用户名: 密码: 验证码:
苯并(a)芘、三丁基锡及其混合物对褐菖鲉的毒性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以海洋鱼类褐菖鲉为实验动物,研究海洋环境中两种典型有机污染物多环芳烃和有机锡对其产生的毒性效应。采用的苯并(a)芘(BaP)浓度为10、100、1000 ng/L,三丁基锡(TBT)浓度为1、10、100 ng/L,联合组浓度为5 ng/L BaP+0.5ng/L TBT、50 ng/L BaP+5 ng/L TBT、500 ng/L BaP+50 ng/L TBT,对鱼体进行水体暴露,分别于暴露后0 d、7 d、25 d、50 d和污染解除后7 d、20 d取样。从生理、生化与分子生物学等层次分析了BaP和TBT在鱼体内的代谢,对解毒酶系统的影响,对鱼类造成的氧化损伤与DNA损伤的单独作用和联合作用效应,进而对这些生物标志物在监测海洋环境污染中的有效性进行评价。主要研究结果
     如下:
     1.胆汁中BaP典型代谢产物浓度随着暴露浓度的增加而增加,能够较好地反映环境中BaP的暴露情况,但是要结合EROD和GST活性情况综合考虑其时间-效应关系。鱼胆汁中的总Sn~(2+)含量作为监测外界TBT污染程度的生物标志物也有可行性,可以指示出高浓度的有机锡污染,而且从联合作用结果看,BaP促进了TBT的代谢排出。
     2.环境浓度的BaP和TBT对解毒酶系统造成了显著的影响。Western blot结果表明CYP1A蛋白含量随着BaP暴露浓度的增加而增加,可以作为监测环境中PAHs污染的良好的生物标志物。Ⅰ相解毒酶EROD活性与BaP、TBT及其混合物污染之间存在较为复杂的时间-效应与剂量-效应关系,而且在暴露25 d后,联合作用表现为拮抗作用,仅仅以EROD酶活性指标衡量环境中BaP、TBT或者二者的联合污染水平会出现失真现象。所以,将EROD活性与CYP1A蛋白水平或者BaP典型代谢产物水平,或者胆汁中总锡含量等指标结合起来考虑才能较为客观地认识环境中这两类污染物的污染程度。ECOD活性在BaP、TBT或者二者的联合作用下主要表现出被诱导效应,也能反映出高浓度的BaP和TBT联合污染情况,可以作为高污染环境中的生物标志物参考指标。Ⅱ相解毒酶UDPGT在暴露中期对两种污染物均未表现出显著的效应关系。
     3.BaP和TBT对抗氧化体系指标产生了复杂的联合作用结果,主要表现为拮抗作用。SOD、GST活性与GSH含量在BaP暴露50 d后都表现出被诱导效应,将三者结合起来作为监测海洋环境PAHs污染的生物标志物有一定的可行性。TBT暴露50 d后会增加MDA含量,诱导SOD、GPx酶活性,并且降低GSH含量,将四者结合起来能较好地反映有机锡污染。BaP和TBT联合作用50 d后会增加MDA含量,并且诱导GPx、GST酶活性,因此将三者结合起来用于监测海洋环境中PAHs和有机锡的联合污染有一定的可行性。
     4.DNA单链断裂损伤随着BaP、TBT及其混合物的暴露浓度增加和暴露时间的延长而加重,可以作为指示水体BaP、TBT或者二者的联合污染的潜在生物标志物。同时,从暴露25 d和50 d后的结果看,联合作用减轻了DNA损伤,这与TBT抑制BaP的代谢活化和BaP促进TBT的代谢排出的结果相一致。
     根据以上结果,我们认为环境水平浓度的BaP和TBT所产生的联合毒理学效应有复杂的时间-效应和剂量-效应关系,主要是拮抗作用,表现为TBT对BaP代谢的抑制,BaP对于TBT的代谢排出起到了促进作用。
Marine fish Sebastiscus marmoratus was adopted as experimental animal. Toxicological effects were studied on two kinds of typical organic contaminants in marine environments, Polycyclic aromatic hydrocarbons (PAHs) and organotins. Sebastiscus marmoratus exposed to BaP (10, 100,1000 ng/L), TBT (1, 10, 100 ng/L) and their mixture (5 ng/L BaP+0.5 ng/L TBT, 50 ng/L BaP+5 ng/L TBT, 500 ng/L BaP+50 ng/L TBT) were randomly sampled after exposure for 0, 7, 25, 50 days and transferred to clean water to recover for 7 and 20 days, respectively. The physiological, biochemical and molecular parameters were analyzed to assess the effects of BaP, TBT and their mixture to metabolism, hepatic detoxification enzyme system, antioxidant system and DNA damage. Furthermore, the availability of these biomarkers to monitor marine pollution by BaP, TBT and their mixture were assessed. The main results as follows:
     1. Levels of BaP metabolites in the bile were increased in a dose-dependent manner in the fish exposed through water to BaP, and reflected contamination gradients of PAHs. However, EROD and GST activities should be taken into account to assess time-effect relation. Total biliary Sn~(2+) content in fish is feasible to serve as an indicator to monitor severe organotin pollution, and as far as combined effects are concerned, BaP increased the excretion of TBT to bile.
     2. Environmentally relevant concentrations of BaP and TBT influenced hepatic detoxification enzyme system significantly. CYPIA level inceased in harmony with BaP concentration with Western blot analysis, so CYPIA level is feasible to serve as a good biomarker to monitor PAHs pollution. EROD and ECOD are both phase I enzymes. There were complicated relations of time-effect and dose-effect between EROD activity and exposure of BaP, TBT or their mixture. Antagonistic interactions occurred after 25 days exposure to the mixure of BaP and TBT. It is fuzzy to merely use EROD activity as biomarker to assess PAHs or TBT pollution. Therefore, it is vital to assemble CYPIA level or BaP-type metabolites to assess PAHs pollution and integrate other biomarkers (e.g. total biliary Sn~(2+)content) to assess TBT pollution in marine environment. ECOD activity was induced by BaP, TBT or their mixture at high concentrations after 50 days exposure, and it is advisable to use ECOD activity as a biomarker to assess severe PAHs or TBT pollution. UDPGT was analyzed as phase II enzyme. There were scarcely significant effects of BaP, TBT or their mixture to UDPGT activity after 25 d exposure.
     3. Combined effects of BaP and TBT to antioxidant system were complicated, and antagonistic interactions were dominating. SOD, GST activities were induced and GSH content were increased after 50 days exposure to BaP, and it is feasible to integrate them into PAHs pollution monitoring program. MDA content was increased and SOD, GPx activities were induced, and GSH content was decreased after 50 days exposure to TBT, so it is feasible to integrate them into TBT pollution monitoring program. In the same way, MDA content was increased and GST, GPx activities were induced after 50 days exposure to the mixture of BaP and TBT, so it is feasible to integrate them into PAHs with the addition of TBT pollution monitoring program in marine environment.
     4. DNA single strand break damage was aggravated along with the increase of exposure concentration and the elongation of exposure time, so DNA single strand break damage is feasible to serve as a potential biomarker to monitor the pollution of PAHs, TBT or their mixture, because good relations of time-effect and dose-effect existed. As far as the results after 25 days and 50 days exposure are concerned, combination of BaP and TBT alleviated the degree of DNA damage which was consistent with the inhibition of BaP metabolism by TBT and the promotion of TBT excretion by BaP.
     Based on the results we obtained, we conclude that combined toxicological effects of BaP and TBT at environmentally relevant concentrations were complicated, and antagonistic interactions were dominating. TBT inhibited BaP metabolism, and BaP facilitated TBT metabolism and excretion.
引文
[1]童建,冯致英.环境化学物的联合作用[M].上海科学技术文献出版社,1994.
    [2]Baird C.Environment Chemistry[M].New York:W H Free man and Company,1995,276-278.
    [3]孔志明.环境毒理学(第二版)[M].南京大学出版社,2004.
    [4]Lipiato E,Albaiges J.Atmospheric deposition of hydrophobic organic chemicals in the north western Mediterranean Sea:composition with the Rhone River input[J].Mar Chem,1994,46:153-164.
    [5]赵云英,马永安.天然环境中多环芳烃的迁移转化及其对生态环境的影响[J].海洋环境科学,1998,17(2):68-72.
    [6]Maskaoui K,Zhou JL,Hong HS et al.Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea,China[J].Environ Pollut,2002,118:109-122.
    [7]Heir M,Tan Y,Klusek C,et al.Anthropogenic trace elements and polycyclic aromatic hydrocarbon levels in sediment cores from two lakes in the Adirondack acid lake region[J].Water,Air and Soil Pollut,1981,15:441-464.
    [8]Huang SB,Wang ZJ,Xu YP,Ma M.Distribution,sources and potential toxicological significance of polycyclic aromatic hydrocarbons(PAHs) in Guanting Reservoir sediments,China[J].J Environ Sci,2005,17(1):48-53.
    [9]Catallo WJ,Gambrell RP.The effects of high levels of polycyclic aromatic hydrocarbons on sediment physiochemical properties and benthic organisms in a polluted stream[J].Chemosphere,1987,16(5):I053-1063.
    [10]Huntley SL,Bonnevie NL,Wenning RJ.Polycyclic aromatic hydrocarbon and petroleum hydrocarbon contamination in sediment from the Newark bay estuary,New Jersey[J].Arch Environ Contam Toxicol,1995,28:93-107.
    [11]Cohen JE.Population growth and Earth's human carrying capacity[J].Science,1995,269:341-346.
    [12]朱利中,松下秀鹤.空气中多环芳烃的研究现状[J].环境科学进展,1997,5(5):18-29.
    [13]祁士华.澳门大气气溶胶中多环芳烃研究[J].环境科学研究,2000,13(4):6-9.
    [14]张文君.POPs公约简介[J].农药,2000,39(10):43-46.
    [15]Vallack HW,Bakker DJ,Brandt I,et al.Controlling persistent organic pollutants-what next?[J].Environ Toxicol Pharmacol,1998,6:143-175.
    [16]Maccubin AE.DNA adduct analysis in fish:laboratory and field studies[M].Boca Raton:CRC Press,1994,267-294.
    [17]Thomas P,Budiantara L.Reproductive life history stages sensitive to oil and naphthalene in Atlantic croaker[J].Mar Environ Res,1995,39:147-150.
    [18]Seeley KR,Week-Perkins BA.Altered phagocytic activity of macrophages in oyster toadfish from a highly polluted estuary[J].J Aquat Animal Health,1991,3:224-227.
    [19]Hanukoglu I.Steroidogenic enzymes:structure,function,and role in regulation of steroid hormone biosynthesis[J].Steroid Biochem Molec Biol,1992,43:779-804.
    [20]Kleinow KM,Melancon M J,Lech JJ.Biotransformation and induction:implications for toxicity,bioaccumulation and monitoring of environmental xenobiotics in fish[J].Environ Health Perspect,1987,71:105-119.
    [21]Stegeman JJ,Hahn ME.Biochemistry and molecular biology of monooxygenases:current perspectives on forms,functions,and regulation of cytochrome P450 in aquatic species[M].Boca Raton:CRC Press,1994,87-206.
    [22]Anderson T,Forlin L.Regulation of the cytochrome P450 enzyme system in fish[J].Aquat Toxicol,1992,24:1-20.
    [23]朱世能.肿瘤基础理论[M].上海科学技术出版社,1986,48-56.
    [24]Hasspieler BM,Behar JV,Carlson DB,et al.Susceptibility of channel catfish(Ictalurus punctatus) and brown bullhead(Ameriurus nebulosus) to oxidative stress:a comparative study[J].Aquat Toxicol,1994,28(122):53-64
    [25]Huang ZY,Chen YX,Zhao Y,et al.Antioxidant responses in Meretrix meretrix exposed to environmentally relevant doses of tributyltin[J].Environ Toxicol Pharmacol,2005,20:107-111.
    [26]Evans CJ and Karpel S.Organotin compounds in modem technology[M].Elsvier Amsterdam,The Netherlands,1985.
    [27]Alzieu C.Impact of tributyltin on marine invertebrate[J].Ecotoxicology,1991,9:71-76.
    [28]Fent K.Ecotoxicology of organotin compounds[J].Crit Rev Toxicol,1996,26:1-117.
    [29]Jiang GB,Zhou QF,Liu JY,et al.Occurrence of butyltin compounds in the waters of selected lakes,rivers and coastal environments from China[J].Environ Pollut,2001,115:81-87.
    [30]Harino H,Fukushima M,Yamamoto Y,et al.Contamination of butyltin and phenyltin compounds in the marine environment of Otsuchi Bay,Japan[J].Environ Pollut 1998,101,209-214.
    [31]Lee CC.The establishment of the environmental distribution survey of toxic chemicals.A research report,EPA-90-U1J1-02-104,Environmental Protection Agency,Taiwan,2001.
    [32]IPCS.Tributyltin compounds.International Programme on Chemical Safety(Environmental Health Criteria 116)[Z].World Health Organization,Geneva,1990.
    [33]Shinsuke T,Maricar SP,Supawat K,et al.Mussel watch:marine pollution monitoring of butyltins and organochlorines in coastal waters of Thailand,Philippines and India[J].Ocean & Coastal Management,2000,43:819-839.
    [34]李中阳,周群芳,江桂彬等.我国部分城市海产品中丁基锡污染现状[J].中国环境科学,2003,23(2):144-147.
    [35]Amodio-Cocchieri R,Cirillo T,Amorena M,et al.Alkyltins in farmed fish and shellfish[J].International journal of food science and nutrition,2000,51(3):147-151.
    [36]Evans DW,Laughlin RB.Accumulation of Bis-(tributyltin)-oxide by mud crab Rhithropanopeus harrisii[J].Chemosphere,1984,13:213-219.
    [37]Maguire RJ,Wong PTS,Rhamey JS.Accumulation and metabolism of tri-n-butyltin cation by a green alga Ankistrodesmus falcatus[J].Can J Fish Aquat Sci,1984,41:537-540.
    [38]Busong S J.Final Report[R].The Johns Hopkins University MD,1987.
    [39]St(a|¨)b JA,Traas TR,Stroomberg G,et al.Determination of organotin compounds in foodweb of a shallow freshwater lake in the Netherlands[J].Arch Environ Contam Toxicol,1996,31:319-328.
    [40]Yakahashi S,Yanabe S,Kawaguchi K.Organochlorine and butyltin residues in mesopelagic myctophid fishes from the western North Pacific[J].Environ Sci Technol,2000,34:5129-5136.
    [41]Hoch M.Organotin compounds in the environment:an overview[J].Appl Geochem,2001,16:719-743.
    [42]陈天乙,谭元生,田明.有机锡化合物对两栖动物的急性毒性研究[J].环境科学,1994,15(5):63-64.
    [43]Kavelock RJ.Reseach needs for risk assessment of health and environmental effects of endocrine disrupters:A report of the US.EPA Sponsored Workshop[J].Environ Health Perspect,1996,104:715-740.
    [44]李红莉,高虹,徐晓琳等.有机锡化合物在中国环境行为的研究状况[J].环境科学动态,2003,2:15-17.
    [45]Jha AN,Hagger JA,Hill SJ,et al.Genotoxic,cytotoxic and developmental effects of tributyltinoxide(TBTO):an integrated approach to the valuation of the relative sensitivities of two marine species[J].Mar Environ Res,2000,50:565-573.
    [46]Hagger JA,Fisher AS,Hill SJ,et al.Genotoxic,cytotoxic and ontogenetic effects of tri-n-butyltin on the marine worm,Platynereis dumerilii(Polychaeta:Nereidae)[J].Aquat Toxicol,2002,57:243-255.
    [47]李兴暖,韩雅莉,邓瑞鹏等.三丁基锡对牡蛎鳃细胞DNA损伤的研究[J].水生生物学报,2005,29(3):336-339.
    [48]韩雅莉,管云雁,李兴暖 三丁基锡(TBT)对牡蛎细胞DNA影响的RAPD分析[J].海洋科学,2005,29(5):29-32.
    [49]张清敏,陈素平,张毓琪等.氯化三丁基锡对鲤鱼肝胰脏线粒体DNA的影响[J].南开大学学报(自然科学),1999,32(4):53-57.
    [50]周群芳,江桂斌,刘稷燕.三丁基锡化合物对稀有(?)鲫的急慢性毒理研究[J].中国科学(B辑),2003,33(2):150-156.
    [51]Morcillo Y,Porte C,Evidence of endocrinedis tribution in clams-Ruditapes de cussata-transplanted to a tributyltin polluted environment[J].Environ.Pollut,2000,107:47-52.
    [52]Matin MG,Moschino V,Cima F,et al.Embryo toxicty of butyltin compounds to the sea urchin Paracentrotus livius[J].Mar Environ Res,2000,50:231-235.
    [53]McAllister BG,Kime DG.Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio)[J].Aquat Toxicol,2003,65:309-316.
    [54]熊振湖,黄国兰.三丁基锡在鱼脑中的吸收和沿轴突传递的研究[J].环境科学研究,2004,17(3):55-59.
    [55]杨录军.甲氧化三丁基锡多终点遗传毒性评价和诱导细胞凋亡的分子机理研究[Z].博士学位论文,第三军医大学,2006.
    [56]Padrós J,Pelletier E,Ribeiro OC.Metabolic interactions between low doses of benzo[α]pyrene and tributyltin in arctic charr(Salvelinus alpinus):a long-term in vivo study [J].Toxicol Appl Pharmac,2003,192:45-55.
    [57]Rice CD,Roszell LE.Tributyltin modulates 3,3-,4,4-,5-pentachlorobiphenyl (BPC-126)-induced hepatic CYP1A activity in channel catfish,Ictalurus punetatus[J].J Toxicol Environ Health,1991,55:197-212.
    [58]Padrós J,Pelletier E,Reader S,et al.Mutual in vivo interactions between benzo[α]pyrene and tributyltin in brook trout(Salvelinus fontinalis)[J].Environ Toxicol Chem,2000,19:1019-1027.
    [59]Oberdōster E,Rittschof D,McClellan-Green P.Induction of cytochrome P450 3A and heat shock protein by tributyltin in blue crab,Callinectes sapidus[J].Aquat Toxicol,1998,41:83-100.
    [60]Br(u|¨)schweiler BT,W(u|¨)rgler FE,Fent K.Inhibition of cytochrome P4501A by organotins in fish hepatoma cells PLHC-1[J].Environ Toxicol Chem,1996,15:728-735.
    [61]Kannan K,Villeneuve DL,Blankenship AL,et al.Interaction of tributyltin with 3,3-,4,4-,5-pentachlorobiphenyl-induced ethoxyresorufin O-deethylase activity in rat hepatoma cells[J].J Toxicol Environ Health,1998,55:373-384.
    [62]Reader S,Moutardier V,Denizeau F.Tributyltin triggers apoptosis in trout hepatocytes:the role of Ca~(2+),protein kinase C and proteases[J].Biochim Biophys Acta,1999,1448(3):473-485.
    [63]Peakall DW.Biomarkers:the way forward in environmental assessment[J].Toxicol Ecotoxicol News,1994,1:55-60.
    [64]WHO.International Programme on Chemical Safety(IPCS).Biomarkers and risk assessment:concepts and principles.Environmental Health Criteria 155,World Health Organization,Geneva,1993.
    [65]孟紫强.生态毒理学原理和方法[M].北京:科学出版社,2006.
    [66]Van der Oost R,Beyer J,Verrneulen NPE.Fish bioaccumulation and biomarkers in environmental risk assessment:a review[J].Environ Toxicol Pharmacol,2003,13:57-149.
    [67] Goeptar AR, Scheerens H, Vermeulen NPE. Oxygen reductase and substrate reductase activity of cytochrome P450 [J]. Crit Rev Toxicol, 1995,25: 25-65.
    [68] Commandeur JNM, Stijntjes GJ, Vermeulen NPE. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics [J]. Pharmacol Rev, 1995,47: 271-330.
    [69] George SG. Enzymology and molecular biology of phase II xenobiotic-conjugating enzymes in fish. In: Malins, D.C., Ostrander, G.K. (Eds.), Aquatic Toxicology; Molecular, Biochemical and Cellular perspectives. Lewis Publishers, CRC press, 1994, 37-85.
    [70] Winston GW, Thomas P. Prooxidant and antioxidant mechanisms in aquatic organisms [J]. Toxicol, 1991,19:137-161.
    [71] Stegeman JJ, Brouwer M, Di Giulio RT et al. Molecular responses to environmental contamination: enzyme and protein synthesis as indicators of chemical exposure and effects [M]. In Biomarkers, biochemical, physiological and histological markers of anthropogenic stress (Huggett R A, Kimerle P M, Mehrle P M Jr, Bergman H L eds.). Boca Raton Florida: Lewis Publlishers. 1992, 235-335.
    [72] Hai DQ, Varga IS, Matkovics B. Effects of an organophosphate on the antioxidant systems of fish tissues [J]. Acta Biol Hungar, 1995,46: 39-50.
    [73] Melancon MJ, Alscher R, Benson W, et al. Metabolic products as biomarkers. In: Huggett, R.J., Kimerly, R.A., Mehrle, P.M., Jr, Bergman, H.L. (Eds.), Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress [M]. Lewis Publishers, Chelsea, MI, USA, 1992, pp. 87-124.
    [74] Van der Oost R, Opperhuizen A, Satumalay K, et al. Biomonitoring aquatic pollution with feral eel (Anguilla anguilla ): I. Bioaccumulation: biota-sediment ratios of PCBs, OCPs, PCDDs and PCDFs [J]. Aquat Toxicol, 1996, 35: 21-46.
    [75] Collier TK, Varanasi U. Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in English sole (Parophrys vetulus ) exposed to environmental contaminants [J]. Arch Environ Contam Toxicol, 1991, 20: 462-473.
    [76] Beyer J. Fish biomarkers in marine pollution monitoring; evaluation and validation in laboratory and field studies [Z]. Academic thesis, University of Bergen, Norway, 1996.
    [77] Van der Oost R, Lopes SCC, Komen H, et al. Assessment of environmental quality and inland water pollution using biomarker responses in caged carp (Cyprinus carpio ); use of a bioactivation:- detoxication ratio as biotransformation index (BTI) [J]. Mar Environ Pollut, 1998,46:315-319.
    [78] Wester PW, Vethaak D, van Muiswinkel WB. Fish as biomarkers in immunotoxicology [J]. Toxicology, 1994,86:213-232.
    
    [79] Shugart LR. Molecoular markers to toxic agents. In: Newman, M.C., Jagoe, C.H. (Eds.), Ecotoxicology: a Hierarchial Treatment [M].CRC Press, Boca Raton, USA, 1996, pp. 133-161.
    [80] Shugart LR, Bickham J, Jackim G, et al. DNA alterations. In: Huggett, R.J., Kimerly, R.A., Mehrle, P.M., Jr, Bergman, H.L. (Eds.), Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress [M]. Lewis Publishers, Chelsea, MI, USA, 1992, pp.155-210.
    
    [81] Colborn T, Vom Saal FS, Soto AM. Developemental effects of endocrine-disrupting chemicals in wildlife and humans [J]. Environ Health Perspect, 1993, 101: 378-384.
    [82] Peterson RE, Theobald HM, Kimmel GL. Developemental and reproductive toxicity of dioxin and related compounds: crossspecies comparisons [J]. Crit Rev Toxicol, 1993, 23: 283-335.
    [83] White R, Jobling S, Hoare SA, et al. Environmentally persistent alkylphenolic compounds are estrogenic [J]. Endo, 1994, 36: 175-182.
    
    [84] Spies RB, Stegeman JJ, Rice DW, et al. Sublethal responses of Platichtus stellatus to organic contamination in San Francisco Bay with emphasis on reproduction. In: McCarthy, J.F., Shugart, L.R. (Eds.), Biomarkers of Environmental Contamination. Lewis Publishers, Boca Raton, FL, USA, 1990, pp. 87-122.
    
    [85] Nicolas JM, 1998. Vitellogenesis in fish and the effects of polycyclic aromatic hydrocarbon contaminants [J]. Aquat Toxicol 45: 77-90.
    [86] Hyllner SJ, Oppen-Berntsen DO, Helvik JV, et al. Oestradiol-17β induces major vitelline envelope proteins in both sexes in teleosts [J]. J Endocrinol, 1991, 131: 229-236.
    [87] Arukwe AE, Goks(?)yr A. Fish zona radiata (egg shell) protein-a sensitive biomarker for environmental estrogens [J]. Environ Health Perspect, 1997, 105: 418-422.
    [88] Arukwe AE, Celius T, Walther BT, Goks(?)yr A. Effects of xenoestrogen treatment on zona radiata protein and vitellogenin expression in Atlantic salmon (Salmo salar )[J]. Aquat Toxicol, 2000,49: 159-170.
    [89] Kime DE. The effects of pollution on reproduction in fish [J]. Rev Fish Biol Fish, 1995, 5: 52-96.
    [90] Payne JF, Mathieu A, Melvin W, Fancey LL. Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland [J]. Mar Pollut Bull, 1996, 32: 225-231.
    [91] Walker CH, Thompson HM. Phylogenetic distribution of cholinesterases and related esterases. In: Mineau, P. (Ed.), Cholinesterase-inhibiting Insecticides, Chemicals in Agriculture, vol. 2. Elsevier, Amsterdam, 1991, pp. 1-17.
    [92] Sturm A, Wogram J, Segner H, Liess M. Different sensitivity to organophosphates of acetylcholinesterase and butyrylcholinesterase from three-spined stickleback (Gasterosteus aculeatus): application in biomonitoring [J]. Environ Toxicol Chem, 2000, 19: 1607-1615.
    [93] Fulton MH, Key PB. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects [J]. Environ Toxicol Chem, 2001,20:37-45.
    [94] Hinton DE, Baumann PC, Gardner GC, et al. Histopathologic biomarkers. In: Huggett RJ, Kimerly RA, Mehrle PM, Jr Bergman HL (Eds.), Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress. Lewis Publishers, Chelsea, MI, USA, 1992, pp. 155-210.
    [95] Vethaak AD, ap Rheinallt T. Fish disease as a monitor for marine pollution: the case of the North Sea [J]. Rev Fish Biol Fish, 1992, 2: 1-32.
    [96] Mayer FL, Versteeg DJ, McKee MJ, et al. Metabolic products as biomarkers. In: Huggett, RJ, Kimerly RA, Mehrle PM, Jr Bergman HL. (Eds.), Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress. Lewis Publishers, Chelsea, MI, USA, 1992, pp. 5-86.
    [97] Di Giovanni J, Rymer J, Slaga TJ, et al. Anticarcinogenic and cocarcinogenic effects of benzo(e)pyrene and aibenzy(a,c)anthracene on skin turner initiation by polycyclic hydrocarbons [J]. Carcinogenesis, 3: 371-375
    
    [98] 朱元鼎. 福建鱼类志(下卷) [M].福州: 福建科学技术出版社, 1985, 450-451.
    [99] Lin ELC, Cormier SM, Torsella JA. Fish biliary polycyclic aromatic hydrocarbon metabolites estimated by fixedwavelength fluorescence: comparison with HPLC-fluorescent detection [J]. Ecotoxicol Environ Saf, 1996, 35: 16-23.
    [100] Livingstone DR. Responses of microsomal NADPH-cytochrome reductase activity and cytochrome P-450 in digestive glands of Mytilus edulis and Littorina littorea to enviromental and experimental exposure to pollutants [J]. Mar Ecol Progress Ser, 1988, 46: 37-43.
    [101] Colombo A, Bonfanti P, Orsi F, et al. Differential modulation of cytochrome P-450 1A and Pglycoprotein expression by aryl hydrocarbon receptor agonists and thyroid hormone in Xenopus laevis liver and intestine [J]. Aquat Toxicol, 2003, 63: 173-186.
    [102] Peters LD, Porte C, Albaiges J et al. 7-ethoxyresorufin O-deethylase (EROD) and antioxidant enzyme activities in larvae of sardine (Sardina pilchardus) from the north coast of Spain [J]. Mar Pollut Bull, 1994, 28(5): 299-304.
    [103] Webb D, Gagnon MM, Rose TH. Interannual variability in fish biomarkers in a contaminated temperate urban estuary [J]. Ecotoxicol Environ Safe, 2005, 62: 53-65.
    [104] Anderson T, Pesonen M, Johansson C. Differential induction of cytochrome P-450-dependent monooxygenase, epoxide hydrolase, glutathione transferase and UDP glucuronosyl transferase activities in the liver of the rainbow trout by β-naphthoflavone or Clophen A50 [J]. Biochem Pharmacol, 1985, 34: 3309-3314.
    [105] Lemaire P, Mathieu A, Carriere S, et al. Hepatic biotransformation enzymes in aquaculture European sea bass (Dicentrarchus labrax): kinetic parameter and induction with benzo(a)pyrene [J]. Comp Biochem Physiol, 1992, 103(4): 847-853.
    [106] Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animals and tissues by thiobarbituric acid reaction [J]. Anal Biochem 95, ods Enzymol, 1979, 105: 114-121.
    [107] Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase [J]. J Biol Chem, 1972, 247: 3170-3175.
    [108] Greenwald R A, ed. CRC Handbook of methods for oxygen radical research [Z]. CRC Press, Boca Raton, 1985.
    
    [109] Hafeman DG, Sunde RA, Hoekstra WG. Effect of dietary selenium and erythrocyte and liver glutathione peroxidase in the rat [J]. J Nutr, 1973, 104: 580.
    [110]Hissin PJ,Hilf RA.Fluorometric method for determination of oxidized and reduced glutathione in tissues[J].Anal Biochem,1976,74(1):214-226.
    [111]Habig WH,Pabst MJ,Jakoby WB.Glutathione S-transferases.The first enzymatic step in mercapturic acid formation[J].J Biol Chem,1974,249(22):7130-7139.
    [112]郭敏亮,姜涌明.考马斯亮蓝显色液组分对蛋白质测定的影响[J].生物化学与生物物理进展,1996,23(6):558-561.
    [113]Shugart LR.Quantitation of chemically induced damage to DNA of aquatic organisms by alkaline unwinding assay[J].Aquat Toxicol,1988,13:43-52.
    [114]陈奕欣,王重刚,李钦等苯并(a)芘和芘对梭鱼肝脏DNA损伤的研究[J].海洋学报,2000,22(2):92-96.
    [115]孟庆俊,肖昕.不同方法对联合毒性作用的评价[J].污染防治技术,2004,17(1):33-35.
    [116]修瑞琴,许永香,付迎春等.水生毒理联合效应相加指数法[J].环境化学,1994,13(3):269-271.
    [117]Marking LL.Method for assessing additive toxicity of chemical mixtures.In:Mayer,F.L.,Hamelink,J.L.(Eds.),Aquatic Toxicology and Hazard Evaluation ASTM STP 634.American Society for Testing and Materials,1977,pp.99-108.
    [118]Varanasi U.Stein JE and Nishimoto M.Biotransformation and disposition of PAH in fish.In Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment,ed,U.Varanasi,pp.93-150.CRC Press,Boca Raton,Florida,1989.
    [119]Kolok AS,Huckins JN,Petty JD,et al.The role of water ventilation and sediment ingestion in the uptake of benzo[a]pyrene in gizzard shad(Dorosoma cepedianum)[J].Environ Toxicol Chem,1996,15(10):1752-1759.
    [120]Eberhart J,Coffing SL,Anderson JN,et al.The time-dependent increase in the binding of benzo[a]pyrene to DNA through(+)-anti- benzo[a]pyrene-7-8-diol-epoxide in primary rat hepatocyte cultures results from induction of cytochrome P450IA1 by benzo[a]pyrene treatment[J].Carcinogenesis,1992,13:297-301.
    [121]Aas E,Baussant T,Balk L,et al.PAH metabolites in bile,cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure:a laboratory experiment with Atlantic cod[J].Aquat Toxicol,2000,51:241-258.
    [122]Van Schanke A,Holtz F,Van der Meet J,et al.Dose- and time-dependent formation of biliary benzo[a]pyrene metabolites in the marine flatfish dab (Limanda limanda) [J]. Environ Toxicol Chem, 2001, 20(8): 1641-1647.
    [123] Hellou J, Upshall C. Monocyclic aromatic hydrocarbon in bile of flounder exposed to a petroleum oil [J]. Intern Environ Anal Chem, 1995, 60: 101-111.
    
    [124] Upshall C, Payne JF, Hellou J. Induction of MFO enzymes and production of bile metabolites in rainbow trout(Oncorhynchus mykiss) exposed to waste crankcase oil [J], Environ Toxicol Chem, 1993,12: 2105-2112.
    [125] Yang X, Baumann PC. Biliary PAH metabolites and the hepatosomatic index of brown bullheads from Lake Erie tributaries [J]. Ecological Indicators, 2006, 6: 567-574
    [126] Celander M, Stageman JJ, Forlin L. CYP1A1-, CYP2B- and CYP3A-like proteins in rainbow trout (Oncorhynchus mykiss) liver: CYP1A1-specific down-regulation after prolonged exposure to PCB [J]. Mar Environ Res, 1996,42: 283-286.
    [127] Cao Z, Hong J, Peterson RE, et al. Charactenzation of CYP1A1 and CYP1A3 gene expression in rainbow trout (Oncorhynchus mykiss) [J]. Aquat Toxicol, 2000, 49: 101-99.
    [129] Lin FH, Stohs SJ, Birnbaum LS, et al. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the hepatic estrogen and glucocorticoid receptors in congenic strains of Ah responsive and Ah nonresponsive C57BL/6J mice [J]. Toxicol Appl Pharmacol, 1991, 108: 119-125.
    [130] Omura T, Ishimura Y, Fujii-Kuriyama Y. Cytochrome P450 (2~(nd) edition) [M]. Tokyo: Kodansha, 1993.
    [131] Hankinson O. The aryl hydrocarbon receptor complex [J]. Annual Review of Pharmacology and Toxicology, 1995, 35: 307-340.
    [132] Bucheli TD, Fent K. Induction of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems [J]. Crit Rev Environ Sci Technol, 1995,25: 201-268.
    [133] Goks(?)yr A, Hus(?)y AM. Immunochemical approaches to studies of CYPIA localization and induction by xenobiotics in fish. In: Braunbeck, T., Hinton, D.E., Streit, B. (Eds.), Fish Ecotoxicology. Birkhauser Verlag, Basel, 1998, 165-202.
    [134] Van Veld PA, Vogelbein WK, Cochran MK, et al. Route-specific cellular expression of cytochrome P4501A (CYPIA) in fish (Fundulus heteroclitus ) following exposure to aqueous and dietary benzo[a]pyrene [J]. Toxicol Appl Pharmacol, 1997, 142: 348-359.
    [135] Ertl RP, Stegeman JJ, Winston GW. Induction time course of cytochrome P-450 by phenobarbital and 3-methycholanthrene pretreatment in liver microsomes of Alligator mississippiensis [J]. Biochem. Pharmacol, 1998, 55: 1513-1521.
    [136] Ioannides C, Parkinson C, Parke DV. Activation of benzo(a)pyrene and 2-acetamidofluorene to mutagens by microsomal preparations from different animal species: role of cytochrome P-450 and P-448 [J]. Xenobiotica, 1981,11 (10): 701-708.
    [137] Kirby MF, Smith AJ, Neall P, et al. Ethoxyresorufin-O-deethylase (EROD) and vitellogenin in flounder (Platichthys flesus): System interaction, crosstalk and implications for monitoring [J]. Aquat Toxicol, 2007, 81(3): 233-244.
    [138] Snyder R, Remmer H. Classes of hepatic microsomal mixed function oxidase inducers [J]. Pharmac Ther, 1979, 7: 203-244.
    [139] Stein J, Rechert WL, Nishimoto M, et al. Overview of studies on liver carcinogenesis in English sole from punget sound; evidence for a xenobiotic chemical etiology II: Biochemical studies [J]. Sci Total Environ, 1990, 94: 51-69
    [140] Eggens ML, Opperhuizen A, Boon JP. Temporal variations of CYP1A indices, PCB and 1-OH pyrene concentration inflounder, Platichthys flesus, from the Dutch Wadden Sea [J]. Chemosphere, 1996, 33: 1579-1596.
    [141] Kirby MF, Neal P, Bateman TA, et al. Hepatic ethoxyresorufin-O-deethylase (EROD) activity in flounder (Platichthys flesus) from contaminated impacted estuaries of the united Kingdom: continued monitoring 1999-2001 [J]. Mar Poll Bull, 2004, 9: 71-78.
    [142] Richard T, Giulio D, Habig C, et al. Effects of Black Rock Harbor sediments on indices of biotransformation, oxidative stress, and DNA intergrity in channel catfish [J]. Aquat. Toxicol, 1993,26: 1-22.
    [143] Aas E, Klungsor J. PAH metabolites in bile and EROD activity in North sea fish [J]. Mar Environ Res, 1998, 46(1-5): 229-232.
    [144] Livingstone DR, Archibald S, Chipman JK, et al. Antioxidant enzymes in liver of the dab(Limanda-limanda) from the North Sea [J]. Mar Lcol Prog Ser, 1992, 91: 97-104.
    [145] Levine SL, Oris JT, Wissing TE. Comparison of P-4501A1 Monooxygenase induction in gizzard shad (Dorosoma cepedianum ) following intraperitoneal injection or continuous waterborne- exposure with benzo[a]pyrene: Temporal and dose-dependent studies [J]. Aquat Toxicol,1994,30:61-75.
    [146]Boleas S,Fernandez C,Beyer J,et al.Accumulation and effects of benzo(a)pyrene on cytochrome P450 1A in waterbome exposed and intraperitoneal injected juvenile turbot (Scophthalmus maximus)[J].Mar Environ Res,1998,46:17-20.
    [147]Fent K and Stegeman JJ.Effects of tributyltin chloride in vitro on the hepatic microsomal monooxygenase system in the fish Stenotomus chrysops[J].Aquat Toxicol,1991,20(3):159-168.
    [148]Fent K and Stegeman JJ.Effects of tributyltin in vivo on hepatic cytochrome P450 forms in marine fish[J].Aquat Toxicol,1993,24(3-4):219-240.
    [149]Goksφyr A,Husφy AM,Larsen HE,et al.Environmental contaminants and biochemical responses in flatfish from the Hvaler Archipelago in Norway[J].Arch Environ Contam Toxicol,1991,21:486-496.
    [150]Haasch ML,Prince R.,Wejksnora PJ,et al.Caged and wild fish:induction of hepatic cytochrome P-450(CYP1A1) as an environmental biomonitor[J].Environ Toxicol Chem 1993,12:885-895.
    [151]Holdway DA,Brennan SE,Ahokas JT.Use of hepatic MFO and blood enzyme biomarkers in sand flathead(Platycephalus bassensis) as indicators of pollution in Port Phillip Bay,Australia[J].Mar Pollut Bull,1994,28,683-695.
    [152]Stegeman JJ,Woodin BR,Singh H,et al.Cytochromes P450(CYP) in tropical fishes:catalytic activities,expression of multiple CYP proteins and high levels of microsomal P450in liver of fishfrom Bermuda[J].Comp Biochem Physiol,1997,C 116:61-75.
    [153]Lange U,Goksφyr A.,Siebers D,et al.Cytochrome P450 1A-dependent enzyme activities in the liver of dab(Limanda limanda):kinetics,seasonal change and detection limits[J].Comp Biochem Physiol,1999,B 123:361-371.
    [154]Goksφyr A,F(o|¨)rlin L.The cytochrome P-450 system in fish,aquatic toxicology and environmental monitoring[J].Aquat Toxicol,1992,22:287-312.
    [155]郭新彪,大野泰雄.有机锡化合物对初代培养肝细胞药物代谢酶活性的影响[J].卫生毒理学杂志,1996,10(3):173.
    [156]Lech JJ,Vodicnik MJ.Biotransformation.In:Rand,G.M.,Petrocelli,S.R.(Eds.),Fundamentals of Aquatic Toxicology;Methods and Applications[M].Hemisphere Publishing Corporation, New York, USA, 1985, pp. 526-557.
    [157] Mulder GJ, Coughty MWH, Burchell B. Glucuronidation. In: Mulder, G.J. (Ed.), Conjugation Reactions in Drug Metabolism; an Integrated Approach. Taylor and Francis, London, 1990.
    [158] Kasper CB, Henton. Glucuronidation. In: Jakoby, W.B. (Ed.), Enzymatic basis of Detoxication, vol. II [M]. Academic Press, New York, 1980, pp. 3-36.
    [159] Burchell B, Coughtrie MWH. UDP-glucuronosyltransferases [J]. Pharmacol Ther, 1989,43: 261-271.
    [160] Clarke DJ, Burchell B, George SC. Differential expression and induction of UDP-glucuronosyltransferase isoforms in hepatic and extrahepatic tissues of a fish, Pleuronectus platessa : immunochemical and functional characterization [J]. Toxicol Appl Pharmacol, 1992, 115: 130-136.
    [161] Nebert DW, Peterson DD, Fornace AJ. Cellular responses to oxidative stress: the [Ah] gene battery as a paradigm [J]. Environ Health Perspect, 1990, 88: 13-25.
    [162] Oikari A, Nakori T. Kraft pulp mill effluent components cause liver dysfunction in trout [J]. Bull Environ Contam Toxicol, 1982, 28: 266-270.
    [163] Wang CG, Chen YX, Li Y, et al. Effects of low dose tributyltin on activities of hepatic antioxidant and phase II enzymes in Sebastiscus marmoratus [J]. Bull Environ Contam Toxicol, 2005, 74 (1): 114-119.
    [164] Petrivalsky M, Machala M, Nezveda K, et al. Glutathione-dependentdet oxifying enzymes in rainbow trout liver: Search for specific biochemical markers of chemical stress [J]. Environ Toxicol Chem, 1997, 16(7): 1417-1421.
    [165] Di Giulio RT, Habig C, Gallagher EP. Effects of Black Rock Harbor sediments on indices of biotransformation, oxidativestress, and DNA integrity in channel catfish [J]. Aquat Toxicol, 1993,26: 1-22.
    [166] Stephensen E, Svavarsson J, Sturve J, et al. Biochemical indicators of pollution exposure in shorthorn sculpin(Myoxocephalus scorpius), caught in four harbours on the southwest coast of Iceland [J]. Aquat Toxicol, 2000, 48: 431-442.
    [167] Rodriguez-Ariza A, Dorado G, Navas JI, et al. Promutagen activation by fish liver as a biomarker of littoral pollution [J]. Environ Mol Mutagen 1994, 24: 116-123.
    [168]Van Schanke A,Boon JP,Aardoom Y,et al.Effect of a dioxin-like PCB(CB 116) on the biotransformation and genotoxicity of benzo[a]pyrene in the marine flatfish dab(Limanda limanda)[J].Aquat Toxicol,2000,50:403-415.
    [169]Wang CG,Zhao Y,Zheng RH,et al.Effects of tributyltin,benzo[a]pyrene,and their mixture on antioxidant defense systems in Sebastiscus marmoratus[J].Ecotoxicol Environ Saf,2006,65(3):381-387.
    [170]王重刚,郑微云,余群等.苯并(a)芘和芘的混合物暴露对梭鱼肝脏抗氧化酶活性的影响[J].环境科学学报,2002,22(4):529-533.
    [171]Al-Ghais SM,Ali B.Inhibition of glutathione S-transferase catalyzed xenobiotic detoxication by organotin compounds in tropical marine fish tissues[J].Bull.Environ.Contam Toxicol,1999,62:207-213.
    [172]Gallagher EP,Canada AT,Di Giulio RT.The protective role of glutathione in chloro-thalonil-induced toxicity to channel catfish.Aquat Toxicol,1992,23:155-168.
    [173]Jokanovic M.Biotransformation of organophosphorus compounds[J].Toxicology,2001,166:139-160.
    [174]Schmidt K,Staaks GBO,Pflugmacher S,et al.Impact of PCB mixture(Aroclor 1254) and TBT and a mixture of both on swimming behavior,body growth and enzymatic biotransformation activities(GST) of young carp(Cyprinus carpio)[J].Aqua Toxicol,2005,71:49-59.
    [175]郁昂,陈荣,王重刚等0~#柴油水溶性成分对僧帽牡蛎DNA损伤的初步研究[J].海洋科学,2004,28(11):10-14.
    [176]Tice RR.The single cell gel/comet assay:A microgel electrophoretic technique for the detection of DNA damage and repair in individual cells.In:Phillips DH,Venitt S(Eds.),Environmental Mutagenesis.BIOS Scientific Publishers,Oxford,UK,1996.
    [177]Lee RF,Steinert SA,Nakayama K,et al.Use of DNA damage(Comet assay) and embryo development defects to assess contaminant exposure by blue crab(Callinectes sapidus)embryos.In:Henshel,D.S.,Black,M.C.,Harrass,M.C.(Eds.),Environmental Toxicology and Risk Assessment:Standardization of Biomarkers for Endocrine Disruption and Environmental Assessment,vol.8.ASTM STP 1364,American Society for Testing and Materials,West Conshohocken,PA,1999,pp341.
    [178]Steinert SA.DNA damage as bivalve biomarker and as an environmental assessment tool[J].Biomarkers,1999,4:492-496.
    [179]Bihari N,Batel R,Zahn RK.The use of alkaline elution procedure to measure DNA damage in crab haemolymph treated with benzowaxpyrene,in:Carcinogenic,Mutagenic,Teratogenic Marine Pollutants:Impact on Human Health and the Environment[Z].Adv Appl Biotechnol Ser,Gulf Pub.,TX,USA,1990,5:121-127.
    [180]Nacci DE,Cayula S,Jackim E.Detection of DNA damage in individual cells from marine organisms using the single cell gel assay[J].Aquat Toxicol,1996,35:197-210.
    [181]Brown JS,Steinert SA.DNA damage and biliary PAH metabolites in flatfish from Southern California bays and harbors,and the Channel Islands[J].Ecol Indicator,2003,3:263-274.
    [182]Gennari A,Potters M,Seinen W,et al.Organotin-induced apoptosis as observed in vitro is not relevant for induction of thymus atrophy at antiproliferative doses[J].Toxicol Appl Pharmacol,1997,147:256-266.
    [183]Gabbianelli R,Moretti M,Carpenè E,et al.Effect of different organotins on DNA of mollusk(Scapharca inaequivalvis) erythocytes assessed by the comet assay[J].Sci.Total Environ,2006,367:163-169.
    [184]Hisashi Y,Kazufumi T.Bioconcentration and elimilation of bis(tributyltin)oxide(TBTO)and tripheyltin chloride(TPTC1) in several marine fish species[J].Wat Res,1992,26(12):1589-1595.
    [185]李书霞,孙红文,王玉秋等 三丁基锡的生物富集和分配行为[J].环境科学学报,2002,22(6):726-731.
    [186]Everaarts J M,Sarkar A.DNA damage as a biomarker of marine pollution:strand breaks in seastars(Asterias rubens) from the North Sea[J].Water Sci Technol,1996,34:7-8.
    [187]黄周英,王重刚,左止宏等 三丁基锡对文蛤的抗氧化酶活性及脂质过氧化的影响[J].环境科学学报,2005,25(10):1408-1413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700