用户名: 密码: 验证码:
纳米镍—铁合金和纳米铜的力学行为及变形机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用自制的一套具有循环过滤、搅拌、温控及阴极移动装置的电沉积设备成功制备出了高质量的纳米镍-铁合金材料。经过工艺参数和成分的优化,提出了可连续施镀,并有很高的镀厚能力及晶粒尺寸、晶粒结构和合金成分可控的电沉积工艺配方及工艺方法。制备的合金成分均匀、表面光亮、结晶细致。对电沉积过程中阴极表面液层中Fe2+离子浓度、H+离子浓度及pH值进行了测试。可知,在电沉积过程中Fe2+离子起着决定性的作用,由于阴极析氢导致H+浓度下降pH值上升,Fe2+首先生成氢氧化物沉积,并附着于阴极表面上,抑制了Ni2+离子到达阴极上放电还原,结果使Ni2+沉积速度减慢,而Fe2+优先沉积,通过这种异常共沉积获得了纳米镍铁合金。
     研究了阴极电流密度对纳米镍铁合金(成分为Ni-20wt%Fe)的结构、微观组织及室温拉伸力学性能的影响。研究显示,电沉积制备的纳米镍铁合金材料是具有面心立方结构的γ相固溶体。随着电流密度的增大晶粒尺寸减小,强度和塑性应变都有增大的趋势。电流密度为7A/dm2时获得的纳米镍铁合金的平均晶粒尺寸为22nm左右,极限抗拉强度最大为1922Mpa,断裂应变最大为10.8%。电流密度为3A/dm2时获得的纳米镍铁合金平均晶粒尺寸为33nm左右,极限抗拉强度最大为1792Mpa,断裂应变最大为8.5%。通过断口形貌观察,不同电流密度下获得的纳米镍铁合金均表现出韧性断裂的断口特征,断口韧窝较深,尺寸大约为400~600nm。在断口侧面最大应变处可明显观察到颈缩现象和剪切带的存在。
     对纳米镍铁合金(成分为Ni-20wt%Fe)和平均晶粒尺寸相近纳米镍进行了拉伸力学性能和断裂行为的比较研究。结果显示,随着应变速率的增加,纳米镍铁合金的抗拉强度和断裂应变均有增加,但是纳米镍的抗拉强度增加,断裂应变却有较大的降低。在试验的应变速率(1×10-5s-1-1s-1)范围内增大时,纳米镍铁合金极限抗拉强度从1762MPa增加到1939MPa,断裂应变从8.5%增加到9.3%,而纳米镍极限抗拉强度从1605MPa增加到1912MPa,其断裂应变从10.7%下降到5.8%。且塑性应变为2.0%时,纳米镍铁合金m=0.010,纳米镍m=0.024,纳米镍铁合金表现出较小的应变速率敏感性。断裂表面的对比分析显示,纳米镍铁合金和纳米镍均呈现明显的韧性断裂特征,在颈缩区域的表面可观察到大量几十至几百纳米的剪切带。纳米镍铁表现出裂纹钝化倾向,但纳米镍裂纹钝化倾向不明显。纳米镍铁和纳米镍表现出不同的塑性随应变速率不同的变化源于这种断裂发展过程的差异。固溶铁原子的加入造成了纳米镍铁合金层错能的变化引起的位错活动改变是导致两种材料塑性变化的主要因素。在高应变速率下是位错活动协调变形,而在低应变速率下位错活动和晶界变形共同协调变形。而应变速率敏感性不是影响塑性的决定因素。
     对脉冲电刷镀制备的纳米铜进行了系统的循环试验和增量卸载试验,研究了复杂变形路径下位错的晶界发射和吸收过程。循环实验表明,在塑性变形期间有一个非常少见的惯性行为,加载过程中的变形结构(位错结构)可在卸载过程中完全恢复。在高应变速率下,纳米铜出现明显的惯性变形,其惯性应变随应变速率的增加而增加。当应变速率很小时,不出现惯性变形。在加载期间储备的高密度位错行为,主要归因于较高的应变速率。这些被储存起来的位错在卸载期间能被充分的吸收,主要归因于较慢的应力卸载速率,并由此导致产生较大的惯性应变。增量卸载实验显示,在高应变速率时,纳米铜的变形结构迅速释放,在极短的时间内可达到同一个水平。纳米铜中在高能量处的位错脱钉是主要的控制机制,在材料内部局部大的应力场会给位错脱钉增加困难,从而出现更多的位错缠结导致纳米金属材料产生强化效应。
Interests of scientists in the world on the nanocrystalline materials are focused on im-proving and optimizing their mechanical properties and revealing the strain rate sensitivity and mechanical fracture mechanism of these materials. As the grain size is decreased, an in-creasing fraction of atoms can be ascribed to the grain boundaries. Nanocrystalline materials exhibit various unique chemical, physical or mechanical properties such as increased strength/hardness, reduced elastic modulus and ductility in comparison with conventional polycrystalline materials. For the technical problems of materials preparing, nano-metal with high metallurgical quality, large-size and ideal micro-structure can not be prepared, which limit the understanding to the nature of plastic deformation of nano-metal. On the other hand, studies of experimental work, theoretical and simulation have shown the grain boundary processing and dislocation activities are two important mechanisms for controlling the me-chanical properties of nano-metals. To explore effect of mechanical activation and thermal activation caused by changing grain size, strain rate and other factors to these two mecha-nisms is the substance of the deformation mechanisms of nano-metallic. Therefore, it is es-sential to fabricate high-quality bulk nano-materials and their alloys using a new type of preparation process and undertake extensive studies on their microstructures and mechanical properties.
     It was found that the irrationality process equipment, process recipes, process conditions and other factors seriously affected the preparation of nano-metals and alloy microstructure of nano-metals and alloys, which result a lot of difficulties to the study of properties and de-formation mechanisms of nano-mechanical. In this paper, a new electrodeposition technique used to make nanocrystalline materials was developed by changing and optimizing techno-logical conditions and technological parameters based on conventional electrodeposition technique, and the electrodeposited equipment is produced by us. A bull nanocrystalline Ni-Fe alloys and nanocrystalline Cu were prepared by this electrodeposition technique. Mi-crostructure and mechanical performance of these nanocrystalline materials were observed and analyzed by SEM, TEM, XRD and MTS.
     Based on the above points, the following research work was conducted in this disserta-tion and the conclusions are presented as the following:
     1) High-quality nanocrystalline Ni-Fe alloy was successfully fabricated through devel-oping composition of bath, adjustment technological conditions and technological parame-ters of electrodeposition, using the self-made electrodeposition equipment with cycle of fil-tering, mixing, temperature control and cathodic mobile. And a detailed discussion about the effect of the bath composition, pH, bath temperature, cathode current density, additives con-tent, and add cycle to the surface of micro-morphology, Vickers microhardness and micro-structure of nanocrystalline Ni-Fe alloy was given. The main ingredients were NiSO4.6H2O、FeSO4.7H2O、H3BO3、NaCl、Na3C6H5O7·2H2O、wetting agent、brightener A and brightener B. To corresponding, the optimum conditions were given as the following: Cathode current density is 5-7A/dm2; value of pH is 3.4-3.6; temperature is 60-62℃, cycle of filtration and speed of cathode mobile is 18 times / minute, journey is 120mm. Nanocrystalline Ni-Fe alloys synthesized using the above-mentioned ingredients and process conditions have uni-form composition, dense crystallization, shiny surface, no nodulation and pock marking, the highest microhardness could be more than 600HV. Analyzing the reaction mechanism of electroplating deposition and process of deposition, we can see that electrodeposition of nanocrystalline Ni-Fe alloys belong to an unusual co-deposition theory.
     2) The components ,structure and microstructure of this nanocrystalline Ni-Fe alloys can be observed and analyzed by EDS, XRD, SEM,TEM and AFM. It was demonstrated that the percents of Fe is 20.78wt.% in this Ni-Fe alloy ,there is no detectable porosities or voids in this material, the grain sizes of this material are fine, the orientation of the crystal-lography is uniform. To statistic about hundreds of grain size, it can be obtained that the range of gain size is 10-100nm with the average grain size of about 28±5nm. Root-mean-square roughness of nanocrystalline Ni-Fe alloys has no brightener is 5.519nm, an average roughness is 4.417nm. While root-mean-square roughness of the one added brightener is 4.333nm, an average roughness is 3.392nm.
     3) The effect of the cathodic current density to the structure, microstructure and room temperature tensile mechanical properties of nanocrystalline Ni-Fe alloys (component is Ni-20wt%Fe) was studied. The results shown that high-quality electrodeposition nanocrys-talline Ni-Fe alloys isγ-phase solid solution with face-centered cubic structure, No other phase exist in the XRD spectra of the samples synthesized under different current density. The grain sizes of nanocrystalline Ni-Fe alloys are fine, the orientation of the crystallography is uniform, there is no detectable porosities or voids in this material. When the current den-sity for the preparation of nanocrystalline Ni-Fe alloys is 7A/dm2, the average grain size is about 22nm, the maximum tensile strength is 1922Mpa, the largest fracture strain is 10.8%. When the current density for the preparation of nanocrystalline Ni-Fe alloys is 3A/dm2, the average grain size is about 33nm, the maximum tensile strength is 1792Mpa, the largest fracture strain is 8.5%. Observing the fracture surface, under different current density it was found that nanocrystalline Ni-Fe alloys showed the fracture characteristics of ductile fracture, at the side of the largest fracture strain, necking phenomenon and shear zones can be clearly observed.
     4) Comparing tensile mechanical properties and fracture behavior of nanocrystalline Ni-Fe alloys (Ni-20wt% Fe) and nanocrystalline Ni with the similar average grain size, dur-ing the strain rate increases from 1×10-5s-1 to 1s-1, the result showed that the 0.2 percent yield strength of nanocrystalline Ni-Fe alloys increases from 1134MPa to 1368MPa, the ul-timate tensile strength increases from 1762MPa to 1939MPa, the changing range of breaking strain is 8.5% ~ 9.3% , the changing range of homogeneous strain is 6.3% to 7%, increasing basically with the strain rate increasing, but the fracture strain and the homogeneous strain have little change. At the same range of strain rate (1×10-5s-1~1s-1), with increasing of strain rate, the ultimate tensile strength of nanocrystalline Ni have an increase trend, but the frac-ture strain and the homogeneous strain decrease rapidly. When the plastic strain (εP) is 0.2%, the strain rate sensitivity index (m) of the nanocrystalline Ni-Fe alloys m = 0.017, for nanocrystalline Ni, m = 0.031. When the plastic strain (εP) is 2.0%, the strain rate sensitivity index (m) of the nanocrystalline Ni-Fe alloys m = 0.010, for nanocrystalline Ni, m = 0.024. To the plastic strain of 0.2% and 2.0%, the nanocrystalline Ni-Fe alloys showed smaller ten-sile strain rate sensitivity than the nanocrystalline Ni. Comparing fracture surface morphol-ogy of nanocrystalline Ni-Fe alloys and nanocrystalline Ni, it was found that there are micr-hunches of tens to hundreds of nanometer on the surface of nanocrystalline Ni-Fe al-loys. At the department of maximum strain, it was found a large number of weakening shear zone and the existence of obvious necking. These result showed that the addition of Fe atoms has changed the original crystal structure of Ni, leading to dislocation activity, atomic diffu-sion and grain boundary slipping may be the main mechanism for the facture. which could stabilize the ability of continuous deformation result in relatively good and almost invariable ductility.
     5) Systematic cycling and the incremental unloading test was carried out on pulse elec-trical brush-plating nanocrystalline Cu to analysis dislocation emission-absorption process in complexity path. Little inertia strain(Δεip)indicated grain boundary sliding play a major accommodate role on the plastic deformation during loading at the low strain rates. At high strain rates, with the reduction of unloading stress rate, the significant increment of inertial strain (Δεip) confirm existence of thermal activation in the process of dislocations migration. The results showed that high-energy dislocation depinning is the main control mechanism in nc Cu, the strengthening of nc metals arises from the long-range stress field built-up due to the increased difficulty for the disloca-tion depinning in addition to the high internal stress built-up during loading.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2]黄德欢,纳米技术与应用[M].上海:中国纺织大学出版社,2001.
    [3]张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [4] SCHIOTZ J, VEGGE T, DI TOLLA F D, JACOBSEN K W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev. B 1999, 60: 11971-11983.
    [5] GLEITER H. Nanastuuctured materials [J]. progress in Materials Science, 1989, 33(4): 223-315.
    [6] TJONG S C, CHEN H. Nanocrystalline materials and coatings [J]. Mater. Sci. Eng. R,2004; 45: 1-88.
    [7] MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystal-line materials [J]. Prog. Mater. Sci. 2006, 51: 427-556.
    [8] KOCH C C. Nanostructured materials: Processing, Properties and Potential Applications [J]. Noyes Publications/William Andrew Publishing Norwich, New York, 2002.
    [9] BIRRINGER R. Nanocrystalline materials [J]. Materials Science and Engineering A, 1989;117: 33-43.
    [10] GLEITER H. Nanostructured materials: basic concepts and microstructure [J]. Acta Mater., 2000, 48: 1-29.
    [11] SIEGEL R W. Nanostructured materials -mind over matter [J]. Nanostructured Materi-als, 1994, 4: 121-138.
    [12]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [13]黄德欢.纳米技术与应用[M].上海:中国纺织大学出版社,2001.
    [14]张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [15]卢柯,周飞.纳米晶体材料的研究现状[J].金属学报,1997,23(1):99-106.
    [16]卢柯,卢磊.金属纳米材料力学研究性能的研究进展[J].金属学报,2000,36(8):785-789.
    [17]卢柯,徐坚.98中国材料研讨会文集[C].北京:北京化学工业出版社,1999,88-92.
    [18] GLEITER H. Nanostructured materials: state of the art and perspectives [J]. Nanostruct. Mater., 1995, 6: 3-14.
    [19] GLEITER H. Nanocrystalline materials [J]. Prog. Mater. Sci, 1989, 33: 223- 234.
    [20] KOCH C. C. The synthesis and structure of nanocrystalline materials produced by me-chanical attrition a review [J]. Nanostructured. Mater, 1993, 2(2): 109-121.
    [21] SALISHCHEV G, ZARIPOVA R, GALEEV R, VALIAKHMETOV O. Nanocrystalline structure formation during severe plastic deformation in metals and their deformation behavior [J]. Nanost. Mater, 1995, 6: 913-924.
    [22] LU K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization,structure, and properties [J]. Mater. Sci. Eng. R, 1996, 16: 161-178.
    [23] ERB U, EI-SHEEIK A M, PALUMBO G, AUST K T. The synthesis, structure, and properties of electroplated nanocrystalline materials [J]. Nanostr. Mater, 1993, 2(4): 383-396.
    [24] MEYERS M A, MISHRA A, BENSON D. J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci, 2006, 51: 427-438.
    [25] GLEITER H. Nanocrystalline materials [J]. Prog. Mater. Sci, 1989, 33: 223-236.
    [26] SANDERS P G, FOUGERE G E, THOMPSON L J, EASTMAN J A, WEERTMAN J R. Improvements in the synthesis and compaction of nanocrystalline materials [J]. Nanos-tructured. Mater, 1997, 8: 243-258.
    [27] KOCH C C. Synthesis of nanostructured materials by mechanical milling: problems and opportunities [J]. Nanostr. Mater, 1997, 9: 13-26.
    [28] SURYANARAYANA C. Mechanical alloying and milling [J]. Prog. Mater. Sci, 2001, 46: 1-13.
    [29] SALISHCHEV G, ZARIPOVA R, GALEEV R, VALIAKHETOV O. Nanocrystalline structure formation during severe plastic deformation in metals and their deformation behavior [J]. Nanost. Mater, 1995, 6: 913-924.
    [30] VALIEV R Z, ISLAMGALIEV R K, ALWXANDEROV I V. Bulk nanostructure mate-rials from severe plastic deformation [J]. Prog. Mater. Sci, 2000, 45: 103-124.
    [31] STOLYAROV V V. VALIEV R Z. Bulk nanostructured metastable alloys prepared by severe plastic deformation. Mater. Sci. Forum. 307, 185 (1999)].
    [32] LU K. Nanocrystalline metals crystallized from amorphous solids: nano- crystallization, structure, and properties [J]. Mater. Sci. Eng. R, 1996, 16: 161-221].
    [33] BEELI C, NISSEN H U, JIANG Q, LüCK R. Crystallization in amorphous NiZr2 stud-ied by HRTEM [J]. Mater. Sci. Eng. A, 1991, 133: 346-352.
    [34] LU K, WEI W D, WANG J T. Microhardness and fracture properties of nanocrystalline Ni-P alloy [J]. Scr. Metall. Mater, 1990, 24: 2319-2323.
    [35] LU K, SUI M L, WANG J T. Eutectic crystallization products and their orientation rela-tionship in amorphous TM-M alloys [J]. J. Mater. Sci. Lett, 1990, 9: 630-632.
    [36] MAT'KO I, DUHAJ P, SVEC P, JANICKOVIC D. Formation of nuclei of metastable phases in nanocrystalline materials [J]. Mat. Sci. Eng. A, 1994, 179-180: 557-562]
    [37] SCHIOTZ J, VEGGE T, DI TOLLA F D, JACOBSEN K W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev. B, 1999, 60: 11971-11983.
    [38] MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science, 2006, 51: 427-556.
    [39] TJONG S C, CHEN H. Nanocrystalline materials and coatings [J]. Materials Science and Engineering. R. Reports, 2004, 45: 1-88.
    [40] WANG Y M, MA E. Three strategies to achieve uniform tensile deformation in a nanostructured metal [J]. Acta. Mater., 2004, 52: 4259-4271.
    [41] HALL E O. The Deformation and Ageing of Mild Steel: III Discussion of Results [J]. Proceedings of the Physical Society London B 1951, 64: 747-753.
    [42] EL-SHERIK A M, ERB U, PALUMBO G, AUST K T. Deviations from hall-petch be-haviour in as-prepared nanocrystalline nickel [J]. Scripta Metallurgica et Materialia, 1992, 27: 1185-1188.
    [43] VAN SWYGENHOVEN H, FARKAS D, CARO A. Grain-boundary structures in poly-crystalline metals at the nanoscale [J]. Physical Review B 2000, 62: 831-838.
    [44] VAN SWYGENHOVEN H, CARO A. Plastic behavior of nanophase Ni: A molecular dynamics computer simulation [J]. Applied Physics Letters 1997, 71: 1652-1654.
    [45] KOCH C C, MORRIS D G, LU K, Inoue A Ductility of nanostructured materials [J]. MRS Bulletin, 1999, 24: 54-58.
    [46] KOCH C C, YOUSSEF K M, SCATTERGOOD R O, MURTY K L. Breakthroughs in Optimization of Mechanical Properties of Nanostructured Metals and Alloys [J]. Ad-vanced Engineering Materials, 2005, 7: 787-794.
    [47] WANG Y, CHEN M, ZHOU F, MA E. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912-915.
    [48] ZHANG X, WANG H, SCATTERGOOD R O, NARAYAN J, KOCH C C. Modulated oscillatory hardening and dynamic recrystallization in cryomilled nanocrystalline Zn [J]. Acta Materialia, 2002, 50: 3995-4004.
    [49] ZHANG X, Wang H, SCATTERGOOD R O, NARAYAN J, KOCH C C. Mechanical properties of cyromilled nanocrystalline Zn studied by the miniaturized disk bend test [J]. Acta Materialia, 2002, 50: 3527-3533.
    [50] WANG Y M, CHENG S, WEI Q M, M A E, NIEH T G, HAMZA A. Effects of anneal-ing and impurities on tensile properties of electrodeposited nanocrystalline Ni [J]. Scripta Materialia, 2004, 51: 1023-1028.
    [51] CHENG S, MA E, WANG Y M, KECSKES L J, YOUSSEF K M, KOCH C C, TROCOEWITZ U P, HAN K. Tensile properties of in situ consolidated nanocrystalline Cu [J]. Acta Materialia, 2005, 53: 1521-1533.
    [52] WANG N, WANG Z, AUST K T, ERB U. Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique [J]. Materials Science and Engineering A, 1997, 237: 150-158.
    [53] LU L, LI S X, LU K. An abnormal strain rate effect on tensile behavior in nanocrystal-line copper [J]. Scripta Materialia, 2001, 45: 1163-1169.
    [54] LU L, SUI M L, LU K. Superplastic Extensibility of Nanocrystalline Copper at Room Temperature [J]. Science, 2000, 287: 1463-1466.
    [55] DALLA T F, VAN S H, VICTORIA M. Nanocrystalline electrodeposited Ni: micro-structure and tensile properties [J]. Acta Materialia, 2002, 50: 3957-3970.
    [56] SCHWAIGER R, MOSER B, DAO M, CHOLLACOOP N, SURESH S. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel [J]. Acta Materialia, 2003, 51: 5159-5172.
    [57] CATURLA M J, NIEH T G, STOLKEN J S. Differences in deformation processes innanocrystalline nickel with low-and high-angle boundaries from atomistic simulations [J]. Appl. Phys. Lett, 2005, 84: 598-612.
    [58] BENTO F R, MASCARO L H. Electrocrystallisation of Fe-Ni alloys from chloride electrolytes [J]. Surface & Coatings Technology, 2006, 201: 1752-1756.
    [59]屠振密.电镀合金原理与工艺[M].北京:国防工业出版社,1993.
    [60]周绍民.金属电沉积-原理与研究方法[M].上海:上海科学技术出版社,1987.
    [61]屠振密.电镀合金原理与工艺[M].北京:国防工业出版社,1993.
    [62]邓姝皓,龚竹青.电沉积纳米晶体材料的研究现状与发展[J].电镀与电饰,2001,8(4):20-23.
    [63]赖依聂尔著,张治平译.电镀原理[M].北京:机械工业出版社,2001.
    [64] EBRAHIMI F, ZHAI Q, KONG D. Deformation and fracture of electrodeposited copper [J]. Scripta Materialia, 1998, 39: 315-321.
    [65] ERB U. Electrodeposited nanocrystals: Synthesis, properties and industrial applications [J]. Nanostructured Materials 1995;6:533-538.
    [66] KARIMPOOR A A, ERB U, AUST K T, PALUMBO G. High strength nanocrystalline cobalt with high tensile ductility [J]. Scripta Materialia, 2003, 49: 651-656.
    [67] SHAFA HOOR F, ARAVINDA C L, AHMED M F, MAYANNA S M. Fe-P and Fe-P-Pt co-deposits as hydrogen electrodes in alkaline solution [J]. Journal of Power Sources, 2001, 103: 147-149.
    [68] TSAY P, HU C C, WANG C K. Compositional effects on the physical properties of iron-nickel deposits prepared by means of pulse-reverse electroplating [J]. Materials Chemistry and Physics, 2005, 89: 275-282.
    [69] BASKARAN I, SANKARA NARAYANAN T S N, STEPHEN A. Pulsed electrode-position of nanocrystalline Cu-Ni alloy films and evaluation of their characteristic prop-erties [J]. Materials Letters, 2006, 60: 1990-1995.
    [70] BUGAYCHUK S M, NADUTOV V M, KARPETS M V, TROSCHENKOV Y M. Ef-fect of electron irradiation on texturing in electrodeposited nanocrystalline alloyFe-78%Ni [J]. Scripta Materialia, 2007, 57: 1028–1031.
    [71] NASU T, SAKURAI M, KAMIYAMA T, USUKI T, UEMURA O, TOKUMITSU K, YAMASAKI T. Structural comparison of M-W (M-Fe, Ni) alloys produced by electro-deposition and mechanical alloying [J]. Materials Science and Engineering A, 2004, 375-377: 163-170.
    [72]于金库,廖波,冯皓.电沉积Ni-Fe合金及其耐蚀性的研究[J].材料保护,2002,35(2):30-31.
    [73] REVENKO V G, ALEKSEEVA G R, STEPANOV N F, BOGDASHKINA N L, CHERNOVA G P. The Effect of the Regular Microrelief of a Ball-vibroburnished Steel 10 on the Corrosion Resistance of Its Electroplates [J]. Protection of Metals, 2002, 83: 84-88.
    [74] CARDOSO M V, AMARAL S T, MARTINI E M A. Temperature effect in the corro-sion resistance of Ni-Fe-Cr alloy in chloride medium [J]. Corrosion Science, 2008, 50: 2429-2436.
    [75] KIM Y M, CHOI D, KIM S R, KIM K H, KIM J, HAN S H, KIM H J. Magnetic prop-erties of as-sputtered Co-Ni-Fe alloy films [J]. Journal of Magnetism and Magnetic Ma-terials, 2001, 226-230: 1507-1509.
    [76] SULITANU N, BRINZA F. Excellent soft magnetic two-phase nanocrystalline films for various magnetic devices [J]. Sensors and Actuators A, 2003, 106: 212-216.
    [77] XU S Y, ZHONG M J, YU L M, CHEN H D, HE Z M, ZHANG J C. Effect of carbon content on structure and magnetic properties for (Fe, Ni)1-xCx by mechanical alloying [J]. Journal of Magnetism and Magnetic Materials, 2006, 303: 73-78.
    [78] SEET H L, LI X P, NG W C, CHIA H Y, ZHENG H M, LEE K S. Development of Ni80Fe20/Cu nanocrystalline composite wires by pulse-reverse electrodeposition [J]. Journal of Alloys and Compounds, 2008, 449: 279-283.
    [79] LI X P, SEET H L, FANA J, YI J B. Electrodeposition and characteristics of Ni80Fe20/Cu composite wires [J]. Journal of Magnetism and Magnetic Materials, 2006,304: 111-116.
    [80] CZERWINSKI F. The synthesis of Fe-Ni nanocrystalline alloys from additive-free elec-trolytes [J]. NanoStrucured Materials, 1998, 10: 1363-1369.
    [81] DONTEN M, CESIULIS H, STOJEK Z. Electrodeposition and properties of Ni-W, Fe-W and Fe-Ni-W amorphous alloys [J]. A comparative study. Electrochimica Acta, 2000, 45: 3389-3396.
    [82] MYUNG NOSANG V, PARK D Y, YOO B Y, SUMODJO PAULO T A. Development of electroplated magnetic materials for MEMS [J]. Journal of Magnetism and Magnetic Materials, 2003, 265: 189-198.
    [83] LI H Q, EBRAHIMI F. Synthesis and characterization of electrodeposited nanocrystal-line nickel-iron alloys [J]. Materials Science and Engineering A, 2003, 347: 93-101.
    [84] FAN G J, CHOO H, LIAW P K, LAVERNIA E J. A model for the inverse Hall-Petch relation of nanocrystalline materials [J]. Materials Science and Engineering A, 2005, 409: 243-248.
    [85] FAN G J, FU L F, WANG G Y, CHOO H, LIAWA P K, BROWNING N D. Mechani-cal behavior of a bulk nanocrystalline Ni-Fe alloy [J]. Journal of Alloys and Compounds, 2007, 434-435: 298-300.
    [86] FAN G J, CHOO H, LIAW P K, LAVERNIA E J. Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution [J]. Acta Materialia, 2006, 54: 1759-1766.
    [87] FAN G J, FU L F, CHOO H, LIAW P K, BROWNING N D. Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys [J]. Acta Materialia, 2006, 54: 4781-4792.
    [88] EBRAHIMI F, LI H Q. Grain growth in electrodeposited nanocrystalline fcc Ni-Fe al-loys [J]. Scripta Materialia, 2006, 55: 263-266.
    [89] HIBBARD G D, MCCREA J L, PALUMBO G, AUST K T, ERB U. An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni [J].Scripta Materialia, 2002, 47: 83-87.
    [90] CZERWINSKI F, LI H, MEGRET M, SZPUNAR J A. The evolution of texture and grain size during annealing of nanocrystalline Ni-45%Fe electrodeposits [J]. Scripta Materialia, 1997, 37: 1967-1972.
    [91] LI H Q, LIAWA P K, CHOO H H, TABACHNIKOVA E D, PODOLSKIY A V, SMIRNOV S N, BENGUS V Z. Temperature-dependent mechanical behavior of a nanostructured Ni-Fe alloy [J]. Materials Science and Engineering A, 2008, 493: 93-96.
    [92] SEET H L, LI X P, YI J B, OOI W Y, LEE K S. Effect of deposition methods on the magnetic properties of nanocrystalline permalloy [J]. Journal of Alloys and Compounds, 2008, 449: 284-287.
    [93] QIN X Y, KIM J G, LEE J S. Synthesis and magnetic properties of nanostructuredγ-Ni-Fe alloys [J]. NanoStructured Materials, 1999, 11: 259-270.
    [94] MSELLAK K, CHOPART J P, JBARA O, AABOUBI O, AMBLARD J. Magnetic field effects on Ni–Fe alloys codeposition [J]. Journal of Magnetism and Magnetic Materials, 2004, 281: 295-304.
    [1]赖依聂尔著,张治平译.电镀原理[M].北京:机械工业出版社,2003,50-86.
    [2]上海轻工业专科学校,电镀原理与工艺[M].上海:上海科学技术出版社,1996,1-12.
    [3]李平.镍铁异常共沉积研究[J].物理化学学报,1989,5(6):693-698.
    [4]陈彩虹,贺泽全,沈裕军.电沉积镍铁合金工艺研究[J].矿冶工程,2000,20(2):31-33.
    [5]李春梅,安桂花.光亮镍铁合金电镀的研究[J].河北化工,1998,(3):17-20.
    [6]王成林.镍铁合金电镀工艺[J].材料保护,20003,3(2):7-10.
    [7]李庆伦,海杰,王洪顺,武保林.Ni-Fe合金电沉积过程及机理初探[J].黄金学报,2001,3(3):176-178.
    [8]张允诚等.电镀手册上册(第二版)[M].北京:国防工业出版社,1997.
    [9] HUI W, LIU J, ChAUG Y, DENNIS J K A study of wear resistance of a new brush-plated alloy Ni-Fe-W-S [J]. Wear, 1996, 192: 165-171.
    [10] DU L, XU B, DONG S, YANG H, TU W. Study of tribological characteristics and wear mechanism of nano-particle strengthened nickel- based composite coatings under abra-sive contaminant lubrication [J]. Wear, 2004,257: 1058-1068.
    [11] JIANG X, XIE X, XU Z. Double glow surface alloying of low carbon steel with electric brush plating Ni interlayer for improvement in corrosion resistance [J]. Surf. Coat. Tech,2003, 168: 156-160.
    [12] JIANG X, ZHANG X, XIE X, XU Z, LIU W. Ni-based superalloy surface alloying by double-glow plasma surface alloying technique [J]. Vacuum, 2004, 72: 489-495.
    [13] BENTO F R, MASCARO L H. Electrocrystallisation of Fe-Ni alloys from chloride electrolytes [J]. Surface & Coatings Technology, 2006, 201: 1752-1756.
    [14]陈秉彝,姚士冰,杨方祖等.高整平全光亮镍铁合金电镀的研究[J].电镀与环保,1989,9(6):1-5.
    [15] KIM S H, SOHN H J, JOO Y C, KIM Y W, YIM T H, LEE H Y, KANG T. Effect of saccharin addition on the microstructure of electrodeposited Fe-36wt% Ni alloy [J]. Surface & Coatings Technology, 2005, 199: 43-48.
    [1] KIMA S H, SOHNA H J, JOO Y C, Effect of saccharin addition on the microstructure of electrodeposited Fe-36wt% Ni alloy [J]. Surface & Coatings Technology, 2005, 199: 43-48.
    [2] DALLA T F, SWYGENHOVEN H V, VICTORIA M. Nanocrystalline electrodeposited Ni microstructure and tensile properties [J]. Acta Materialia, 2002, 50: 3957-3970.
    [3] COUPEAU C, NAUD J F, CLEYMAND F, GOUDEAU P, GRILHE J. Atomic force microscopy of in situ deformed nickel films [J]. Thin Solid Films, 1999, 353: 194-200.
    [4] ATAMNY F, BAIKER A. Direct imaging of the tip shape by AFM [J]. Surface Science Letters, 1995, 323: L314-L318.
    [5] NANDA K K, SARANGI S N, SAHU S N. Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrys-talline films [J]. Applied Surface, 1998, 133: 293-297.
    [6] WESTRA K L, THOMSON D J. The microstructure of thin films observed using atomic force microscopy [J]. Thin Solid Films, 1995, 257: 15-21.
    [7] KIM S H, SOHN H J, JOO Y C, KIM Y W, YIM T H, LEE H Y, KANG T. Effect of saccharin addition on the microstructure of electrodeposited Fe-36wt% Ni alloy [J]. Surface & Coatings Technology, 2005, 199: 43-48.
    [8] LI H Q, EBRAHIMI F. Tensile behavior of a nanocrystalline Ni-Fe alloy [J]. Acta Ma-terialia, 2006, 54: 2877-2886.
    [9] LI H Q, EBRAHIMI F, Synthesis and characterization of electrodeposited nanocrystal-line nickel-iron alloys [J]. Materials Science and Engineering A,2003, 347: 93-101.
    [10] CHOMAKOVA M, VITKOVA S, Metal microdistribution during Ni-Fe alloy deposition [J]. Electrochim Acta, 1989, 34: 1197-1203.
    [11] TRUDEAU M L, Nanocrystalline Fe and Fe-Riched Fe-Ni Through Electrodeposition [J]. NanaStructure Materials, 1999, 12: 55-60.
    [12] LU L, SUI M L, LU K. Cold rolling of bulk nanocrystalline copper [J]. Acta Materialia, 2001, 49: 4127-4134.
    [13] LU L, SUI M L, LU K Superplastic extensibility of nanocrystalline copper at room temperature [J]. Science, 2000, 287: 1463-1466.
    [1] QIN X Y, KIM J G, LEE J S. Synthesis and magnetic properties of nanostructuredγ-Ni-Fe alloys [J]. NanoStructured Materials, 1999, 11: 259-270.
    [2] FAN G, FU L , CHOO H , Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys [J]. Acta Materialia, 2006, 54: 4781-4792.
    [3] HEN T D, SCHWARZ R B, FENG S, SWADENER J G, HUANG J Y, TANG M, ZHANG J H, VOGEL S C, ZHAO Y S. Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall-Petch relation [J]. Acta Materialia, 2007, 55: 5007-5013.
    [4] KOCH C C, YOUSSEF K M, SCATTERGOOD R O, MURTY K L. Breakthroughs in Optimization of Mechanical Properties of Nanostructured Metals and Alloys [J]. Ad-vanced Engineering Materials, 2005, 7: 787-794.
    [5] KOCH C C, MORRIS D G, LU K, INOUE A. Ductility of nanostructured materials [J]. MRS Bulletin, 1999, 24: 54-58.
    [6] QIN X Y, CHENG S H, LEE J S. Tensile behavior of nanocrystalline Ni-Fe alloy [J]. Materials Science and Engineering A, 2003, 363: 62-66.
    [1]SHEN X X, LIAN J S, JIANG Z H, JIANG Q, High strength and high ductility of electro-deposited nanocrystalline Ni with a broad grain size distribution [J]. Materials Science and Engineering A, 2008, 487: 410-416.
    [2] SCHUH C A, NIEH T G, IWASAKI H. The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni [J]. Acta Materialia, 2003, 51: 431-443.
    [3] FAN G, FU L , CHOO H, Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys [J]. Acta Materialia, 2006, 54: 4781-4792.
    [4] KUMAR K S, SURESH S, CHISHOLM M F, HORTON J A, WANG P. Deformation of electrodeposited nanocrystalline nickel [J]. Acta Materialia, 2003, 51: 387-405.
    [5] LI H Q, EBRAHIMI F. Transition of deformation and fracture behaviors in nanostruc-tured face-centered-cubic metals [J]. Appl. Phys. Lett, 2004, 84: 4307-4309.
    [6] EBRAHIMI F, AHMED Z. The effect of substrate on the microstructure and tensile properties of electrodeposited nanocrystalline nickel [J]. Materials Characterization, 2003, 49: 373-379.
    [7] SCHUH C A, NIEH T G, IWASAKI H. The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni [J]. Acta Materialia, 2003, 51: 431-443.
    [8] VALIEV R. Nanostructuring of metals by severe plastic deformation for advanced prop-erties [J]. Nature Materials, 2004, 3: 511-516.
    [9] LI Y J, VALIEV R, BLUM W. Deformation kinetics of ultrafine-grained Cu and Ti [J]. Materials Science and Engineering A, 2005,410-411: 451-456.
    [10] YAMAKOV V, WOLF D, PHILLPOT S R, MUKHERJEE A K, GLEITER H, Defor-mation-mechanism map for nanocrystalline metals by molecular-dynamics simulation [J] Nature Mater, 2004, 3: 43-49.
    [11] SWYGENHOVEN H V. Grain boundaries and dislocations [J] Science, 2003, 296: 66-72.
    [12] SCHIOTZ J, JACOBSEN K W. A Maximum in the Strength of Nanocrystalline Copper[J]. Science, 2003, 301: 1357-1364.
    [13] SCHIOTZ J, VEGGE T, TOLLA F D D, JACOBSEN K W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev. B60, 1999, 11971-11982.
    [14] SCHIOTZ J. Atomic-scale modeling of plastic deformation of nanocrystalline copper [J]. Scr. Mater, 2004, 51: 837-842.
    [15] ZHANG Y W, LIU P, LU C. Molecular dynamics simulations of the preparation and de-formation of nanocrystalline copper [J]. Acta Mater, 2004, 52: 5105-5112.
    [16] KUMAR K S, SWYGENHOVEN H V, SURESH S. Mechanical behavior of nanocrys-talline metals and alloys [J]. Acta Mater, 2003, 51: 5743-5749.
    [17] WOLF D, YAMAKOV V, PHILLPOT S R, MUKHERJEE A K, GLEITER H. Defor-mation of nanocrystalline materials by molecular-dynamics simulation: relationship to ex-periments? [J]. Acta Mater, 2005, 53: 1-12.
    [18] MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci, 2006, 51: 427-435.
    [1] JIANG Z H, LIU X L, LI G Y, JIANG Q, LIAN J S. Strain rate sensitivity of a nanocrys-talline Cu synthesized by electric brush-plating [J]. Appl. Phys. Lett, 2006, 88: 143115
    [2] KUMAR K S, SWYGENHOVEN H V, SURESH S. Mechanical behavior of nanocrys-talline metals and alloys [J]. Acta Mater. 2003, 51: 5743-5755.
    [3] MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci, 2006, 51: 427-435.
    [4] SWYGENHOVEN H V, DERLET P M. Grain-boundary sliding in nanocrystalline fccmetals [J]. Phys. Rev. B, 2001, 64: 1-12.
    [5] SERGUEEVA A V, MARA N A, MUKHERJEE A K. Plasticity at really diminished length scales [J]. Mater. Sci. Eng, 2007, in press.
    [6] SCHIOTZ J, VEGGE T, TOLLA F D D, JACOBSEN K W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev. B, 1999, 60: 11971-11982.
    [7] SCHIOTZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301: 1357-1364.
    [8] SWYGENHOVEN H V, DERLET P M, FROSETH A G. Nucleation and propagation of dislocations in nanocrystalline fcc metals [J]. Acta Mater, 2006, 54: 1975-1982.
    [9] CONRAD H. The athermal component of the flow stress in crystalline solids [J]. Mater. Sci. Eng, 1970, 6: 265-274.
    [10] GIBBS G B. Creep and stress relaxation studies with polycrystalline magnesium. 1966, 13: 317.
    [11] LU L, LI S X, LU K. An abnormal strain rate effect on tensile behavior in nanocrystal-line copper [J]. Scripta Mater, 2001, 45: 1163.
    [12] WANG Y M, HAMZA A V, MA E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni [J]. Acta Mater,. 2006, 54: 2715.
    [13] CHENG S, MA E, WANG Y M, KECSKES L J, YOUSSEF K M, KOCH C C, TROCIEWITZ U P, HAN K. Tensile properties of in situ consolidated nanocrystalline Cu [J]. Acta Mater,. 2005, 53: 1521.
    [14] SCHWAIGER R, MOSER B, DAO M, CHOLLACOOP N, SURESH S. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel [J]. Acta Mater,. 2003, 51: 5159.
    [15] BRINGA E M, CARO A, WANG Y, VICTORIA M, MCNANEY J M, REMINGTON B A, SMITH R F, TORRALVA B R, SWYGENHOVEN H V. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309: 1838.
    [16] ZHU B, ASARO R J, KRYSL P, ZHANG K, WEERTMAN J R. Effects of grain size distribution on the mechanical response of nanocrystalline metals: Part II [J]. Acta Mater, 2006, 54: 3307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700