用户名: 密码: 验证码:
广西大厂长坡—铜坑锡多金属矿床成矿机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广西大厂长坡-铜坑锡多金属矿床位于江南古陆西南缘、著名的丹池成矿带的中部,是我国重要的有色金属矿业基地和国内外著名的超大型的锡多金属矿床,已探明的锡金属量超过100万吨,并伴有Cu、Zn、Pb、Sb、Ge、In、Cd、Se等,研究意义和经济意义巨大。多年来,一直受到地学界的关注。矿床经过了近六十年的研究、开发,在区域地质、地层、构造、岩石学、同位素、成矿物化条件等方面积累了丰富的资料,但长坡铜坑矿床的成因问题,至今存在分歧,分歧焦点体现在成矿时代、矿床成矿物质来源和成矿流体来源这三个主要方面。
     论文是在前人的大量工作基础上,对长坡-铜坑锡多金属矿床成因研究中存在争议的问题进行了较为详细的矿物学、岩石学、矿床学、矿床地球化学、同位素地球化学和同位素年代学等方面的研究,主要取得了以下进展:
     (1)通过野外地质调查和室内显微镜下的观察和研究,用大量的事实说明了矿床中层状矿体的形成是成矿流体沿层交代有利地层形成的,层状与脉状矿体之间存在相互穿插的关系,为同一成矿期的产物。这为正确认识大厂矿床的成因提供了扎实的基础地质资料。
     (2)通过矿物学、矿石学、微量元素和稀土元素地球化学研究,探讨了不同产状矿物之间、不同类型矿体之间成矿元素的变化和运移特点,结合铅、硫同位素研究,提出矿体中成矿物质的来源是相同的,是与岩浆活动有关的,主要来自地壳,也可能有幔源物质的加入。成矿物质的运移方向是由下部到上部,由近岩体向远离岩体。不同阶段形成的矿石矿物及脉石矿物中稀土元素的含量以及变化特征是一致的,均具有早期δEu的负异常,晚期δEu的正异常,反映了矿区成矿环境可能存在一个由相对还原向相对氧化的变化过程。
     (3)流体包裹体的研究表明,不同类型矿体中流体包裹体的特征基本是一致的,流体成分是以CO_2-H_2O为主,反映出他们应该是同一成矿期成矿作用的产物。He、Ar同位素分析结果显示,成矿流体来源主要来自地壳,但同时有地幔流体的参与。矿物中幔源He所占的比例从成矿的早期到晚期,含量依次减少,而壳源氦则相应增加,晚期有大气降水的参与。
     (4)利用先进的技术手段,查明了矿区成岩、成矿作用发生的时代。针对不同的测试对象,采用了不同的同位素测年方法,结果都证实了矿床形成不是泥盆纪地层物质沉积期间富集的,而是燕山期形成的,尤其以白垩纪中期最为集中。同时提出了矿床的形成并非与单一的一次岩浆活动有关,而应该是与多期岩浆活动有关,成矿与成岩的时代应该是趋于一致的,且随着岩浆活动的结束,也许成矿作用还会延续一段时间。从而为成矿模式的建立提供了充分的年代学依据。
     (5)将矽卡岩型锌铜矿体和长坡-铜坑91号、92号及高峰100号矿体作为一个整体加以考虑。从不同的角度分析了成矿条件、成矿物质运移和元素富集规律等。提出了矿床的形成是与燕山期花岗岩有密切联系的。岩浆活动为成矿提供了物质来源和热源,有利的地层和构造条件为成矿提供了物质运移的通道、空间和动力。岩浆活动、地层、构造三者有机的、“非常罕见”的耦合,才促成这个超大型矿床的形成。同时由于成矿环境的变化,造成了矿床深部形成矽卡岩型硫化锌铜矿体,上部形成以锡石为主的多金属硫化物矿体的分带现象。100号矿体与91号、92号矿体相比,虽然在产状不同,但成矿物质、成矿流体的来源是一致的。差异在于其形成是以充填为主,即含矿流体充填礁灰岩中由于断裂或礁体不同部位层间滑脱(剥离)形成的“虚脱空间”形成的。
     以上成果,证实了大厂锡多金属矿床的形成是与燕山期岩浆热液活动有关的后生成因。这一研究是对前人研究的补充和提升,对指导大厂矿区的找矿具有重要的理论和实践意义。
Changpo-Tongkeng tin-polymetallic deposit located in Dachang, Guangxi Province is in the Southwestern margin of the Jiangnan old land, and the middle of Danchi metallogenic belt. As an important nonferrous metal mining industry base of China and a famous ultra-large tin-polymetallic deposit in the world ,with the proven tin reserve over one million ton and associated with Cu, Zn, Pb, Sb, Ge, In, Cd and Se etc, it has the great significance both in academic and economic. So it has attracted the attention of geologists and has been researched and exploited for nearly 60 years and has accumulated abundant data on the regional geology, stratum, tectonics, petrology, isotope and physical-chemical conditions of mineralization etc. Nevertheless, there has been debated on the metallogenesis. The difference focused on three aspects: metallogenic epoch, the origin of ore-forming materials and the source of ore-forming fluids.
     Based on the previous research achievements, the thesis studied the debatable problem by detailed investigation on mineralogy, petrology, mineral deposits, deposit geochemistry, isotope geochemistry and isotopic chronology, and achieved following progresses:
     1.The field investigation and the indoor observation and research showed that the formation of stratiform ore bodies is the replacement of the favourable stratum by ore-forming fluid. The stratiform ore-bodies and vein-type ore-bodies interpenetrated each other, which suggesting they were formed at the same mineralization processes. These results provide solid essential geological data for correct understanding of the deposit genesis.
     2. Discussed the change and migration characteristics of ore-forming elements among minerals with different occurrence, ore-bodies of different types from the aspects of mineralogy, ore petrology, trace elements, rare earth elements and isotopes of lead and sulfur. The results indicated that the ore-forming material of different ore-bodies is homogenous, which related with magma activity and come from the crust and maybe combined material from mantle. The migration of ore-forming material is from the bottom to up and from near to far from rock mass. Rare earth element standard distribution pattern in ore and rocks that formed in different ore forming stages are similar. TheδEu abnormality values from negative at the early stage to positive at the late stage, suggest the changes of ore-forming environment from a relative reduction to the relative oxidation.
     3. Fluid inclusions in ore bodies of different types are CO_2-H_2O type and with same features, suggesting their formation in the same mineralization process. He and Ar isotope data shows that the ore-forming fluids mainly derived from crust, but partly derived from mantle. The mantle-derived helium reduced from the early to late stages, crust- derived helium changed in opposite way, in which precipitated water involved in the late stage.
     4. As curtained the diagenetic and mineralizatic epochs of the mine by using suitable dating methods for different object, which suggest that the Dachang tin-polymetallic deposit is not formed in Devonian, but in the Yanshan period, particularly centralized in the mid-Cretaceous. Proposing that the deposit formation is not connected with single magma activity, but with multistage of magamatism. The rock and ore formation epochs should be unanimous in which perhaps ore-forming process would last for short time after the rock formation. The results provided sufficient chronological basis for building metallogenic model.
     5. Integrating information of Changpo-Tongkeng No. 91, No. 92 and Gaofeng No.100 ore bodies to analysis the ore forming condition, movement and enrichment pattern of ore-forming material, the thesis suggest that the ore formation closely related with granite of Yanshan period, in which magma movements provided ore-forming materials and energy; favourable stratum and structure conditions supplied ore-forming transport channels, space and force. The rational miracle combination of magma movement, stratum and structure led to the formation of the ultra-large deposit and the alteration of mineralization environment resulted in ore zoning, in which the skarn-type copper-zinc sulfide ore formed in the lower part of the deposit, tin- polymetallic sulfide ore formed in the upper part. The No.100 ore body is formed by the ore-bearing fluid filling“collapsed space”in the reef limestone, which resulted from fault activities or detachment of different stratums. Comparing No.100 to No.91 and No.92 ore-bodies, although their occurrence is different, the genesis of ore-forming materials and sources of ore-forming fluid are consistent.
     In summary, all evidence confirmed that the Changpo-Tongkeng tin-polymetalltic deposit is epigenetic and related to Yanshan period magmatic hydrothermal movement. This research replenished and deepened previous achievements and has a great significance for guiding prospecting around Dachang.
引文
[1]蔡宏渊,张国林.试论广西大厂锡多金属矿床海底火山热泉(喷气)成矿作用[J].矿产地质研究院学报,1983,4:13-21
    [2]蔡宏渊等.大厂锡矿田成矿控制条件、成矿作用及成矿预测研究总结报告(内部资料),1985
    [3]蔡宏渊,张国林.广西大厂隐伏花岗岩体发育特征及其含矿性评价[J].矿产与地质,1986, 17(4):1-11
    [4]蔡宏渊,张国林.广西大厂地区二叠系中火山—沉积岩的发现及其特征[J].矿产与地质,1987,2:22-26
    [5]蔡宏渊.稀土元素地球化学在锡矿床成因及找矿研究中的应用[J].矿产与地质,1991,23(4): 262-271
    [6]蔡宏渊.香花岭锡多金属矿田成矿地质条件及矿床成因探讨[J].矿产与地质,1991,23(5):272-292
    [7]蔡明海,梁婷,吴德成,黄惠民.广西大厂矿田花岗岩地球化学特征及其构造环境[J].地质科技情报,2004,23(2):57-62
    [8]蔡明海,毛景文,梁婷,吴付新.广西大厂锡多金属矿床He、Ar同位素特征及其地质意义[J] .矿床地质,2004,23(2):225-231
    [9]蔡明海,毛景文,梁婷,黄惠兰.大厂锡多金属矿田铜坑—长坡矿床流体包裹体研究[J].矿床地质,2005,24(3):228-241
    [10]蔡明海,梁婷,韦可利等.大厂锡多金属矿田铜坑-长坡92号矿体Rb-Sr测年及其地质意义[J] .华南地质与矿产,2006(2):31-35
    [11]蔡明海,何龙清,刘国庆,吴德成.广西大厂锡矿田侵入岩SHRIMP锆石U-Pb年龄及其意义[J].地质论评,2006,52(3):409-414
    [12]蔡建明,徐新徨,李保华.五圩多金属矿田包裹体地球化学特征研究[J].成都理工学院学报,1995,22(1):69-77
    [13]陈丹玲,刘良,孙勇,等.北秦岭松树沟基性麻粒岩锆石的LA-ICP-MS U-Pb定年及其地质意义[J].科学通报,2004,49(18):1901-1908
    [14]陈殿芬,孙淑琼.广西茶山锑多金属矿床的金属矿物及矿物组合[J],中国地质科学院矿床地质研究所所刊,1987(1):89-96
    [15]陈晋阳,郑海飞,曾贻善.流体包裹体的拉曼光谱分析进展[J].矿物岩石地球化学通报,2002,22(2):133-138
    [16]陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学[J].重庆:重庆出版社, 1987,694-767.
    [17]陈洪德,曾允孚.广西丹池盆地上泥盆统榴江组硅质岩沉积特征及成因探讨[J].矿物岩石,1989(4):22-28
    [18]陈洪德,曾允浮,李孝全.丹池晚古生代盆地的沉积和构造演化[J].沉积学报,1989,7(4):85-96
    [19]陈俊.锡的地球化学[M].南京,南京大学出版社,2000:1-292
    [20]陈骏.论华南层控锡矿的地质特征与形成机制[J].地质论评,1988,34(6):524-531.
    [21]陈文,刘新宇,张思红.连续激光阶段升温40Ar/39Ar地质年代测定方法研究[J].地质论评,2002,48(增刊):127-134
    [22]陈文,罗修权.激光显微探针40Ar/39Ar定年方法研究[J].地球学报,1994:197-205
    [23]陈鑫,王志泰.中国锡矿的分布及其成矿地质条件[J].锡矿地质讨论会论文集[M].北京:地质出版社,1987,5-28
    [24]陈毓川.一个锡石多金属矿带中闪锌矿的成矿期与成矿特征[J].地质论评,1964,22(2):111-125
    [25]陈毓川.广西某矿带矿床原生带状分布[J].地质论评,1965,23(1):29-41
    [26]陈毓川,黄民智,徐钰,等.大厂锡石-硫化物多金属矿带地质特征及成矿系列[J].地质学报,1985,59(3):228-240
    [27]陈毓川,黄民智,徐珏,等.广西大厂锡石—硫化物多金属矿带地质特征?成矿规律及成矿模式及成矿系列[J].锡矿地质讨论会论文集[C].北京:地质出版社,1987,110-122
    [28]陈毓川,黄民智等.大厂锡矿地质.北京:地质出版社,1993
    [29]陈毓川,毛景文.桂北地区矿床成矿系列和成矿历史演化轨迹.南宁:广西科学技术出版社,1995
    [30]陈毓川,王登红.广西大厂层状花岗质岩石地质、地球化学特征及成因初探[J].地质论评,1996,42(6):523-530
    [31]邓金灿,李蘅,徐文炘,等.广西八里—龙头山100号锡多金属矿床成矿物理化学环境研究[J].矿产与地质,2001,15(83):167-171
    [32]丁悌平,彭子成,黎红等.南岭地区几个典型矿床的稳定同位素研究[M].北京:北京科学技术出版社,1988,21-44
    [33]丁悌平.中国某些特大型矿床的同位素地球化学研究[J].地球学报-中国地质科学院院报,1997,18(4):373-381
    [34]丁振举,刘丛强,姚书振,周宗桂.海底热液沉积物稀土元素组成及其意义[J].地质科技情报,2000,19(1):27-35.
    [35]杜安道,何红蓼,殷宁万,等.辉钼矿的铼-锇同位素地质年龄测定方法研究[J].地质学报,1994,68(4):339-347
    [36]杜安道,赵敦敏,王淑贤等.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J] .岩矿测试,2001,20(4):247-252
    [37]傅金宝,许文渊,周卫宁,李达明.大厂锡矿田龙箱盖岩体黑云母的特征及其地质意义[J].锡矿地质讨论会论文集.北京:地质出版社,1987, 140-148
    [38]高计元.桂西北盆-山构造系与大厂锡石多金属成矿作用[J].大地构造与成矿学,1998,22(4):332-338
    [39]高计元.大厂锡石多金属硫化物矿床铅同位素演化及其矿床成因的意义[J].地质地球化学,1999,27(2) :38-43
    [40]郜兆典.大厂锡多金属矿床成矿模式及成矿远景[J].广西地质,2002,15(3):P25-36
    [41]耿文辉,贾国相,蔡宏渊.对广西丹池锡多金属找矿评价[J].中国矿业,2004 ,13(2):44-47
    [42]顾晟彦,华仁民,戚华文.广西花山-姑婆山燕山期花岗岩的地球化学特征及成因研究[J].岩石矿物学杂志,2006,25(2):97-109
    [43]韩发,R.W.哈钦森.大厂锡多金属矿床热液喷气沉积的证据—含矿建造及热液沉积岩[J].矿床地质,1989,8(2):25-31
    [44]韩发.大厂锡-多金属矿床热液喷气沉积成因证据-容矿岩石的微量元素及稀土元素地球化学[J].矿床地质,1989,8(3):209-323
    [45]韩发.大厂锡-多金属矿床热液喷气沉积成因证据-矿床地质、地球化学特征[J].矿床地质,1990,9(4):309-323
    [46]韩发,沈建忠,R W哈钦森.冰长石—大厂锡—多金属矿床同生成因的标志矿物[J].矿床地质,1993,,12(4):330-336
    [47]韩发,沈建忠.大厂锡矿床硅、氧同位素地球化学[J].矿物学报,1994,14(2):172~178
    [48]韩发,赵汝松,沈建忠,等.大厂锡多金属矿床地质及成因[M].北京:地质出版社,1997
    [49]韩发,李振清.关于三阶段铅演化体系:以大厂锡矿床及Lewisian片麻岩为例[J].地学前缘,2007,14(2):173-180
    [50]韩吟文,马振东.地球化学[M].北京:地质出版社,2003
    [51]何海洲,叶绪孙.广西大厂矿田矿质来源研究[J].广西地质,1996,9(4):33-41
    [52]何知礼,杜家锋.流体包裹体研究的某些进展与发展趋势[J].地学前缘,1996,3(4):306-312
    [53]黄民智,陈毓川,唐绍华,等.广西大厂长坡锡石—硫化物矿床硫盐矿物系列及其共生组合研究[J].中国地质科学院矿床地质研究所所刊,1985,15(3):110-148
    [54]黄民智,唐绍华,何琨元,刘佑希.广西大厂似层状锡石—硫化物矿体有用元素分布规律的因子分析[J].中国地质科学院矿床地质研究所所刊,1987,20(2):9-19
    [55]黄民智,唐绍华.大厂锡矿矿石学概论[M].北京:地质出版社,1988
    [56]黄瑞华,杜方权,王伏泉,吴堑虹.中国东南部锡的构造地球化学[M].北京:科学出版社,1989
    [57]黄伟林,薛理辉,彭东涛.利用U-1000型激光拉曼探针测定流体包裹体气体成分的研究[J].矿物学报,1990,10(1):1-7
    [58]黄智龙,陈进,韩润生,等.云南会泽铅锌矿床脉石矿物方解石REE地球化学[J].矿物学报,2001,21(4):659-666.
    [59]胡瑞中.成矿流体氦,氩同位素地球化学[J].矿物岩石地球化学通报,1997,16(2):120-124
    [60]胡瑞忠,毕献武,邵树勋,Turner G,Burnard P.云南马厂菁铜矿床He同位素组成研究[J].科学通报,1997,42(17):1542-1545
    [61]胡瑞忠,毕献武,Turner G,等.哀牢山金矿带金成矿流体He和Ar同位素地球化学[J].中国科学(D辑),1999,29(4):321-330
    [62]季克俭,吴学汉,张国柄.热液矿床的矿源、水源和热源及矿床的分布规律[M].北京:北京科学技术出版社,1989
    [63]贾润幸,方维萱,赫英,等.个旧超大型锡多金属矿稀土元素地球化学特征[J].中国稀土学报,2005,23 (2):229-234.
    [64]蒋少涌.硼同位素及其地质应用研究[J].高校地质学报,2000,6 (1):1-16
    [65]蒋少涌,凌洪飞,倪培,于际民.热液成矿作用过程中的硼同位素示踪[J].中国科学基金,2000(4):225-228
    [66]蒋少涌,于际民,倪培,凌洪飞.电气石—成岩成矿作用的灵敏示踪剂[J].地质论评,2000,46(6):594-604
    [67]李达明,傅金宝,周卫宁.广西大厂锡矿田磁黄铁矿的标型特征及其地质意义[J].矿产与地质,1987,1( 1) :67-77
    [68]李大德,杨家聪.大厂锡矿田地球化学找矿方法研究及其效果[J].矿产与地质,1987(4):78-82
    [69]李大德,李水明,李辛一,等.广西丹池多金属矿带?大厂锡矿田及矿床地球化学特征及找矿标志[J].锡矿地质讨论会论文集[C].北京:地质出版社,1987,185-193
    [70]李蘅,徐文炘,邓金灿,等.大厂100号锡多金属矿床成矿物理化学的研究[J].矿产与地质,2001,15(2):83-88
    [71]李华芹,刘家齐,魏琳.热液矿床流体包裹体年代学研究及其地质应用[M].北京:地质出版社,1993,1-27
    [72]李文达译.稀土元素在矿床研究中的应用[M].北京:地质出版社,1987,1-148
    [73]李文渊.Re-Os同位素体系及其在岩浆Cu-Ni-PGE矿床研究中的应用[J].地球科学进展,1996,11(6):580-584
    [74]李锡林,章振根.大厂矿田分散元素分布特征及地球化学[J].1981,地质与勘探,(7):19-25
    [75]李锡林.大厂矿田脆硫锑铅矿族矿物研究的新进展[J].矿物学报,1986,6(4):371-374
    [76]李锡林,王冠鑫.大厂矿田产黝铜矿族矿物的研究[J].矿物学报,1990,10 (2) :119-126
    [77]李孝全,王香成,徐新徨,等.广西河池、南丹地区泥盆系锡石多金属控矿条件及远景预测(科研报告),1988,1-203
    [78]刘义茂,许继峰,戴橦模,等.骑田岭花岗岩40Ar/39Ar同位素年龄及其地质意义[J].中国科学(D辑),2002,32(增刊):41-47
    [79]李荫清,马秀娟,魏家秀.流体包裹体在矿床学和岩石学中的应用[M].北京:北京科学技术出版社,1988,1-52.
    [80]李荫清,陈伟十.大厂锡矿的成矿流体[J].岩石学报,1989,3 :12-24
    [81]黎彤,袁怀雨,吴胜昔.中国花岗岩类和世界花岗岩类平均化学成分的对比研究[J].大地构造与成矿学,1998,22(1):29-34
    [82]廖忠礼,莫宣学,潘桂棠,等.西藏曲珍过铝花岗岩地球化学特征及地球动力学意义[J].岩石学报,2006,2(4):846-854
    [83]廖宗廷.广西大厂超大型锡多金属矿床成矿条件及成矿模式[J].地质找矿论丛,1994,9(2):1-9
    [84]廖宗廷.大厂花岗岩SnCuZn的分配规律及成矿性评价[J].同济大学学报,1994,22(2):199-202.
    [85]廖宗廷,杨斌.古海水中的热水喷口—广西大厂为例[J].同济大学学报,1995,23(5):564-567
    [86]梁俊红,金成洙,王建国.成矿流体研究的内容及其进展[J].地质找矿论丛,2001,16(4):219-224
    [87]梁珍庭,苏登华.广西大厂锡矿田成矿模式[J].广西地质,1985,2(1):1-11
    [88]雷良齐.大厂长坡锡多金属矿床成因刍议[J].矿床地质,1986,5(3):87-96
    [89]刘斌,沈昆.流体包裹体的氧逸度计算公式及其应用[J].矿物学报,1995,15(3):291~302
    [90]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999
    [91]刘建明,储学蕾,刘伟,等.地壳中的成矿流体体系[J].地球物理进展,1997,12(1):31-40
    [92]刘建明,赵善仁,刘伟,等.成矿流体体系的主要类型[J].地球科学进展,1998,13(2):161-165
    [93]刘元镇,钟铿,马林清.广西锡矿地质特征及成矿规律[J].矿产地质研究院学报,1985,3
    [94]刘元镇,钟铿,马林清.广西锡矿地质特征及成矿规律[J].锡矿地质讨论会论文集.北京:地质出版社,1987,74-83
    [95]刘缔珍.广西矿田生物礁灰岩中锡-多金属矿床特征及控矿条件探讨[J].锡矿地质讨论会论文集[C].北京:地质出版社,1987,123-133
    [96]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,1997
    [97]卢焕章著.成矿流体[M].北京:科学技术出版社,1997
    [98]鲁观清,刘友海.热水活动对碳酸盐沉积物中δ13C、δ18O的影响—以晚泥盆世丹池盆地为例[J].地球化学,1990,4:312-316
    [99]罗得宣,张起钻,廖宗廷.大厂锡矿田海底热水沉积、后期岩浆热液叠加改造成矿的依据[J].矿产与地质,1993,37(7):313-318
    [100]聂爱国.广西茶山锑矿床成矿流体研究[J].贵州工学院学报,1996,25(2):30-33
    [101]马林清.广西锡矿地质与主要找矿方向[J].锡矿地质讨论会论文集.北京:地质出版社,1987,84-97
    [102]毛景文,宋叔和,陈毓川.桂北地区火成岩系列和锡多金属矿床成矿系列[M].北京:科学技术出版社,1988
    [103]毛景文,杨建民,屈文俊,等.新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义[J].矿床地质,2002,21(4):323-330
    [104]毛景文,李晓峰,张荣华,等.深部流体成矿系统[M].北京:中国大地出版社,2005
    [105]卜国基.大厂矿田西矿带赋矿地层的地球化学特征与成矿关系[J].采矿技术,2001,1(3):1-4
    [106]潘兆橹.结晶学与矿物学[M].北京:地质出版社,1984
    [107]裴荣富,吴良示,熊群尧.中国特大型矿床成矿偏在性与异常成矿构造聚敛场[M].北京:地质出版社, 1998:223-249
    [108]裴荣富,梅燕雄.金属成矿省演化与成矿年代学[M].2003,北京:地质出版社,195
    [109]彭振安.含锡花岗岩类地质地球化学特征及成矿性评价[J].矿产与地质,1991,23(5):2400248
    [110]秦德先,陈建文,田毓龙.广西大厂长坡锡矿床地质与成因[J].有色金属矿产与勘探,1998,7(3):146-151
    [111]秦德先,洪托,田毓龙,陈建文.广西大厂西矿92号矿体矿床地质与技术经济[M].北京:地质出版社,2002
    [112]屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄[J].岩矿测试,2003,22(4):254-257
    [113]芮宗瑶,李荫清,王龙生,王义天.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质,2003,22(1):13-23
    [114]桑海清,王松山,胡世玲,裘冀.石英的40Ar/39Ar定年方法及Ar同位素质谱分析[J].质谱学报,1994,15(2):17-27
    [115]沈建忠,韩发.电气石—一种和矿化有关的岩石类型[J].矿床地质,1992,11(4):384-388
    [116]双燕,毕献武,胡瑞忠,等.芙蓉锡矿方解石稀土元素地球化学特征及其对成矿流体来源的指示[J].矿物岩石,2006,26(2):57-65.
    [117]苏亚汝,李蘅,邓金灿,任基林.高峰100号矿体微量元素特征[J].矿产与地质,2001,15(5):361-365
    [118]涂光炽.矿床的多成因问题[J].地质与勘探,1979,(6)
    [119]涂光炽.广西大厂矿床成因并兼论锡石硫化物矿床形成条件[J].锡矿地质讨论会论文集.北京:地质出版社,1987,105-109
    [120]涂光炽.试论非常规超大型矿床物质组成,地质背景,形成机制的某些特性—初谈非常规超大型矿床[J].中国科学(D辑),1998,增刊:1-6
    [121]涂光炽.锡和铅锌成矿作用的若干问题[J].地质与勘探,1984,(3):7-10
    [122]王登红,陈毓川.广西大厂电气石的成分与成因初探[J].岩石矿物学杂志,1996,15(3) :280-288
    [123]王登红,于金杰,杨建民,等.中国新生代成矿作用的惰性气体同位素研究与动力学背景[J].矿床地质,2002,21(2):179-186
    [124]王登红,陈毓川,陈文,等.广西南丹大厂超大型锡多金属矿床的成矿时代[J].地质学报,2004,78(1):132-138
    [125]王登红,李华芹,陈毓川,等.桂西北南丹地区大厂超大型锡多金属矿床中发现高稀土元素方解石[J].地质通报,2005,24(2):176-180
    [126]王登红,陈毓川,徐珏,等.中国新生代成矿作用[M].2005,北京:地质出版社,853
    [127]王桂琴,宋慈安,罗先熔.长坡锡多金属矿床原生带状分布及其形成机制[J].矿产与地质,200,85(5):324-328
    [128]王丽君,徐九华,谢玉玲,等.地幔岩流体包裹体的稀土元素初步研究[J].矿物岩石地球化学通报,2002,21(4):268-271
    [129]王韦玉,韦文灼.广西燕山期花岗岩体Sn(W)含矿性的判别及其演化[J].矿产地质研究院学报,1985,1:12-20
    [130]王中刚,于学元,赵振华,等.稀土元素地球化学[M].北京:地质出版社,1989,76-260
    [131]王自友,王型珍.广西五圩锑矿床中含银锑锡铜矿[J].矿物岩石,2000,20(2):5-7
    [132]王彦斌,曾普胜,李延河,田世洪.云南金顶和白秧坪矿床He,Ar同位素组成及其意义[J].矿物岩石,2004,4:76-80
    [133]韦栋梁,何绘宇,夏斌.对我国锡矿业发展的几点思考[J].中国矿业,2006,15(1):58-61
    [134]肖水清,舒文强,尹卫国,等.广西大厂锡矿床统计预测[J].矿产地质研究院学报,1986,3:19-26
    [135]冼柏琪.试论广西锡矿的成矿条件与分布规律[J].地质学报,1984,1:50-61
    [136]肖庆辉,邓晋福,马大栓,等.花岗岩研究思维与方法[M].北京:地质出版社,2002
    [137]谢智,陈江峰.Re-Os同位素体系在金属矿床研究中的应用[J].地质地球化学,1998,26(4):79-85
    [138]徐国凤等.黄铁矿的标型特征及其实际应用[J].地质论评,1980,26(6):541-545
    [139]徐九华,谢玉玲,邹一飞.流体包裹体成分研究中某些尖端技术的应用前景[J].矿物岩石地球化学通报,1998,17(3):201-203
    [140]徐珏,杨礼才.广西龙箱盖—拉麽地区铜锌金属矿床的侵入接触构造体系[J].矿床地质,1988,7(1):64-75
    [141]徐钰.广西丹池地区矿田构造[M].北京:地质出版社,1988
    [142]徐钰,王龙生.大厂锡-多金属矿床的同生沉积构造分析与成矿[J].矿床地质,1994.13(增刊):103-105
    [143]徐文忻,伍勤生.大厂锡多金属矿田同位素地球化学初步研究[J].地质矿产研究院学报,1986,(2):31-41
    [144]徐文炘.我国锡矿床的同位素地球化学研究[J].矿产与地质,1995, 45(1):1-11
    [145]徐新煌,蔡建明,陈洪德,等.广西丹池矿带锡-多金属矿床地质地球化学特征及成矿作用[J].成都地质学院学报,1991,18(4):12-25
    [146]薛春纪,祁思敬,郑明华,李建明.热水沉积研究及相关科学问题[J].矿物岩石地球化学通报,2000,19(3):155-162
    [147]姚意莎,覃朝春.广西大厂锡石—多金属硫化物矿床100号矿体物质成分研究[J].矿产与地质,2002,16(5):281-286
    [148]杨斌,廖宗廷.广西大厂礁灰岩区沥青的产状特征及其与多金属成矿关系探讨[J].沉积学报,1999,17(增刊):668-673
    [149]杨斌,罗德宣,何海洲.广西大厂锡多金属矿田成矿物质来源及矿床成因分析[J].有色金属矿产与勘查,1999,8(6):466-469
    [150]杨斌,罗德宣,张起钻.试论大厂锡多金属矿田矿化蚀变分带特征[J].广西地质,1999,12(3) :17-23
    [151]杨斌,罗德宣,何海州.广西大厂锡多金属矿田成矿物质来源及矿床成因分析[J].有色金属矿产与勘查,1999,8(6):466-469
    [152]杨刚,杜安道,卢记仁,屈文俊,陈江峰.金川镍-铜-铂矿床块状硫化物矿石的Re-Os(ICP-MS)定年[J].中国科学(D辑),2005,35(3):241-245
    [153]杨凤钧,邱纯一,陈民扬.硫同位素分析方法(在某热液型锡石-硫化物矿床中的应用)[J].地质科学,1966,(3):45-51
    [154]杨海明,池三川.构造应力场对地球化学场的控制作用-以广西南丹芒场锡多金属矿田为例[J].现代地质,1990,4(6):75-81
    [155]杨翼民.略论广西原生锡矿成矿特征及成矿条件[J].广西地质,1989. 2(1):11-20
    [156]叶俊,周怀阳.广西大厂锡石硫化物矿床的成矿机制[J].矿产地质研究院学报,1985,3:40-45
    [157]叶俊,徐克勤,周怀阳,陈诸麒.广西大厂锡矿田泥盆系蚀变海相火山岩[J].地质论评,1989,35( 3):249-253
    [158]叶绪孙.大厂锡多金属矿田成矿规律与成矿预测[J].地质与勘探,1985,(5):1-7
    [159]叶绪孙,严秀云.试论大厂锡石—硫化物矿田围岩介质的地球化学作用[J].地球化学,1987,2 :123-130
    [160]叶绪孙,潘其云.广西南丹大厂锡多金属矿田发现史[J].广西地质,1994,7(1):84-95
    [161]叶绪孙,严云秀,何海州.广西大厂超大型锡矿成矿条件与历史演化[J].地球化学,1999,28(3):213-218
    [162]尹国栋.广西锡矿成矿规律及预测[J].桂林冶金地质学院学报,1985,5(3):231-237
    [163]喻钢,杨刚,陈江峰,等.辽东猫岭金矿中含金毒砂的Re-Os年龄及地质意义[J].科学通报,50(12):1247-1252
    [164]曾允孚,王正英,田洪钧.广西大厂龙头山矿区矿床成因新探[J].成都地质学院学报,1982,(3):15-26.
    [165]曾允孚,王正瑛,田洪均.广西大厂龙头山泥盆纪生物礁的研究[J].地质论评,1983,2(4):321-329
    [166]赵葵东,蒋少涌,肖红全,倪培.大厂锡-多金属成矿流体来源的氦同位素证据[J].科学通报,2002,47(8):632-635
    [167]赵一鸣,吴良士等.中国主要金属矿床成矿规律[M].北京:地质出版社,2004
    [168]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997
    [169]张本仁,傅家谟.地球化学进展[M].北京:化学工业出版社,2005
    [170]张德会.成矿流体重金属沉淀机制研究综述[J].地质科技情报,1997,16(3):53-58
    [171]张国林,蔡宏渊.广西大厂锡多金属矿床成因探讨[J].地质论评,1987,33(5):426-436
    [172]张国林.辉锑矿中稀土及多元素地球化学特征[J].矿产与地质,1999,69(1):13-19
    [173]张理刚.长石铅和矿石铅同位素组成及其地质意义[J].矿床地质,1988,7(2):55-64.
    [174]张平.长坡锡矿床成矿规律与隐伏矿体的找矿勘探[J].地质与勘探,1983,(3):30-34.
    [175]张乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学,2000,29(3):231-238
    [176]张起钻.广西大厂超大型锡多金属矿床同位叠加成矿作用[J].有色金属矿产与勘查,1999,8(6):482-485
    [177]张起钻.广西大厂锡多金属矿田100号矿体地质特征及成矿机理探讨[J].矿产与地质,1999,13(6):324-329
    [178]张文淮,张志坚,伍刚.成矿流体及成矿机制[J].地学前缘,1996,3(3):245-252
    [179]张作衡,柴凤梅,杜安道,等.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪[J].岩石矿物学杂志,2005,24,4:285-293
    [180]张哲儒,白振华,章振根,严云秀.大厂矿田成矿条件及硫同位素体系的热力学分析[J].地球化学,1989,3:79-88
    [181]章程.广西河池五圩矿田构造应力场划分及力源探讨[J].广西地质,2000,13(2):7-10.
    [182]章振根,李锡林,陈国墨.广西某矿田磁黄铁矿的研究及其区别特征[J].地球化学,1976,(1):54-63
    [183]郑明华,张寿庭,刘家军,等.西南天山穆龙套型金矿床产出地质背景与成矿机制[M].北京:地质出版社,2001
    [184]《中国矿床》编委会.中国矿床(中册).北京:地质出版社,1994,105-186
    [185]周卫宁,傅金宝,李达明.广西大厂拉么矿区萤石的稀土元素特征[J].矿产地质研究院学报,1986,1:52-56
    [186]周卫宁,傅金宝,李达明.广西大厂矿黄铁矿的标型特征研究[J].岩石矿物学杂志,1987,6(1):673-80
    [187]周卫宁,傅金宝,李达明.大厂矿田锡石的标型特征研究[J].矿产与地质,1988,2,增刊:120-127
    [188]周卫宁,傅金宝,李达明.广西大厂矿田铜长坡矿区铜坑—长坡闪锌矿的标型特征研究[J].矿物岩石,1989,9(2):67-71
    [189]朱炳泉.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M].北京:科学出版社,1998
    [190]朱立军,张杰.桂北地区锡多金属矿床中锡石的成因矿物学研究[J].矿物学报,1994,14(1):P32-39
    [191] Baptiste P J , Fouquet Y . Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Riseat 13°N[J].Geochim Cosmochim Acta,1996,60:87-93
    [192] Bau M.Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J].ChemicalGeology,1991,93(3/4):219-230
    [193] Bau M,Dulski P.Comparative study of yttrium and rare earth-element behaviors in fluorine-rich hydrothermal fluids[J].Contrib Mineral petrol,1995,119:213-223
    [194] Bodnar R J.The system H2O-NaCl. PACROFIIV.Program and Abstracts [A],1992,108-111
    [195] Bralia.A,et al..A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems, evidence from southern Tuscany pyretic deposits[J].Mineralium Deposita,1979,14:353-374
    [196] Burnard P G, Hu R Z, Turner G, et al..Mantle, crustal and atmospheric noble gases in Ailaoshan Gold deposits, Yunnan Province, China[J].Geochim Cosmochim Acta,1999,63:1595-1604
    [197] Cantrell K J,Halliday A N,Scrivener R C.Samarium-Neodymium direct dating of fluorite mineralization[J].Science,1987,252:949-951
    [198] Cemy P,Goad B E ,Hawthome F C,et al.Fractionation trends of the Nlrand Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatitic aureole, southeasiem Manitoba[J].Am. Mineral,1986,71:501-571
    [199] ClaoueLong J C,Compston W,Roberts J,Fanning C M.Two Carboniferous ages:acomparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39 Aranalysis[J].In:Berggren W A,Kent D V,Aubry M P,Hardenbol J(eds.),Geochronology,times cales and global strtigraphic correlation:SEPMSpecial Pub-lication,1995,5(4):3-31
    [200] Collins W J,Beams S D,White A J R,et al..Nature and origin of A-type granites with particular reference to south-eastern Australia[J].Contr. Mineral. Ptrol.,1982,80:189-200
    [201] Doe R E,Zartman R E.Plumbotectonics 1.the Phanerozoic[A].Barnes H L.Geochemistry of Hydrothermal Ore Deposits 2nd Ed.[M].Wilev Interscience.1979,Chap2,22-70
    [202] Dostal J,Chatterjee A K.Contrasting behaviour of Nb/Ta and Zr/Hf rations in a peraluminous granitic pluton Nova Scotia[J].Canada Chemical Geoloev,2000,163:207-218
    [203] Dunai T,Baur H.Helium,neon and argon systematics of European subcontinental mantle:implication for its geochemical evolution[J].Geochimica et Cosmochimica Acta,1995,59:27-67
    [204] El Blouseily A M,El Sokkary A A.The relation between Rb、Ba and Sr in graniticrocks[J].Chemical Geology,1975,6:207-219
    [205] Foster G,Lambert D D,Frick L R,et al.Re-Os isotopice vidence forgenesis of Archaeannick lores fromuncontaminated komatiites[J].Nature,1996,382:703-706
    [206] Green T H ,Pearson N J.An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature[J].Geochemi.Cosmochim. Acta,1989,51:55-~62
    [207] Gulson B.L,Jones M.T.Cassiterite:Polential for direct datcng of mineral deposits and a precist age for the Bashveld Complex granites Geology, 1992,(20):356-358
    [208] Hanchar J M,Millar C F.Zircon zonation patterns as re-vealed by cathodolum inescence and backscattered electronim ages : implications for interpretation of complex crustal histories[J].Chimi-ca Geology,1993, (110):1-13
    [209] Haskin L.A,Haskin M.A.Rare-earth element in the Skaergaard intrusion[J].Geochim.et Cosmochim.Acta,1968,32:433-447
    [210] Hass J R,Shock E L,Sassani D C.Rare earth elements in hydrothermal systems:Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J].Geochimica et Cosmochimica Acta,1995,59(21):4329-4350
    [211] Klinkhammer G P,Elderfield H,Mitra A.Geochemical implications of rareearth element patterns in hydrothermal fluids frommid-oceanridges[J].Geochimicaet Cosmochimica Acta,1994,58(23):5105-5113
    [212] Lambert D D, Foster J G,Frick L R,et al.Re-Os isotopic systematics of the Voisey's bay Ni-Cu-Co magmatic ore system,Labrador[J].Canada. Lithos,1999,47:69-88
    [213] Lottermoser B G.Rare earth elements and hydrothermal ore formation processes[J].Ore Geol. Rev.,1992,7:25-41
    [214] Ludwing K.R.Isoplot a plotting regression program for radigenic-Isotope data, O.S Geol. Survey[J].Openg-file Report, 1995,Version 2.82
    [215] Marty,Jambon A,Sano Y.Helium isotope and CO2 in volcanic gases of Japan[J].Chemical Geology,1989,76:25-40
    [216] M.Fu,A.Changkakotl,H.R.Krouse,J.Gray and T.A.P.Kwak.An Oxygen,Hydrogen, Sulfur,and Carbon Isotope Study of Carbonate-Replacement(Skarn) Tin Deposits of Dachang Tin Field, China[J].Economic Geology ,1991,86:1683-1703
    [217] M.Fu,T A P. Kwak ,T P Mernagh .Fluid Inclusion of Zoning in the Dachang Tin-Polymetallic Ore Field, People’s Republic of China[J].Economic Geology,88,1993:283-300
    [218] Michard A.Rare earth element systematic in hydmthermal fluids[J].Geochim.Cosmochim Acta,1989,53:745-75
    [219] Middlemost E A K.Magmas and Magmatic Rocks.London:Longman,1985,1-266
    [220] Moller P,Morteani G.On the geochemical fractionation of ram earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits,In:S.S.Augusthitis (Editor) . The Siginificance of Trace Elements in Solving Petrogenetic Problems and Controversies.Theophrastus,Athens,1983,747-791
    [221] Ohmoto H.Systematic of sulfur and carbon isotopes in hydrothermal ore deposits[J].Econ.Geol,67:551-578
    [222] Pearce J A,Harris NBW and Tindle AG.Trace element Himalayan Domain in southeast Zanskar(Kashmir, India ) [J].Me’m. Gaol. ( Lausanne ),1984,32:99-118
    [223] Peccerillo R, Taylor S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J].Contrib. Mineral Petrol.,1976,58:63-81
    [224] Magmas and Magmatic Rocks,London:Longman,1-266
    [225] Roberts M P,Clemens J D.Origin of high-patassitum,calc-al-kaline,I-type granitoids[J].Geology,1993,21:825-828.
    [226] Ripley E M,Lambert D D,Frick L R.Re-Os, Sm-Nd and Pb isotopic constraints on mantle and crustal contributions to amgmatic sulfide mineralization in the Duluth Complex[J].Geochimica et Cosmochimica Acta,1998,62:3349-3365
    [227] Simmons S F,Sawkins F J,Schulutter D J.Mantle-derived heliumin two Peruvian hydrothermal ore deposits[J].Nature,1987,329:429-432
    [228] Shirey S B,Walker R J.The Re-Os isotope system in cosmochemistry and high-temperature geochemistry[J].Annual Review of Earth Planetary Sciences ,1998,26:423-500
    [229] Stuart F M,Turner G,Duckworth R C and Fallick A E. Helium isotope as tracers of trapped hydrothermal fluids in ocean-floor sulfides[J].Geology,1994,22:823-826
    [230] Stuart F M,Burnard P G,Taylor R P and Turner G.Resolving mantle and crustal contribution to ancient hydrothermal fluids : He–Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization,South Korea[J].Geochimica et Cosmochimica Acta,1995,59:4663-4673
    [231] Sylvester PJ.Post-oollsional strong peraluminous granites. Lithos[J].1998,45:29-44
    [232] Taylor S R,McLemann S M.The Continental Crust:Its Composition and Evolution.Blackwell:Oxford Press,1985,312
    [233] Terakado Y , Masuda A . The coprecipitation of rare-earth elements with calcite and aragonite[J].Chem. Geol.,1988,69:103-110
    [234] Turner G,Burnard P B,Ford J L.Tracing fluid sources and interaction[J]. Phil. Trans. R. Soc. Lond. A ,1993,344:127-140
    [235] Walker R J , Morgan J W . Rhenium osmium isotope systematic of carbonaceousschondrites[J].Science,1989,243:519-522
    [236] Walker R J,Morgan J W, Horan M F,et al. .Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type,ore-bearing intrusions, Siberia[J].Geochimica et Cosmochimica Acta,1994,58:4179-4197
    [237] Wang Denghong ,Chen Yuchuan , Chen Wen , et al . Dating of the Dachang superlarge tin-polymetallic deposit in Guangxi and its implication for the genesis of the No.100 orebody[J] .Acta Geologica Sinica,2004,78(2):452-458.
    [238] Williams I S,Claesson S.Isotopic evidence for the Precam-brian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes,Scandinavian Caledonides. Contributionto Mineralogy and Petrology,1987,(97):205-217
    [239] Wood S A.The aqueous geochemistry of the rare-earth elements and yttrium .1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters[J].Chem.Geol.,1990a.82:159-18
    [240] Yu Gang,Yang Gang,Chen Jiangfeng,et al .Re-Os dating of gold-bearing arsenopyrite of the Maoling gold deposit, Liaoning Province, Northeast China and its geological significance[J] .Chinese Science Bulletin,2005,50(14):1509-1514
    [241] Zartman R E,Doe R E.Plumbotectonics the model[J] .Tectonophysic,1981,75:135-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700