用户名: 密码: 验证码:
基于新型微纳米材料的电化学(生物)传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies of Electrochemical (Bio) Sensors Based on Novel Micro/Nano-materials
  • 作者:白玉
  • 论文级别:博士
  • 学科专业名称:分析化学
  • 学位年度:2009
  • 导师:孙长青
  • 学科代码:070302
  • 学位授予单位:吉林大学
  • 论文提交日期:2009-05-01
摘要
纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100 nm)的材料,具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应等。由于纳米材料的这些独特性能,使得其在科学研究的各个领域都有非常广泛的应用前景。本文以具有优良结构的微纳米材料为基础来开发和研制性能优良的电化学及生物传感器。主要内容如下:
     1.以聚苯乙烯小球为模板,通过电化学沉积的方法将金沉积到模板空隙中,四氢呋喃去除模板。所得金膜修饰电极具有层状有序的三维孔状结构,比表面积大,孔壁交错贯通,为葡萄糖的氧化提供了大量的反应位点,从而大大提高了其对葡萄糖响应的灵敏度;此外,该传感器可以在较低电位下实现葡萄糖的测定,有效的避免了抗坏血酸等物质的干扰。
     2.以聚碳酸酯为模板,通过电化学沉积的方法将铂铅合金沉积到模板的孔隙中去,然后通过有机溶剂去除模板,即得具有微纳米线阵列结构的铂铅合金修饰电极。该修饰电极具有纳米微电极阵列的电化学行为,对葡萄糖展现出良好的电催化响应,可以在pH=7.4的中性磷酸缓冲体系中,在较低的电位下实现葡萄糖的测定。
     3.以金纳米粒子/分子筛复合材料为基底,采用半胱胺作为交联剂,通过共价键合的方法将醛基化的葡萄糖氧化酶固定到基底电极上,从而实现葡萄糖生物传感器的构筑。该传感器对葡萄糖响应的线性范围上限可达14 mmol/L,此外,金纳米粒子/分子筛复合材料为酶分子提供了一个非常类似于生物体的微环境,从而可以有效保持生物分子的活性,进而提高了传感器的稳定性。
     4.首先将柠檬酸根稳定的金纳米粒子与重氮树脂进行层层自组装,然后通过紫外光照使层间作用力由静电吸引转换为共价作用,从而得到一个具有高度稳定性的层数可控的金纳米粒子多层膜。随后将该金纳米粒子多层膜修饰电极浸入到多巴胺的溶液中,对多巴胺进行吸附,所得的多巴胺修饰电极对抗坏血酸响应灵敏,可以实现抗坏血酸的定量测定。
Nanomaterials, with their size in the range of 1-100 nm, have recently become one of themost exciting forefront fields in material science. Due to their small size, these materialsexhibit quanta-size effect, small-size effect, surface effect and tunneling effect that differfrom both bulk material and the individual atoms from which they comprised. With theseunique properties, they are widely used in the fields of catalysis, optical absorption,medicine, magnetic medium, new materials synthesis and particularly attractive in sensorapplications. Introduction of nanomaterials to the system of electrochemical sensors andbiosensors is of considerable interest, since they can play an important role in improvingthe sensor performance due to their large specific surface area, good conductivity specialcatalytic property and excellent biocompatibility.
     In chapter 2, an enzyme-free glucose sensor has been developed using a threedimensionalinverse-opal gold film electrode (3DGFE) obtained by electrochemicaldeposition of gold in the interspaces of polystyrene templates. The gold films werecharacterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Theelectrochemical oxidation of glucose in the presence of interferents (ascorbic acid, and so on) at different operating potentials on the 3DGFE has been investigated in detail. A lowoperating potential of -0.30 V was chosen for glucose detection, since the interferencecould be well avoided at this potential, whereas the current response for glucose oxidationwas still sensitive. The amperometric response of the sensor increased with the increase ofglucose concentration with a linear range of 5×10-6 ~ 10-2 mol/L and a detection limit of3.2μmol/L (signal-to-noise ratio of 3). The glucose sensor exhibited a high sensitivity of46.6μA (mmol/L)-1 cm-2, which could be ascribed to the unique surface structure of thethree-dimensionally interconnected porous structured gold films. The sensor with highsensitivity, good selectivity and stability is attractive for the practical glucose detection.
     In chapter 3, Pt-Pb nanowire array was directly synthesized by electrochemicaldeposition of Pt-Pb alloy into the pores of macroporous polycarbonate template andsubsequent chemical etching of the template. The morphology and the composition of thePt-Pb nanowires were characterized by scanning electron microscopy (SEM) and X-rayphotoelectron spectroscopy (XPS), respectively. Cyclic voltammetry (CV) was used toevaluate the electrochemical performance of the Pt-Pb nanowire array electrode. Directglucose oxidation at such Pt-Pb nanowire array electrode was investigated detailedly bydiscussing the effect of the structure and materials of the electrode on electrocatalyticoxidation of glucose. As a result, we found that the Pt-Pb nanowire array electrode with athree-dimensional structure exhibited high electrocatalytic activity to glucose oxidation inneutral condition and could be used for the development of nonenzymatic glucose sensor.To effectively avoid the interference coming from ascorbic acid, a negative potential of -0.20 V was chosen for glucose detection, and the sensitivity of the sensor to glucoseoxidation was 11.25μA (mmol/L)-1 cm-2 with linearity up to 11 mmol/L, and a detectionlimit of 8 ?mol/L estimated at a signal-to-noise ratio of 3.
     Mesoporous silicas (MPSs) due to their good mechanical, thermal, chemical stability and large surface area have been proven to be promising as biomaterial immobilizationmatrix. It is worth noting that both the proper surface characteristics of the MPSs and goodmatching of the sizes of the enzyme molecules to the pore diameters of the MPSs arenecessary to the immobilization of enzyme. Unless the two factors are satisfied, theimmobilization of enzymes on MPSs will hardly reach. In addition, the poor conductivityof MPSs is also an important drawback of the materials, which might influence theperformance of the biosensor in amperometric detection. Gold nanoparticles (GNPs) havebeen exploited in biomolecule immobilization. Thus, the introduction of GNPs to MPSs isexpected to conquer the drawbacks of MPSs in enzyme immobilization. In chapter 4, goldnanoparticles-mesoporous silica composite (GNPs-MPS) is developed as a novel enzymeimmobilization matrix for biosensor construction. The mesoporous silica SBA-15 ischosen and the GNPs-SBA-15 is formed from AuCl4- adsorbed H2N-SBA-15 by NaBH4reduction. The synthesis process of the composite is monitored by UV-vis spectroscopyand the product is characterized by transmission electron microscopy (TEM) measurement.An amperometric glucose biosensor is built by immobilizing IO4--oxidized-glucoseoxidase (CHO-GOD) on GNPs-MPS modified Au electrode using 2-aminoethanethiol as across-linker. Cyclic voltammetry (CV) and amperometry are employed to investigate thecatalytic behavior of the biosensor to the oxidation of glucose. As a result, the biosensorexhibits an excellent bioelectrocatalytic response to glucose with a fast response time lessthan 7 s, a broad linear range of 0.02~14 mmol/L , high sensitivity of 6.1μA (mmol/L)-1cm-2, as well as good long-term stability and reproducibility. These performances could beascribed to the GNPs-MPS’s features, such as excellent conductivity, large surface areaand good biocompatibility.
     The design, fabrication, study and application of nanoparticle-based nanostructuredfilms are currently intensely investigated research areas in materials chemistry. Thepotential utility of such thin films includes catalysis, optics, electrics and biosensors. The electrostatic layer-by-layer assembly of nanoparticles and polyelectrolytes is regarded asone of the most simple and versatile method for the construction of ultrathin organizedmultilayers. One of the key advantages of this approach has proved to be a rapid andexperimentally very convenient way to produce complex layered structures with precisecontrol of layer composition and thickness. However, the main defect of the multilayerfilms from electrostatic force is less stability toward polar solvents or electrolyte aqueoussolution, which limits its application range. However, electrostatic layer-by-layerassembled multilayers containing diazo-resins can be converted to covalent bonding at theinterfaces by UV irradiation. This method combines the simplicity of the ionic selfassemblytechnique and high stability of the covalently attached multilayer films. Inchapter 5, by using an ionic layer-by-layer self-assembly technique, the fabrication ofhighly stable diazo-resins/colloidal gold nanoparticles multilayer films on quartz wafer, Sislide and glassy carbon electrodes (GCEs) was achieved by the UV irradiation of layer-bylayerself-assemble multilayer films consisting of diazo-resins (DAR) and citrate-cappedcolloidal gold nanoparticles. UV irradiation converted the electrostatic interaction intocovalent bonds at the interfaces. These fabricating processes were followed and furtherconfirmed by UV-Vis spectrometry, Fourier transform infrared spectrometer (FTIR),cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Atomicforce microscopy (AFM) shows that these assemblies of colloidal gold nanoparticlesmultilayer films are highly stable and can be kept for a long time, only being removed byphysical scrape. As a biocompatible substrate, the result gold nanoparticles multiplayerfilm can be modified with dopamine, and used for ascorbic acid detection.
引文
[1]李平.纳米材料修饰电极及其在电分析化学中的应用研究[D].上海:华中师范大学, 2005.
    [2]杨志伊.纳米科技[M].北京:机械工业出版社, 2004.
    [3]张阳德.纳米生物技术学[M].北京:科学出版社, 2005.
    [4]白春礼.纳米科技现在与未来[M].成都:四川教育出版社, 2001.
    [5]周震,阎杰,王先友,宋德瑛,张允什.纳米材料的特性及其在电催化中的应用.化学通报[J], 1998,4: 23-26.
    [6]刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社, 2002.
    [7]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社, 2003.
    [8] WOODBURY R G, WENDIN C, CLENDENNING J, et al. Construction ofbiosensors using a gold-binding polypeptide and a miniature integrated surfaceplasmon resonance sensor [J]. Biosensors and Bioelectronics, 1998, 13: 1117-1126.
    [9] GONZáLEZ-GARCíA M B, FERNáNDEZ-SáNCHEZ A, COSTA-GARCíA.Colloidal gold as an electrochemical label of streptavidin–biotin interaction [J].Biosensors and Bioelectronics, 2000, 15: 315-321.
    [10] SINGH A K, FLOUDER A W, VOLPONI J V, et al. Development of sensors fordirect detection of organophosphates. Part I: immobilization, characterization andstabilization of acetylcholinesterase and organophosphate hydrolase on silicasupports [J]. Biosensors and Bioelectronics, 1999, 14: 703-713.
    [11] CAI H, XU C, HE P G, et al. Colloid Au-enhanced DNA immobilization for theelectrochemical detection of sequence-specific DNA [J]. Journal ofElectroanalytical Chemistry, 2001, 510: 78-85.
    [12] RAKITIN A, AICH P, PAPADOPOULOS C, et al. Metallic conduction throughengineered DNA: DNA nanoelectronic building blocks [J]. Physical ReviewLetters, 2001, 86: 3670-3673.
    [13] LUO X L, MORRIN A, KILLARD A J, et al. Application of Nanoparticles inElectrochemical Sensors and Biosensors [J]. Electroanalysis, 2006, 18: 319-326.
    [14] GOLE A, DASH C, RAMAKRISHNAN V, et al. Pepsin-gold colloid conjugates:preparation, characterization, and enzymatic activity [J]. Langmuir, 2001, 17:1674-1679.
    [15] GOLE A, VYAS S, PHADTARE S, et al. Studies on the formation ofbioconjugates of Endoglucanase with colloidal gold [J]. Colloids and Surfaces B:Biointerfaces, 2002, 25: 129-138.
    [16] LIU S Q, LEECH D, JU H X. Application of colloidal gold in proteinimmobilization, electron transfer, and biosensing [J]. Analytical Letters, 2003, 36:1-9.
    [17] CRUMBLISS A L, PERINE S C, STONEHUERNER J, et al. Colloidal gold as abiocompatible immobilization matrix suitable for the fabrication of enzymeelectrodes by electrodeposition [J]. Biotechnology and Bioengineering, 1992, 40:483-490.
    [18] XIAO Y, JU H X, CHEN H Y. Hydrogen peroxide sensor based on horseradishperoxidase-labeled Au colloids immobilized on gold electrode surface bycysteamine monolayer [J]. Analytica Chimica Acta, 1999, 391: 73-82.
    [19] JIA J B, WANG B Q, WU A G. et al. A method to construct a third-generationhorseradish peroxidase biosensor: self-assembling gold nanoparticles to threedimensionalsol-gel network [J]. Analytical Chemistry, 2002, 74: 2217-2223.
    [20] LUO X L, XU J J, ZHANG Q, et al. Electrochemically deposited chitosanhydrogel for horseradish peroxidase immobilization through gold nanoparticlesself-assembly [J]. Biosensors and Bioelectronics, 2005, 21: 190-196.
    [21] LIU Z M, WANG H, YANG Y, et al. Amperometric tyrosinase biosensor usingenzyme-labeled an colloids immobilized on cystamine/chitosan modified goldsurface [J]. Analytical Letters, 2004, 37: 1079-1091.
    [22] GU H Y, YU A M, CHEN H Y. Direct electron transfer and characterization ofhemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode [J].Journal of Electroanalytical Chemistry, 2001, 516: 119-126.
    [23] YANG W W, BAI Y, LI Y C, et al. Amperometric nitrite sensor based onhemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrodeby a titania sol-gel film [J]. Analytical and Bioanalytical Chemistry, 2006, 382: 44-50.
    [24] LIU S Q, JU H X. Electrocatalysis via Direct Electrochemistry of MyoglobinImmobilized on Colloidal Gold Nanoparticles [J]. Electroanalysis, 2003, 15: 1488-1493.
    [25] CHEN Z J, QU X M, TANG F Q, et al. Effect of nanometer particles on theadsorbability and enzymatic activity of glucose oxidase [J]. Colloids and surfaces B:Biointerfaces, 1996, 7: 173-179.
    [26] ZHOU Y, YUAN R, CHAI Y Q, et al. A reagentless amperometric immunosensorbased on gold nanoparticles/thionine/Nafion-membrane-modified gold electrodefor determination ofα-1-fetoprotein [J]. Electrochemistry Communications, 2005,7: 355-360.
    [27] YUAN R, ZHANG L Y, LI Q F, et al. A label-free amperometric immunosenorbased on multi-layer assembly of polymerized o-phenylenediamine and goldnanoparticles for determination of Japanese B encephalitis vaccine [J]. AnalyticaChimica Acta, 2005, 531: 1-5.
    [28] CAI H, XU C, HE P, et al. Colloid Au-enhanced DNA immobilization for theelectrochemical detection of sequence-specific DNA [J]. Journal ofElectroanalytical Chemistry, 2001, 510: 78-85.
    [29] ZHANG J, SONG S P, ZHANG L Y, et al. Sequence-Specific Detection ofFemtomolar DNA via a Chronocoulometric DNA Sensor (CDS): Effects ofNanoparticle-Mediated Amplification and Nanoscale Control of DNA Assembly atElectrodes [J]. Journal of the American Chemical Society, 2006, 128: 8575-8580.
    [30] ZHU M, Liu M, SHI G, et al. Novel nitric oxide microsensor and its application tothe study of smooth muscle cells [J]. Analytica Chimica Acta, 2002, 455: 199-206.
    [31] XIAO Y, JU H X, CHEN H Y, et al. A reagentless hydrogen peroxide sensor basedon incorporation of horseradish peroxidase in poly(thionine) film on a monolayermodified electrode [J]. Analytica Chimica Acta, 1999, 391: 299-306.
    [32] VALDEN M, LAI X, GOODMAN D W. Onset of Catalytic Activity of GoldClusters on Titania with the Appearance of Nonmetallic Properties [J]. Science,1998, 281: 1647-1650.
    [33] DONG Y Z, SHANNON C. Heterogeneous immunosensing using antigen andantibody monolayers on gold surfaces with electrochemical and scanning probedetection [J]. Analytical Chemistry, 2000, 72: 2371-2376.
    [34] RAI C R, OKAJIMA T, OHSAKA T. Gold nanoparticle arrays for thevoltammetric sensing of dopamine [J]. Journal of Electroanalytical Chemistry,2003, 543: 127-133.
    [35] XIAO Y, PATOLSKY F, KATZ E, et al. "Plugging into enzymes": Nanowiring ofredox enzymes by a gold nanoparticle [J]. Science, 2003, 299: 1877-1881.
    [36] WANG L, WANG E K. Direct electron transfer between cytochrome c and a goldnanoparticles modified electrode [J]. Electrochemistry Communications, 2004, 6:49-54.
    [37] LIU T, ZHONG J, GAN X, et al. Wiring electrons of cytochrome c with silvernanoparticles in layered films [J]. Chemphyschem, 2003, 4: 1364-1366.
    [38] GAN X, LIU T, ZHONG J, et al. Effect of silver nanoparticles on the electrontransfer reactivity and the catalytic activity of myoglobin [J]. Chemphyschem,2004, 5: 1686-1691.
    [39] DEQUAIRE M, DEGRAND C, LIMOGES B. An electrochemicalmetalloimmunoassay based on a colloidal gold label [J]. Analytical Chemistry,2000, 72: 5521-5528.
    [40] AUTHIER L, GROSSIORD C, BROSSIER P, et al. Gold nanoparticle-basedquantitative electrochemical detection of amplified human cytomegalovirus DNAusing disposable microband [J]. Analytical Chemistry, 2001, 73: 4450-4456.
    [41] LUO X L, XU J J, ZHAO W, et al. A novel glucose ENFET based on the specialreactivity of MnO2 nanoparticles [J]. Biosensors and Bioelectronics, 2004, 19:1295-1300.
    [42] XU J J, ZHAO W, LUO X L, et al. A sensitive biosensor for lactate based onlayer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ionsensitivefield-effect transistors [J]. Chemical Communications, 2005, 792-794.
    [43] LUO X L, XU J J, ZHAO W, et al. Ascorbic acid sensor based on ion-sensitivefield-effect transistor modified with MnO2 nanoparticles [J]. Analytica ChimicaActa, 2004, 512: 57-61.
    [44] XU J J, LUO X L, DU Y, et al. Application of MnO2 nanoparticles as aneliminator of ascorbate interference to amperometric glucose biosensors [J].Electrochemistry Communications, 2004, 6: 1169-1173.
    [45] BEN-ALI S, COOK D A, STUART A G E, et al. Electrocatalysis with monolayermodified highly organized macroporous electrodes [J]. ElectrochemistryCommunications, 2003, 5: 747-751.
    [46] BEN-ALI S, COOK D A, BARTLETT P N, et al. Bioelectrocatalysis withmodified highly ordered macroporous electrodes [J]. Journal of ElectroanalyticalChemistry, 2005, 579: 181-187.
    [47] SONG Y Y, ZHANG D, GAO W, et al. Nonenzymatic Glucose Detection byUsing a Three-Dimensionally Ordered Macroporous Platinum Template [J].Chemistry A European Journal, 2005, 11: 2177-2182.
    [48] LI Y, SONG Y Y, YANG C, et al. Hydrogen bubble dynamic template synthesisof porous gold for nonenzymatic electrochemical detection of glucose [J].Electrochemistry Communications, 2007, 9: 981-988.
    [49] CASSAGNEAU T, CARUSO F. Conjugated polymer inverse opals forpotentiometric Biosensing [J]. Advanced Materials, 2002, 14: 1837-1841.
    [50] QIAN W P, GU Z Z, FUJISHIMA A, et al. Three-dimensionally orderedmacroporous polymer materials: an approach for biosensor application [J].Langmuir, 2002, 18: 4526-4529.
    [51] CHNE H H, SUZUKI H, SATO O, et al. Biosensing capability of goldnanoparticle-immobilized three-dimensionally ordered macroporous film [J].Applied Physics A-Materials science and processing, 2005, 81: 1127-1130.
    [52]谢锦春,崔志立,薛峰等.超微电极技术与应用.分析测试技术与仪器[M], 2004,10: 101-106.
    [53]张祖训.超微电极电化学[M].北京:科学出版社, 1998.
    [54] ZOSKI C G. Ultramicroelectrodes: Desigh, Fabrication, and Characterization [J].Electroanalysis, 2002, 14: 104
    [55]古宁宇,董绍俊.超微电极的新进展[J].大学化学, 2001, 16: 26.
    [56] GALUS Z, GOLAS J, OSTERYOUNG J. Determination of kinetic parameters fromsteady-state microdisk voltammograms [J]. The Journal of Physical Chemistry,1988, 92: 1103-1107.
    [57] TUTTY O R. Second-order kinetics for steady state EC′reactions at adiscmicroelectrode [J]. Journal of Electroanalytical Chemistry, 1994,377: 39-51.
    [58]吴志斌,张祖训.线性扫描伏安法研究(Ⅲ)-超微盘电极上同时受扩散和电极反应速率控制的准稳态电流理论[J].高等学校化学学报化学学报, 1992, 50: 274.
    [59]鞠熀先,荀以刚,陈洪渊.碳纤维微电极研究(ⅩⅧ):亚甲基蓝/Nafion修饰微柱碳纤维电极测定血红蛋白的研究[J].高等学校化学学报, 1994, 15(6): 827-831.
    [60] WINKLER K, BARANSKI A. Ac voltammetric measurements of fast chargetransferprocesses at ultramicroelectrodes [J]. Journal of ElectroanalyticalChemistry, 1993, 346: 197-210.
    [61]袁倬斌,李元光.微电极在电化学动力学研究中的应用[J].分析实验室, 1996, 4:95-99.
    [62] KRISTENSEN E W, WILSON R L, WIGHTMAN R M. Dispersion in flowinjection analysis measured with microvoltammetric electrodes [J]. AnalyticalChemistry, 198, 58: 986-988.
    [63] TAIT R J, BURY P C, FINNIN B C, et al. Achievement of the analytically idealsteady-state response at a microelectrode-based scanning electrochemical detectionunder flow injection analysis and normal-phase chromatography conditions [J].Analytical Chemistry, 1993, 65: 3252-3257.
    [64] HUANG W H,PANG D W, TONG H, et al. A method for the fabrication of lownoisecarbon fiber nanoelectrodes [J]. Analytical Chemistry, 2001, 73: 1048-1052.
    [65] ZHANG X J, ZHOU X Y, ZHANG W M. Chniese Patent [P], 1994, APPlicationNumber: 94104755.
    [66]梁汉璞,赵燕,张亚利,等.纳米微电极研究进展[J].青岛大学学报, 2003, 16.
    [67] FORRER P, SCHLOTTIG F, SIEGENTHALER H, et al. Electrochemicalpreparation and surface properties of gold nanowire arrays formed by the templatetechnique [J]. Journal of Applied Electrochemistry, 2000, 30: 533-541.
    [68] JEOUNG E, GALOW T H, SCHOTTER J, et al. Fabrication and characterization ofnanoelectrode arrays formed via block copolymer self-as-sembly [J]. Langmuir,2001, 17(21): 6396-6398.
    [69] LEO D, KUHN A, UGO P. 3D-ensembles of gold nanowires: Preparation,characterization and electroanalytical peculiarities [J]. Electroanalysis, 2007, 19:227-236.
    [70] SCH?NENBERGER C, VANDER ZANDE B M I, FOKKINK L G J, et al.Template synthesis of nanowires in porous polycarbonate membranes:electrochemistry and morphology [J]. The Journal of Physical Chemistry B, 1997,101: 5497-5505.
    [71] AMATORE C, SAVéANT J M, TESSIER D. Charge transfer at partially blockedsurfaces: A model for the case of microscopic active and inactive sites [J]. Journalof Electroanalytical Chemistry, 1983, 147: 39-51.
    [72] AMATORE C. Physical Electrochemistry (Ed:I. Rubinstein) [M]. Marcel Dekker,New York 1995.
    [73] LU Y H, YANG M H, QU F L, et al. Enzyme-functionalized gold nanowires for thefabrication of biosensors [J]. Bioelectrochemistry, 2007, 71: 211-216.
    [74] YANG M H, QU F L, LU Y H, et al. Platinum nanowire nanoelectrode array for thefabrication of biosensors [J]. Biomaterials, 2006, 27: 5944-5950.
    [75] ZHANG X Y, LI D, BOURGEOIS, et al. Direct Electrodeposition of Porous GoldNanowire Arrays for Biosensing Applications [J]. Chemphyschem, 2009, 10: 436-441.
    [76] JAVIER J, ROMAN S, MARCOS P, et al. Magneto-Induced Self-Assembling ofConductive Nanowires for Biosensor Applications [J]. The Journal of PhysicalChemistry C, 2008, 112: 7337-7344.
    [77] WEBER J, JEEDIGUNTA S, KUMAR A. Fabrication and Characterization ofZnO Nanowire Arrays with an Investigation into Electrochemical SensingCapabilities [J]. Journal of Nanomaterials, 2008, doi:10.1155/2008/638523.
    [78] HU J T, ODOM T W, LIEBER C M. Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes [J]. Account of ChemicalResarch, 1999, 32: 435-445.
    [79] LAUHON L J, GUDIKSEN M S, WANG D, et al. Epitaxial core-shell and coremultishellnanowire heterostructures [J]. Nature, 2002, 420: 57-61.
    [80] MCALPINE M C, FRIEDMAN R S, JIN S, et al. High-performance nanowireelectronics and photonics on glass and plastic substrates [J]. Nano Letters, 2003, 3:1531-1535.
    [81] ZHENG G, LU W, JIN S, et al. Synthesis and Fabrication of High-Performance n-Type Silicon Nanowire Transistors [J]. Advanced Materials, 2004, 16: 1890–1893.
    [82] PATOLSKY F, TIMKO B P, YU G H, et al. Detection, stimulation, and inhibitionof neuronal signals with high-density nanowire transistor arrays Mater [J]. Science,2006, 313: 1100-1104.
    [83] PATOLSKY F, ZHENG G F, LIEBER C M. Nanowire-based biosensors [J].Analytical Chemistry, 2006, 78: 4260-4269.
    [84] BENTZEN E, WRIGHT D W, CROWE J E, Nanoscale tools for rapid andsensitive diagnosis of viruses [J]. Future Virology, 2006, 1: 769-781.
    [85] LIU A H. Towards development of chemosensors and biosensors with metaloxide-based nanowires or nanotubes [J]. Biosensors and Bioelectronics, 2008, 24:167-177.
    [86] BALCI S, BITTNER A M, HAHN K, et al. Copper nanowires within the centralchannel of tobacco mosaic virus particles [J]. Electrochimica Acta, 2006, 51:6251-6257.
    [87] BALCI S, NODA K, BITTNER A M et al. Self-assembly of metal-virusnanodumbbells [J]. Angewandte Chemie-International Edition, 2007, 46: 3149-3151.
    [88] TOK J B H, CHUANG F Y S, KAO M C, et al. Metallic striped nanowires asmultiplexed immunoassay platforms for pathogen detection [J]. AngewandteChemie-International Edition, 2006, 45: 6900-6904.
    [89] FANG Y, PATOLSKY F, LIEBER C M. Electrical detection of single DNAmolecules with silicon nanowire devices [J]. Biophysical Journal, 2007, 551A-511A.
    [90] PATOLSKY F, ZHENG G F, HAYDEN O, et al. Electrical detection of singleviruses [J]. Proceedings of National Academy of Sciences of the United State ofAmerica, 2004, 101: 14017–14022.
    [91] CUI Y, WEI Q Q, PARK H K, et al. Nanowire nanosensors for highly sensitiveand selective detection of biological and chemical species [J]. Science, 2001, 293:1289-1292.
    [92] GANGULY A, CHEN C P, LAI Y T, et al. Functionalized GaN nanowire-basedelectrode for direct label-free voltammetric detection of DNA hybridization [J].Journal of Materials Chemistry, 2009, 19: 928-933.
    [93] FANG Z C, KELLEY S O. Direct Electrocatalytic mRNA Detection Using PNANanowireSensors [J]. Analytical Chemistry, 2009, 81: 612-617.
    [94] WILKINS E, ATANASOV P. Glucose monitoring: State of the art and futurepossibilities [J]. Medical Engineering and Physics, 1996, 18: 273-88.
    [95] MAGNER E. Trends in electrochemical biosensors [J]. Analyst, 1998, 123: 1967-1970.
    [96] SUN Y P, BUCK H, MALLOUK T E. Combinatorial discovery of alloyelectrocatalysts for amperometric glucose sensors [J]. Analytical Chemisty, 2001,73: 1599-1604.
    [97] ARIMORI S, USHIRODA S, LAURENCE M P, et al. A modular electrochemicalsensor for saccharides [J]. Chemical Communications, 2002, 2(20): 2368-2369.
    [98] PARK S, CHUNG T D, KIM H C. Nonenzymatic glucose detection usingmesoporous platinum [J]. Analytical Chemistry, 2003, 75: 3046-3049.
    [99] YE J S, WEN Y, ZHANG W D, et al. Nonenzymatic glucose detection using multiwalledcarbon nanotube electrodes [J]. Electrochemistry Communications, 2004, 6:66-70.
    [100] VASSILYEV Y B, KHAZOVA O A, NIKOLAEVA N N. Kinetics and mechanismof glucose electrooxidation on different electrode-catalysts: Part I. Adsorption andoxidation on platinum [J]. Journal of Electroanalytical Chemistry, 1985, 196: 105-125.
    [101] LAREW L A, JOHNSON D C. Concentration dependence of the mechanism ofglucose oxidation at gold electrodes in alkaline media [J]. Journal ofElectroanalytical Chemistry, 1989, 262: 167–182.
    [102] LEI H W, WU B L, CHA C S, et al. Electro-oxidation of glucose on platinum inalkaline solution and selective oxidation in the presence of additives [J]. Journal ofElectroanalytical Chemistry, 1995, 382: 103-110.
    [103] KATZ E, SHIPWAY A N, WILLNER I. In Handbook of Fuel Cells-Fundamentals,Technology and Applications. Vol.1(Eds: Vielstich, A. Lamm, H. A. Gasteiger) [M].John Wiley and sons, Chichester, UK 2003, p355.
    [104] WILLNER I. Biomaterials for sensors, fuel cells, and circuitry [J]. Science, 2003,268: 2407-2408.
    [105]褚道葆,李晓华,冯德香,等.葡萄糖在碳纳米管/纳米TiO2膜载Pt复合电极上的电催化氧化[J].化学学报, 2004, 62: 2403-2406.
    [106] VASSILYEV Y B, KHAZOVA O A, NIKOLAEVA N N. Kinetics and mechanismof glucose electrooxidation on different electrode-catalysts: Part II. Effect of thenature of the electrode and the electrooxidation mechanism [J]. Journal ofElectroanalytical Chemistry, 1985, 196: 127-144.
    [107] ADZIC R R, HSIAO M W, YEAGER E B. Electrochemical oxidation of glucose onsingle crystal gold surfaces [J]. Journal of Electroanalytical Chemistry, 1989, 260:475-485.
    [108] HSIAO M W, AZDIC R R, YEAGER E B. Electrochemical oxidation of glucose onsingle crystal and polycrystalline gold surfaces in phasphate buffer [J]. Journal ofthe Electrochemical Society, 1996, 143: 759-767.
    [109] AOUN S B, DURSUN Z, KOGA T, et al. Effect of metal ad-layers on Au(111)electrodes on electrocatalytic oxidation of glucose in an alkaline solution [J].Journal of Electroanalytical Chemistry, 2004, 567: 175-183.
    [110] PARK S J, BOO H K, CHUNG T D. Electrochemical non-enzymatic glucosesensors [J]. Analytica Chimica Acta, 2006, 556: 46-57.
    [111] GEBHARDT U, LUFT G, RICHTER G J, et al. 253 - Development of anImplantable Electrocatalytic Glucose Sensor [J]. Bioelectrochemistry andBioenergetics, 1978, 5: 607-624.
    [112] GOUGH D A, ANDERSON E L, GINER J, et al. Effect of coreactants onelectrochemical glucose oxidation [J]. Analytical Chemistry, 1978, 50: 94-944.
    [113] SAKMOTO M, TAKAMURA K. Catalytic oxidation of biological components onplatinum electrodes modified by adsorbed metals: Anodic oxidation of glucose [J].Bioelectrochemisty and Bioenergetics, 1982, 9: 571-582.
    [114] KOKKINIDIS G, XONOGLOU N. Comparative study of the electrocatalyticinfluence of underpotential heavy metal adatoms on the anodic oxidation ofmonosaccharides on Pt in acid solutions [J]. Bioelectrochemisty and Bioenergetics,1985, 14: 375-387.
    [115] XONOGLOU N, KOKKINIDIS G. Catalysis of the oxidation of monosaccharideson platinum surfaces modified by underpotential submonolayers [J].Bioelectrochemisty and Bioenergetics, 1984, 12: 485-498.
    [116] AOUN S B, BANG G S, T. Koga, NONAKA Y, et al. Electrocatalytic oxidation ofsugars on silver-UPD single crystal gold electrodes in alkaline solutions [J].Electrochemistry Communications, 2003, 5: 317–320.
    [117] MATSUMOTO F, HARADA M, KOURA N, et al. Electrochemical oxidation ofglucose at Hg adatom-modified Au electrode in alkaline aqueous solution [J].Electrochemistry Communications, 2003, 5: 42-46.
    [118] LUO P, ZHANG F, BALDWIN R P. Comparison of metallic electrodes forconstant-potential amperometric detection of carbohydrates, amino acids andrelated compounds in flow systems [J]. Analytica Chimica Acta, 1991, 244: 169-178.
    [119] YOU T, NIWA O, CHEN Z, et al. An amperometric detector formed of highlydispersed Ni nanoparticles embedded in a graphite-like carbon film electrode forsugar [J]. Analytical Chemistry, 2003, 75: 5191-5196.
    [120] PRABHU S V, BALDWIN R P. Constant potential amperometric detection ofcarbohydrates at a copper-based chemically modified electrode [J]. AnalyticalChemistry, 1989, 61: 852-856.
    [121] ZHANG X, CHAN K Y, TSEUNG A C C. Electrochemical oxidation of glucose byPt/WO3 electrode [J]. Journal of Electroanalytical Chemistry, 1995, 386: 241-243.
    [122] YUAN J H, WANG K, XIA X H. Highly ordered Platinum-Nanotubule array foramperometric glucose sensing [J]. Advanced Functional Materials, 2005, 15: 803-809.
    [123] BOO H, PARK S, KU B, et al. Ionic strength-controlled virtual area of mesoporousplatinum electrode [J]. Journal of the American Chemical Society, 2004, 126: 4524-4525.
    [124] B.K. JENA, C.R. RAJ, Enzyme-free amperometric sensing of glucose by usinggold nanoparticles [J]. Chemistry A European Journal 2006, 12: 2702-2708.
    [125] CONG H L, CAO W X. Colloidal crystallization induced by capillary force [J].Langmuir, 2003, 19: 8177-8181.
    [126] SUMIDA T, WADA Y, KITAMURA T, et al. Electrochemical preparation ofmacroporous polypyrrole films with regular arrays of interconnected sphericalvoids [J]. Chemical Communications, 2000, 1613-1614.
    [127] BARTLETT P N, BAUMBERG J J, BIRKIN P R, et al. Highly orderedmacroporous gold and platinum films formed by electrochemical depositionthrough templates assembled from submicron diameter monodisperse polystyrenespheres [J]. Chemistry of Materials, 2002, 14: 2199-2208.
    [128] BRAUN P V, WILTZIUS P. Macroporous materials-electrochemically grownphotonic crystals [J]. Current Opinion in Colloid and Interface, 2002, 7: 116-123.
    [129] KOZLOWSKA H A, CONWAY B E, HAMELIN A, et al. Elementary steps ofelectrochemical oxidation of single-crystal planes of Au. Part II. A chemical andstructural basis of oxidation of the (111) plane [J]. Journal of ElectroanalyticalChemistry, 1987, 228: 429-453.
    [130] TRASATTI S, PETRII O A. Real surface area measurements in electrochemistry [J].Pure and Applied Chemistry, 1991, 63: 711-734.
    [131] TOMINAGA M, SHMAZOE T, NAGASHIMA M, et al. Electrocatalytic oxidationof glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutralsolutions [J]. Electrochemistry Communications, 2005, 7: 189-193.
    [132] CHENG I F, WHITELEY L D, MARTIN C R. Ultramicroelectrode ensembles.Comparision of experimental and theoretical responses and e-valuation ofelectroanalytical detection limits [J]. Analytical Chemistry, 1989, 61: 762-766.
    [133] SCH?ENBERGEER C, VANDER ZANDE B M I, FOKKINK L G J, et al.Template synthesis of nanowires in porous polycarbonate membranes;electrochemistry and morphology Journal of Physical Chemistry B, 1997, 101:5497-5505.
    [134] CUI H F, YE J S, LIU X, et al. Electrochemical functionalization of verticallyaligned carbon nanotube arrays with molybdenum oxides for the development of asurface-charge-controlled sensor [J]. Nanotechnology, 2006, 17: 2334-2339.
    [135] CUI H F, YE J S, ZHANG W D, et al. Selective and sensitive electrochemicaldetection of glucose in neutral solution using platinum–lead alloynanoparticle/carbon nanotube nanocomposites [J]. Analytica Chimica Acta, 2007,594: 175-183.
    [136] WANG J P, THOMAS D F, CHEN A C. Nonenzymatic electrochemical glucosesensor based on nanoporous PtPb networks [J]. Analytical Chemistry, 2008, 80:997-1004.
    [137] PENNER R M, MARTIN C R. Preparation and electrochemical characterization ofultramicroelectrode ensembles [J]. Analytical Chemistry 1987, 59: 2625-2630.
    [138]吴锦雷.纳米光电功能薄膜[M].北京:北京大学出版社, 2006, 63.
    [139]徐如人,庞文琴,等.分子筛与多孔材料化学[M].北京:科学出版社, 2003.
    [140] LIEBAU F. Zeolites and clathrasils-two distinct classes of framework silicates [J].Zeolites, 1983, 3: 191-193.
    [141] GATES B C, Supported metal clusters: synthesis, structure, andcatalysis [J].Chemical Reviews, 1995, 95: 511-522.
    [142]孟宪伟,高凤堂,任湘菱,等.含超细Au颗粒的乳酸氧化酶和葡萄糖氧化酶生物传感器[J].过程工程学报, 2002, 2: 351-354.
    [143] BROWN K R, FOX A P, NATAN M J. Morphology-dependent electrochemistry ofcytochrome c at Au colloid-modified SnO2 electrodes [J]. Journal of the AmericanChemical Society, 1996, 118: 1154-1157.
    [144] GU H Y, YU A M, CHEN H Y. Direct electron transfer and characterization ofhemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode [J].Journal of Electroanalytical Chemistry, 2001, 516: 119-126.
    [145] XIAO Y, JU H X, CHEN H Y. Hydrogen peroxide sensor based on horseradishperoxidase-labeled Au colloids immobilized on gold electrode surface bycysteamine monolayer [J]. Analytica Chimica Acta, 1999, 391: 73-82.
    [146] KATZ E, WILLNER I. Integrated nanoparticle-biomolecule hybrid systems:synthesis, properties, and applications [J]. Angewandte Chemie-InternationalEdition, 2004, 43: 6042-6108.
    [147] FAN J, LEI J, WANG L M, et al. Rapid and high-capacity immobilization ofenzymes based on mesoporous silicas with controlled morphologies Electronicsupplementary information (ESI) available: XRD and nitrogen sorption isothermsfor MPSs used in bioimmobilization [J]. Chemical Communications, 2003, 2140-2141.
    [148] DAI Z H, LIU S Q, JU H X, et al. Direct electron transfer and enzymatic activity ofhemoglobin in a hexagonal mesoporous silica matrix [J]. Biosensors andBioelectronics, 2004, 19: 861-867.
    [149] HAN Y J, STUCKY G D, BUTLER A. Mesoporous silicate sequestration andrelease of proteins [J]. Journal of the American Chemical Society, 1999, 121: 9897-9898.
    [150] WASHMON-KRIEL L, JIMENEZ V L, BALKUS K J. Cytochrome cimmobilization into mesoporous molecular sieves [J]. Journal of MolecularCatalysis B: Enzymatic, 2000, 10: 453-469.
    [151] YU C, FAN J, TIAN B, et al. Morphology development of mesoporous materials: acolloidal phase separation mechanism [J]. Chemisty of Materials, 2004, 16:889–898.
    [152] CHI Y S, LIN H P, MOU C Y. CO oxidation over gold nanocatalyst confined inmesoporous silica [J]. Applied Catalysis A-General, 2005, 284: 199-206.
    [153] CHIANG C W, WANG A, WAN B Z, et al. High catalytic activity for CO oxidationof gold nanoparticles confined in acidic support Al-SBA-15 at low temperatures [J].Journal of Physical Chemistry B, 2005, 109: 18042-18047.
    [154] ZABORSKY O R, OGLETREE J. The immobilization of glucose oxidase viaactivation of its carbohydrate residues [J]. Biochemical and Biophysical ResearchCommunication, 1974, 61: 210-216.
    [155] WHITE L D, TRIPP C P. Reaction of (3-aminopropyl) dimethylethoxysilane withamine catalysts on silica surfaces [J]. Journal of Colloid Interface and Science, 2000,232: 400-407.
    [156] WHITE L D, TRIPP C P. An infrared study of the amine-catalyzed reaction ofmethoxymethylsilanes with silica [J]. Journal of Colloid Interface and Science,2000, 232: 237-243.
    [157] CHONG A S. M, ZHAO X S. Functionalization of SBA-15 with APTES andcharacterization of functionalized materials [J]. The Journal of Physical ChemistryB, 2003, 107: 2650-12657.
    [158] DECHER G, HONG J D. Buildup of ultrathin multilayer films by a selfassemblyprocess. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles oncharged surfaces [J]. Macromolecular Symposium, 991, 46: 321-327.
    [159] DECHER G. Fuzzy nanoassemblies: toward layered polymeric multicomposites [J].Science, 1997, 277: 1232-1237.
    [160] FUJII T, KITAI T.Determination of trace levels of trimethylamine in air by gaschromatography/surface ionization organic mass spectrometry [J]. AnalyticalChemistry, 1987, 59: 379-382.
    [161] ANICET N, BOURDILLON C, MORIOUX J, et al. Electron transfer in organizedassemblies of biomolecules step-by-step avidin/biotin construction and dynamiccharacteristics of a spatially ordered multilayer enzyme electrode [J]. The Journalof Physical Chemistry B, 1998, 102: 9844-9849.
    [162] BOURDILLON C, DEMAILLE C., GUERIS J, et al. A fully active monolayerenzyme electrode derivatized by antigen-antibody attachment [J]. Journal of theAmerican Chemical Society, 1996, 115: 12264-12269.
    [163] DECHER G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites[J]. Science, 1997, 277: 1232-1237.
    [164] ZHAO J, HENKENS R W, STONEHUERNER J, et al. Direct electron transfer athorseradish peroxidase-colloidal gold modified electrodes [J]. Journal ofElectroanalytical Chemistry, 1992, 32: 109-119.
    [165] TSAI Y C, LI S C, CHEN J M. Cast thin film biosensor design based on a Nafionbackbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function[J]. Langmuir, 2005, 21: 3653-3658.
    [166] YANG W W, WANG J X, ZHAO S, et al. Multilayered construction of glucoseoxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalentattachment [J]. Electrochemisty Communications, 2006, 8: 665-672.
    [167] SHIPWAY A N, KATZ E, WILLNER I. Nanoparticle arrays on surfaces forelectronic, optical, and sensor applications [J]. ChemPhysChem 2000, 1: 18-52.
    [168] TEMPLETON A C, WUELFING W P, MURRAY R W, Monolayer-prtected clustermolecules [J]. Account of Chemical Research, 2000, 33: 27-36.
    [169] BOND G C, THOMPSON D T. Catalysis by gold [J]. Catalysis Reviews-Scienceand Engineering, 1999, 41: 319-388.
    [170] CROOKS R M, ZHAO M, SUN L, et al. Dendrimer-encapsulated metalnanoparticles: synthesis, characterization, and applications to catalysis [J]. Accountof Chemical Research, 2001, 34: 181.
    [171] LIANG H P, ZHANG H M, HU J S, et al. Pt hollow nanospheres: Facile synthesisand enhanced electrocatalysts Angewandte Chemie-International Edition, 2004, 43:1540-1543.
    [172] BRIGHT R M, WALTER D G, MUSICK M D, et al. Chemical and electrochemicalAg deposition onto preformed Au colloid monolayers: approaches to uniformlysizedsurface features with Ag-like optical properties [J]. Langmuir, 1996, 12: 810-817.
    [173] JIN Y D, KANG X F, SONG Y H, et al. Controlled nucleation and growth ofsurface-confined gold nanoparticles on a (3-aminopropyl)trimethoxysilanemodifiedglass slide: a strategy for SPR Substrates [J]. Analytical Chemistry, 2001,73: 2843-2849.
    [174] LU Y, YIN Y D, LI Z Y, et al. Synthesis and self-assembly of Au@SiO2 core-shellcolloids [J]. Nano Letter, 2002, 2: 785-788.
    [175] OGAWA T, KOBAYASHI K, MASUDA G, et al. Electronic conductivecharacteristics of devices fabricated with 1,10-decanedithiol and gold nanoparticlesbetween 1-μm electrode gaps [J]. Thin Solid Films, 2001, 393: 374-378.
    [176] CHEN S, DENG F. Rectifying nanoscale electron transfer by viologen moieties andhydrophobic electrolyte ions [J]. Langmuir, 2002, 18: 8942-8948.
    [177] LAHAV M, SHIPWAY A N, WILLNER I, et al. An enlarged bis-bipyridiniumcyclophane-Au nanoparticle superstructure for selective electrochemical sensingapplications [J]. Journal of Electroanalytical Chemistry, 2000, 482: 217-243.
    [178] LIU Y, WANG Y, CLAUS R O. Chemical Physics Letters 1998, 298: 315.
    [179] NIE S, EMORY S R. Probing single molecules and single nanoparticles by surfaceenhancedRaman scattering [J]. Science, 1997, 275: 1102-1106.
    [180] MIRKIN C A, LETSINGER R L, MUCIC R C, et al. A DNA-based method forrationally assembling nanoparticles into macroscopic material [J]. 1996, Nature 382:607-609.
    [181] STORHOFF J J, ELGHANIAN R, MUCIC R C, et al. One-pot colorimetricdifferentiation of polynucleotides with single base imperfections using goldnanoparticles probes [J]. Journal of the American Chemical Society, 1998, 120:1959.
    [182] SHIPWAY A N, LAHAV M, WILLNER I. Nanostructured gold colloid electrodes[J]. Advanced Materials, 2000, 12: 993-998.
    [183] LüTT M, FITZSIMMONS M B, LI D Q. X-ray reflectivity study of selfassembledthin films of macrocycles and macromolecules [J] . The Journal ofPhysical Chemistry B, 1998, 102: 400-405.
    [184] BLONDER R, SHEENEY L, WILLNER I. Three-dimensional redox-activelayered composites of Au-Au, Ag-Ag and Au-Ag colloids [J]. ChemicalCommunications, 1998, 1393-1394.
    [185] SUN Y P, SUN J Q, ZHANG X, et al. Chemically modified electrode via layerby-layer deposition of glucose oxidase (GOD) and polycation bearing Os complex[J]. Thin Solid Films, 1998, 327-329.
    [186] CHEN J Y, HUANG L, YING L M, et al. Self-assembly ultrathin films based ondiazoresins [J]. Langmuir, 1999, 15:7208-7212.
    [187] LUO H, CHEN J Y, LUO G B, et al. Self-assembly films from diazoresin andcarboxy-containing polyelectrolytes [J]. Journal of Materials Chemistry, 2001, 11:419-422.
    [188] SUN J Q, CHENG L, LIU F, et al. Covalently attached multilayer assembliescontaining photoreactive diazo-resins and conducting polyaniline [J]. Colloids andSurfaces A, 2000, 169: 209-217.
    [189] CHEN J Y, CAO W X. Fabrication of a covalently attached self-assemblymultilayer film via H-bonding attraction and subsequent UV-irradiation [J].Chemical Communications, 1999, 1711-1712.
    [190] CAO T B, CHEN J Y, YANG C H, et al. Fabrication of photoactive selfassembledultra-thin films from diazoresin and poly(4-vinylphenol) via H-bonding[J]. New Journal of Chemistry, 2001, 25: 305-307.
    [191] CHEN J Y, LUO G B, CAO W X. Fabrication of a covalently attached multilayerfilm via in-situ reaction [J]. Macromolecular Rapid Communications, 2001, 22:311-314.
    [192] CAO W X, YE S J, CAO G S, et al. Novel polyelectrolyte complexes based ondiazo-resins [J]. Macromolecular Rapid Communications, 1997, 18: 983-989.
    [193] CAO W X, ZHAO C, CAO J W. Synthesis and characterization of 3-methoxydiphenylamine-4-diazonium salt and its diazoresin [J]. Journal of AppliedPolymer Science, 1998, 69: 1975-1982.
    [194] GRABAR K C, FREEMAN R G, HOMMER M B, et al. Preparation andcharacterization of Au colloid monolayers [J]. Analytical Chemistry, 1995, 67:735-743.
    [195] HUANG D, XIAO Z, GU J, et al. TiO2 thin films formation on industrial glassthrough self-assembly processing [J]. Thin Solid Films, 1997, 305: 110-115.
    [196] LI C Z, LIU Y L, LUONG J H T. Impedance sensing of DNA binding drugs usinggold substrates modified with gold nanoparticles [J]. Analytical Chemistry, 2005, 77:478-485.
    [197] ZHUO Y, YUAN R., CHAI Y C, et al. A reagentless amperometric immunosensorbased on gold nanoparticles/thionine/nafion-membrane gold electrode fordetermination ofα-1-fetoprotein [J]. Electrochemistry Communications, 2005,7:355-360.
    [198] BARD A J, FAULKNER L R. Electrochemical methods: fundamentals andapplications, 2nd edition [M]. New York: John Wiley & Sons, 2001, 376-386.
    [199]吴正岩,唐纪琳,汪尔康.仿生膜内固定的多巴胺对抗坏血酸的氧化作用[J].分析化学, 2001, 8: 881-884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700