 2001, 42, 8315.
    [265] Mysore, D.; Viraraghavan, T.; Jin, Y. C.; Oil/Water Separation Technology - A Review, J. Residuals. Sci. Tech. 2006, 3, 5.
    [266] Feng, L.; Zhang, Z. Y.; Mai, Z. H.; Ma, Y. M.; Liu, B. Q.; Jiang, L.; Zhu, D. B.; A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water, Angew. Chem. Int. Ed. 2004, 43, 2012.
    [267] Gau, H.; Herminghaus, S.; Lenz, P.; Lipowsky, R.; Liquid Morphologies on Structured Surfaces: From Microchannels to Microchips, Science 1999, 283, 46.
    [268] Darmanin T.; Nicolas M.; Guittard, F.; Electrodeposited Polymer Films with Both Superhydrophobicity and Superoleophilicity, Phys. Chem. Chem. Phys. 2008, 10, 4322.
    [269] Zhang, J. L.; Huang, W. H.; Han, Y. C.; A Composite Polymer Film with Both Superhydrophobicity and Superoleophilicity, Macromol. Rapid. Commuon. 2006, 27, 804
    [270] Li, M.; Xu, J. H.; Lu, Q. H.; Creating Superhydrophobic Surfaces with Flowery Structures on Nickel Substrates through A Wet-Chemical-Process, J. Mater. Chem. 2007, 17, 4772.
    [271] Wang, S. T.; Song, Y. L.; Jiang, L.; Microscale and Nanoscale Hierarchical Structured Mesh Films with Superhydrophobic and Superoleophilic Properties Induced by Long-Chain Fatty Acids, Nanotechnology 2007, 18, 015103.
    [272] Song, W.; Zhang, J. J.; Xie, Y. F.; Cong, Q.; Zhao, B.; Large-Area Unmodified Superhydrophobic Copper Substrate Can be Prepared by an Electroless Replacement Deposition, J. Colloid Interface Sci. 2009, 329, 208.
    [273] Turner, N. H.; Single, A. M.; Determination of Peak Positions and Areas from Wide-Scan XPS Spectra, Surf. Interface. Anal. 1990, 15, 215.
    [274] Zhang, Q.; Huang, H. Z.; He, H. X.; Chen, H. F.; Shao, H. B.; Liu, Z. F.; Determination of Locations of Sulfur, Amide-Nitrogen and Azo-Nitrogen in Self-Assembled Monolayers of Alkanethiols and Azobenzenethiols on Au (111) and GaAs (100) by Angle-Resolved X-ray Photoelectron Spectroscopy, Surface Science 1999, 440, 142.
    [275] Newman, R. C.; Sieradzki, K.; Metallic Corrosion, Science 1994, 263, 1708.
    [276] Williams, G.; Holness, R. J.; Worsley, D. A.; Mcmurray, H. N.; Inhibition of Corrosion-Driven Organic Coating Delamination on Zinc by Polyaniline, Electrochem. Commun. 2004, 6, 549.
    [277] Niranatlumpong, P.; Koiprasert, H.; Improved Corrosion Resistance ofThermally Sprayed Coating via Surface Grinding and Electroplating Techniques, Sur. Coat. Technol. 2006, 201, 737.
    [278] Scully, J. R.; Presuel-Moreno, F.; Goldman, M.; Kelly, R. G.; Tailleart, N.; User-Selectable Barrier, Sacrificial Anode, and Active Corrosion Inhibiting Properties of Al-Co-Ce Alloys for Coating Applications, Corrosion 2008, 64, 210.
    [279] Chidambaram, D.; Clayton, C. R.; Halada, G. P.; The Role of Hexafluorozirconate in the Formation of Chromate Conversion Coatings on Aluminum Alloys, Electrochim. Acta 2006, 51, 2862.
    [280] Wang, Z. L.; Song, J. H.; Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science 2006, 312, 242.
    [281] Ozkaya, A. R.; Conceptual Difficulties Experienced by Prospective Teachers in Electrochemistry: Half-Cell Potential, Cell Potential, and Chemical and Electrochemical Equilibrium in Galvanic Cells,J. Chem. Educ 2002, 79, 735.
    [282] Whitman, W. G.; Corrosion of Iron, Chem. Rev. 1926, 2, 419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700