用户名: 密码: 验证码:
重金属污染土壤海州香薷诱导修复及其堆肥应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国原生的铜耐性植物—海州香薷(Elsholtzia splendens)在重金属尤其是铜污染土壤的植物修复中得到广泛关注,经十年研究发现,海州香薷地上部Cu、Zn含量较高,在土壤Cu、Zn污染的修复中具有应用前景,但其地下部Cu、Zn含量远大于地上部,Cu、Zn难以向地上部迁移。为提高海州香薷修复Cu、Zn污染的效率,施加微生物、化学试剂(尤其是低分子量有机酸,如乙二胺二琥珀酸EDDS)以及微生物-化学试剂等多种措施对海州香薷植物修复进行诱导,促进Cu、Zn向地上部迁移,使海州香薷达到诱导富集甚至达到诱导超富集。海州香薷在修复Cu、Zn污染过程中富集了一定量的Cu、Zn等重金属元素,如何合理处理植物修复后的海州香薷植物并实现其资源化利用是环境友好的重金属植物修复技术系统需要加强的内容。
     本文设置了一系列培养试验、盆栽试验和田间试验,主要研究:(1)产酸菌对海州香薷重金属提取吸收的影响;(2)丛枝菌根真菌与乙二胺二琥珀酸对海州香薷提取重金属的影响;(3)硫粉对复合污染土壤中重金属的活化作用;(4)硫粉与乙二胺二琥珀酸对海州香薷去除土壤Cu、Zn的影响;(5)修复植物香薷堆肥对缺铜土壤上冬小麦(Triticum aestivum L.)生长和铜吸收的初步研究;(6)富铜香薷堆肥对缺铜土壤上冬小麦(T.aestivum L.)产量和Cu、Zn吸收的影响。以期从杭州郊区铜冶炼厂周边长期污染土壤的土壤溶液Cu、Zn浓度变化与土壤Cu、Zn浸提态浓度变化阐述诱导剂显著提高海州香薷地上部重金属浓度,显著提高海州香薷去除土壤Cu、Zn的根际过程;探索海州香薷植物修复后资源化并应用到缺铜土壤的可行性和前景,使海州香薷植物修复成为一个较为完整的技术体系。结果表明:
     1.无色菌(Achromatium sp.)代谢过程产生大量有机酸,在培养试验中显著降低溶液pH,显著降低溶液可溶性Cu浓度,但同时该菌株使溶液可溶性Zn浓度显著增加。在盆栽试验中,接种菌株10 d显著降低土壤溶液pH,该产酸菌对土壤溶液中Cu、Zn浓度的影响与培养试验的趋势一致;接种无色菌菌株可促进海州香薷生长及其地上部对Cu的吸收,从而显著提高海州香薷对污染土壤Cu的提取吸收量,同时该产酸菌也提高海州香薷对污染土壤Zn的去除量。
     2.丛枝菌根真菌(AMF)可提高海州香薷地上部重金属浓度,显著提高海州香薷吸收去除污染土壤Cu量;同时,丛枝菌根真菌可提高海州香薷地上部Zn浓度。
     3.硫粉使土壤pH和土壤溶液pH显著下降,显著提高土壤硝酸铵浸提态重金属浓度与土壤溶液重金属浓度。与对照相比,施用400 mmol kg~(-1)硫粉使硝酸铵浸提态Cu浓度提高49倍,Zn提高75倍,Cd为11倍,Pb为93倍,使活化的Cu、Zn、Cd、Pb分别达全量的57%、87%、91%、20%。
     4.施用80 mmol kg~(-1)或120 mmol kg~(-1)硫粉也显著降低了土壤pH及土壤溶液pH,提高了土壤溶液中重金属浓度;与此同时,硫粉显著提高海州香薷地上部Zn浓度和硫浓度,且地上部Zn浓度与硫浓度间显著正相关,硫粉显著提高海州香薷去除土壤Zn的量。该土壤施用80 mmol kg~(-1)硫粉促进海州香薷生长,但120 mmol kg~(-1)硫粉对海州香薷有显著的抑制作用。
     5.EDDS可促进土壤Cu、Zn进入土壤溶液,显著增加土壤溶液Cu、Zn浓度;同时EDDS促进Cu、Zn向海州香薷地上部运输、显著提高海州香薷地上部Cu浓度,因而施用EDDS显著提高土壤Cu去除量。高温季节施用EDDS,土壤溶液中高浓度的Cu、Zn迅速下降;低温季节施用EDDS,土壤溶液中高Cu、Zn浓度持续较长时间。EDDS显著抑制生长前期海州香薷的生长并显著降低海州香薷生物量。
     6.EDDS与丛枝菌根真菌对海州香薷地上部重金属浓度的影响未出现协同作用,另一方面,EDDS与硫粉对海州香薷地上部重金属浓度的影响也未出现协同作用。EDDS对海州香薷去除土壤Cu的效果较Zn佳,而硫粉对海州香薷去除Zn的影响更佳。化学诱导措施对土壤溶液重金属浓度影响效果比生物制剂明显;与硫粉相比较,施用EDDS迅速提高土壤溶液重金属浓度,并促进Cu向海州香薷地上部转运。同时,由于EDDS容易降解,是较好的化学诱导措施。
     7.两组盆栽试验和一个田间试验显示,富铜海州香薷经堆制后应用到缺铜土壤上能显著改善冬小麦(T.aestivum L.)的生物性状,提高冬小麦的生物量、株高、小麦籽粒产量和千粒重,而对小麦籽粒中Cu、Zn浓度没有显著影响;因而海州香薷在植物修复后以堆肥的形式进行资源化应用是可行的。富铜海州香薷堆肥的肥效是多种营养元素的共同作用;在缺铜土壤上施用富铜海州香薷堆肥需适当配施无机化肥。
Elsholtzia splendens,a Chinese native Cu-tolerant plant,has been paying widely attention to in the phytoremediation of heavy metal(in particular Cu) contaminated soils. Investigations for about a decade show that E.splendens can be applied to the rehabilitation of Cu,Zn pollutants of in a soil due to high Cu,Zn concentrations in the shoot.Compared with the shoot,the root has further higher Cu,Zn concentrations because both Cu and Zn are difficult to be transported to the shoot of E.splendens.Addition of microbia chemical reagents[especially low molecular weight organic acids,for example[s, s]-ethylenediamine disuccinic acid(EDDS)],microbia in conjunction with chemical reagents,and so on,to the soil have enhanced Cu,Zn transportation from root to the shoot and increased the phytoremediation potential of Cu,Zn by E.splendens.But there has few successful examples of Cu,Zn concentrations in E.splendens shoot up to 1000,10000 mg kg~(-1) DW(Cu,Zn hyperaccumulation levels in plant,respectively) by these inducements. Furthermore,E.splendens has accumulated a certain concentration of Cu,Zn in the shoot after a phytoremedying process of Cu,Zn pollutants in the soil.Batch disposal of E. splendens biomass after phytoremediation and its resourceful utilization are two of the sticking points that environmentally friendly phytoremediation justify itself.We have designed a series of incubation,pot,and field experiments,and mainly focused on:
     (1) Effect of acid production of Achromatium sp.on heavy metal uptake by Elsholtzia splendens;
     (2) Influences of arbuscular mycorrhizal fungus(AMF) and[s, s]-ethylenediamine disuccinic acid(EDDS) on the uptake of heavy metals by Elsholtzia splendens;
     (3) Influence of sulfur powder on solubility of Cu,Pb,Cd,and Zn in the soils contaminated by heavy metals;
     (4) Effects of sulfur powder and[s,s]-ethylenediamine disuccinic acid (EDDS) on s the uptake of soil Cu/Zn by Elsholtzia splendens;
     (5) Preliminary study on effect of Elsholtzia Splendens compost on plant growth in a Cu-deficient upland aoil and Cu uptake by winter wheat;
     (6) Effects of copper-enriched composts applied to copper-deficient soil on the yield and copper and zinc uptake of wheat;
     We had groped for Cu,Zn fractions in the soil pore water,the reasons of difficult Cu,Zn hyperaccumulation in E.splendens shoot by induced reagents and the application of the Cu-enriched compost made from E.splendens in a Cu-deficient soil, and the main results are shown as the following:
     ①The strain(Achromatium sp.) had produced more acid in the incubation experiment than in the pot one;The soluble Cu concentration in the soil solution was significantly positively related to its pH while the soluble Zn concentration significantly negatively to pH;The bacterium increased E.splendens shoot biomass and shoot Cu content,and increased significantly Cu cleaning-up by E.splendens from the soil polluted by heavy metals.
     ②EDDS decreased significantly the shoot or root biomass of young E.splendens. Addition of EDDS remarkably increased shoot Cu,Zn content and Cu,Zn elimination from soil due to increasing of soluble Cu,Zn concentration in pore water.AMF inoculation affected insignificantly soil Cu,Zn fractions,shoot and root biomass of E.splendens,but increased Cu,Zn concentration in shoot,and AMF increased significantly Cu cleaning-up from the soil.Application of EDDS would increase the Cu elimination from soil contaminated by Cu,Zn in comparison with the inoculation of AMF.
     ③The treatments of 200,300,400 mmol kg~(-1) sulfur powder decreased significantly pH of soil pore water and soil pH,simultaneously increased markedly soil heavy metals' concentrations of pore water and NH_4NO_3 extractable.After 223 d of sulfur treatment,soil NH_4NO_3 extractable Cu,Pb,Cd,Zn concentrations in SH treatment were 57%,20%,91%, and 87%of their soil total concentrations,respectively.
     ④Application of 80 mmol kg~(-1) or 120 mmol kg~(-1) sulfur powder to the soil decreased significantly pH of soil pore water,and increased its heavy metals concentration,and increased markedly Zn and S concentration in the E.splendens shoot where there was a positively relationship at 0.01 level in the stem.Amendment of EDDS increased significantly Cu transportation from soil to E.splendens leaves.Application of sulfur powder influenced mostly Zn behavior,while EDDS affected mostly Cu,and there was no interaction between sulfur powder and EDDS.The sulfur powder in conjugation with EDDS enhanced the rehabilitation of soil contaminated by Cu,Zn.The degradation of EDDS would be affected by temperature and its half life was not a constant.80 mmol kg~(-1) sulfur increased the biomass of E.splendens,while 120 mmol kg~(-1) sulfur decreased notably the biomass of E.splendens.
     ⑤Application of E.splendens tissue composts significantly increased plant height, biomass and 1000-grain weight of winter wheat(Triticum aestivum L.).The effect of 'root-stem' compost was not as good as that of 'leave' compost.The leave compost increased 1000-grain weight by 58.9%and the grain yield by one fold compared to CK. Amendment of chemical fertiliser only to the Cu-deficient soil decreased wheat 1000-grain weight,biomass and grain yield.
     ⑥Application of the Cu-rich compost significantly increased plant height,biomass, grain yield,and 1000-grain weight of winter wheat(T.aestivum L.).In the pot experiment, plant height and shoot biomass in the 2%Cu-rich compost treatment increased 0.8 and 5.2 fold compared with the chemical fertiliser treatment at mature stage.Compared to chemical fertiliser CK,the 2%Cu-rich compost addition increased grain yield per pot by about 9.5 fold and 1000-grain weight by about 50%.In the field study the compost also showed stimulatory effects on plant growth and grain yield.Composting E.splendens plants grown in a Cu-contaminated soil and then applying the compost to a Cu-deficient soil may be an effective technique for the remediation of contaminated soils and re-distribution of the copper as a plant nutrient for copper deficient soils.
引文
[1]Assuncao AGL,Bookum WM,Nelissen HJM,Vooijs R,Schat H,Ernst WHO.Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types.New Phytologist,2003,159:411-419
    [2]Baker AJM,Walker PL.Ecophysiology of metal uptake by tolerant plants//Shaw AJ.Heavy metal tolerance in plants.Boca Raton,FL,USA:CRC Press,1990:155-177
    [3]Broadhurst CL,Chancy R,Angle JS,Erbe EF,Maugel TK.Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale.Plant and Soil,2004,265:225-242
    [4]Chaney RL,Malik M,Li YM,Brown SL,Brewer EP,Angle JS,Baker AJM.Phytoremediation of soil metals.Current Opinion in Biotechnology,1997,8:279-284
    [5]Chen XC,Shi JY,Chen YX,Xu XH,Xu SY,Wang YP.Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil.Canadian Journal of Microbiology,2006a,52:308-316
    [6]Chen YX,Wang YP,Lin Q,Luo YM.Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.Environment International,2005,31:861-866
    [7]Chen YX,Wang YP,Wu WX,Lin Q,Xue SG.Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator.Science of the Total Environment,2006b,356:247-255
    [8]Demirevska-Kepova K,Simova-Stoilova L,Stoyanova Z,Holzer R,Feller U.Biochemical changes in barley plants after excessive supply of copper and manganese.Environmental and experimental botany,2004,52:253-266
    [9]Ebbs SD,Kochian L.Phytoextraction of zinc by oat(Avena sativa),barley(Hordeum vulgare) and Indian mustard(Brassica juncea).Environmental Science & Technology,1998,32:802-806
    [10]Fargasova A.Phytotoxic effects of Cd,Zn,Pb,Cu and Fe on Sinapis alba L.seedlings and their accumulation in roots and shoots.Biologia Plantarum,2001,44:471-473
    [11]Islam E,Yang XE,Li TQ,Liu D,Jin XF,Meng FH.Effect of Pb toxicity on root morphology,physiology and ultrastructure in the two ecotypes of Elsholtzia argyi.Journal of Hazardous Materials,2007,147:806-816
    [12] Jiang LY, Yang XE, He ZL. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere, 2004a, 55: 1179-1187
    [13] Jiang LY, Yang XE, Shi WY, Ye ZQ, He ZL. Copper uptake and tolerance in two contrasting ecotypes of Elsholtzia argyi. Journal of Plant Nutrition, 2004b, 27:2067-2083
    [14] Jiang LY, Yang XE, Ye ZQ. Shi WY. Uptake, distribution and accumulation of copper in two ecotypes of Elsholtzia. Pedosphere, 2003, 13: 359-366
    [15] Jiang LY, Yang XE. Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens.Journal of Zhejiang University Science, 2004c, 5: 450-456
    [16] Kim DW, Son KH, Chang HW, Bae K, Kang SS, Kim HP. Anti-inflammatory activity of Elsholtzia splendens. Archives of Pharmacal Research, 2003, 26: 232-236
    [17] Liu J, Xiong ZT. Differences in accumulation and physiological response to copper stress in three populations of Elsholtzia Haichowensis S. Water, Air, and Soil Pollution, 2005, 168: 5-16
    [18] Lou LQ, Shen ZG, Li X.D. The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environmental and Experimental Botany, 2004, 51: 111-120
    [19] Ma LQ, Komar KMM, Tu C, Zhang W, Cai Y, Kennelley ED. A fern that hyperaccumulates arsenic. Nature, 2001,409:579
    
    [20] Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press, 1995
    [21] Ni CY, Chen YX, Lin Q, Tian GM. Subcellular localization of copper in tolerant and non-tolerant plant. Journal of Environmental Sciences (China), 2005, 17: 452-456
    [22] Ni CY, Shi JY, Luo YM, Chen YX. "Co-culture engineering" for enhanced phytoremediation of metal contaminated soils. Pedosphere, 2004, 14: 475-482
    
    [23] Nriagu, JO. Global Metal Pollution: poisoning the Biosphere. Environment, 1990, 32: 7-33
    [24] Peng HY, Tian SK, Yang XE. Changes of root morphology and Pb uptake by two species of Elsholtzia under Pb toxicity. Journal of Zhejiang University Science, 2005a, 6B: 546-552
    [25] Peng HY, Yang XE, Jiang LY, He ZL. Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substances & Environmental Engineering, 2005b, 40: 839-856
    [26] Peng HY, Yang XE, Tian SK. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. Zhejiang University Science, 2005c, 6B: 311-318
    [27] Peng HY, Yang XE. Distribution and accumulation of copper, lead, zinc, and cadmium contaminants in Elsholtzia splendens grown in the metal contaminated soil: a field trial study. Bulletin of Environmental Contamination and Toxicology, 2005d, 75: 1115-1122
    [28] Peng HY, Yang XE. Volatile constituents in the flowers of Elsholtzia argyi and their variation: a possible utilization of plant resources after phytoremediation. Journal of Zhejiang University Science, 2005e,6B: 91-95
    [29] Qian M, Li XD, Shen ZG. Adaptive copper tolerance in Elsholtzia haichowensis involves production of Cu-induced thiol peptides. Plant Growth Regulation, 2005, 47: 65-73
    [30] Qin SC, Luo YM, Huang CY, Wu Z, Zhu LC. Study on "Blind-Ear"-copper deficiency symptom in wheat on subtropic hill soils. Pedosphere, 1992, 2: 85-92
    [31] Reeves RD, Baker AJM. Metal-accumulating plants//Raskin I, Enslen BD. Phytoremediation of toxic metals-Using plants to clean up the environment. New York, USA: John Wileny & Sons, Inc,2000
    [32] Shi JY, Chen YX, Huang YY, He W. SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron, 2004, 35: 557-564
    [33] Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environmental Pollution, 2004, 128: 307-315
    [34] Tang SR, Wilke BM, Brooks R. Heavy-metal uptake by meta1-tolerant Elsholtzia haichowensis and Commelina communis from China. Communications in Soil Science and Plant Analysis, 2001, 32:895-905
    [35] Tang SR, Wilke BM, Huang CY. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People's Republic of China. Plant and Soil, 1999, 209:225-232
    [36] Wang FY, Lin XG, Yin R, Wu LH. Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Applied Soil Ecology, 2006, 31:110-119
    [37] Wang FY, Lin XG, Yin R. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn,Pb and Cd by Elsholtzia splendens-a field case. Environmental Pollution, 2007, 147: 248-255
    [38] Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 2002, 130: 1552-1561
    [39] Wei ZG, Wong JWC, Hong FS, Zhao HY, Li HX, Hu F. Determination of inorganic and organic anions in xylem saps of two contrasting oilseed rape (Brassica juncea L.) varieties: Roles of anions in long-distance transport of cadmium. Microchemical Journal, 2007, 86: 53-59
    [40] Weng GY, Wu LH, Wang ZQ, Luo YM, Christie P. Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture.Environment International,2005,31:880-884
    [41]Wiliams LE,Pittman JK,Hall JL.Emerging mechanisms for heavy metal transport in plants.Acta Biochimica et Biophysica Sinica.2000,1465:104-126
    [42]Wu LH,Sun XF,Luo YM,Xing XR and Christie R Influence of[S,S]-EDDS on phytoremediation of copper and zinc by Elsholtzia splendens from metal-contaminated soil.International Journal of Phytoremediation,2007,9:228-241
    [43]Wu SC,Cheung KC,Luo YM,Wong MH.Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea.Environmental Pollution,2006,140:124-135
    [44]Yang MJ,Yang XE,R(o|¨)mheld V.Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity.Journal of Plant Nutrition,2002,25:1359-1375
    [45]Yang XE,Feng Y,He ZL,Stoffella PJ.Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.Journal of Trace Elements in Medicine and Biology,2005a,18:339-353
    [46]Yang XE,Long XX,Ye HB,He ZL,Calvert DV,Stofella PJ.Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species(Sedum alfredii Hance).Plant and Soil,2004,259:181-189
    [47]Yang XE,Peng HY,Jiang LY.Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA,citric acid,and compost.International Journal of Phytoremediation,2005b,7:69-83
    [48]Yang XE,Peng HY,Tian SK.Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity.Journal of Zhejiang University Science,2005c,6B:96-99
    [49]Yang XE,Shi WY,Fu CX,Yang MJ.Copper-hyperaccumulators of Chinese nitive ports:Characteristics and possible use for phytoremediation//Bassam NEL.Sustainable Agriculture for Food,Energy and Industry.London,UK:James,James Publishers Ltd,1998
    [50]Zhao FJ,Dunham S J,McGrath SP.Arsenic hyperaccumulation by different fern species.New Phytologist,2002,156:27-31
    [51]陈同斌,韦朝阳,黄则春,黄启飞,鲁全国,范稚莲.砷超富集植物蜈蚣草及其对砷的富集特性.科学通报,2002,47:207-210
    [52]江春玉,盛下放,夏娟娟.重金属铜抗性菌株的筛选及其生物学特性的研究.生态学杂志,2005,24:6-8
    [53]姜理英,石伟勇,杨肖娥,傅承新,陈伟光.铜矿区超积累Cu植物的研究.应用生态学报,2002,13:906-908
    [54]姜理英,杨肖娥,叶正钱,石伟勇.海州香薷和紫花香薷对Cu、Zn的吸收和积累.农业环境科 学学报,2003,22:524-528
    [55]柯文山,王万贤,杨毅.海州香薷种群微量金属元素的累积分布特征.环境科学与技术,2000,90:41-44
    [56]柯文山,席红安,杨毅,王万贤,陈世俭.大冶铜绿山矿区海州香薷(Elsholtzia haichowensis)植物地球化学特征分析.生态学报,2001,21:907-912
    [57]柯文山,熊治廷,柯世省,金则新.两个海州香薷种群根对Cu的吸收及Cu诱导的ATP酶活性差异.环境科学学报,2007a,27:1214-1221
    [58]柯文山,熊治廷,柯世省,金则新.铜毒对海州香薷(Elsholtzia splendens)不同种群光合作用和蒸腾作用的影响.生态学报,2007b,27:1368-1375
    [59]柯文山,熊治廷,谢明洁,熊双莲,黄河,李民敬.不同来源的海州香薷和野胡萝卜的铜抗性及铜积累差异.环境工程学报,2007c,1:94-100
    [60]李锋民,熊治廷,胡洪营.螯合剂对铜毒性影响.环境科学,2003a,24:96-100
    [61]李锋民,熊治廷,胡洪营.海州香薷对铜的蓄积及铜的毒性效应.环境科学,2003b,24:30-34
    [62]李锋民,熊治廷,王狄,王新力.铜铁铅单一及复合污染对铜草幼苗生长的影响.农业环境保护,2001,2:71-73,77
    [63]李华,骆永明,宋静.不同铜水平下海州香薷的生理特性和铜积累研究.土壤,2002,34:225-228
    [64]李宁,吴龙华,李法云,骆永明.不同铜污染土壤上海州香薷生长及铜吸收动态.土壤,2006,38:598-601
    [65]李宁,吴龙华,孙小峰,李法云,骆永明.修复植物产后处置技术现状与展望.土壤,2005,37:587-592
    [66]林淑芬,李辉信,胡锋.蚓粪对黑麦草吸收污染土壤重金属铜的影响.土壤学报,2006,43:911-918
    [67]刘杰,熊治廷,黄河.Cu~(2+)胁迫下海州香薷生理反应的种群差异.武汉大学学报(理学版),2004,50:726-730
    [68]卢信,赵炳梓,张佳宝,龚键东.不同可溶性有机碳对铜在土壤中迁移的影响.土壤学报,2007,44:418-424
    [69]罗光明,杨光义,刘红宇,陈岩,李霞,杨雅琴.江香薷挥发油提取工艺优化.中药材,2006,3:284-286
    [70]彭红云,杨肖娥.香薷植物修复铜污染土壤的研究进展.水土保持学报,2005,19:195-199
    [71]钱猛,沈振国,魏岚.螯合剂EDDS和EDTA诱导海州香薷积累土壤重金属的比较研究.农业环境科学,2006,25:113-118
    [72]裘希雅,孙小峰,何旭华,蒋玉根,吴龙华,胡宁静,骆永明,戴学龙.施用EDDS对海州香薷 铜锌吸收到强化作用及淋溶风险.浙江农业学报,2006,18:86-89
    [73]上海第一医学院药学系生药学教研组编.杭州药用植物志.上海:上海科学技术出版社,1961
    [74]施积炎,陈英旭,林琦,王远鹏.根分泌物与微生物对污染土壤重金属活性的影响.中国环境科学,2004a,24:316-319
    [75]施积炎,陈英旭,田光明,林琦.海州香薷和鸭跖草铜吸收机理.植物营养与肥料学报,2004b,10(6):642-646
    [76]施积炎,陈英旭,袁小凤,武贝,黄宇营,何伟.同步辐射X荧光分析海州香薷根中铜结合蛋白的微量元素.核技术,2004c,27:736-739
    [77]束文圣,杨开颜,张志权,杨兵,蓝崇钰.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究.应用与环境生物学报,2001,7:7-12
    [78]孙小峰,吴龙华,骆永明.EDDS对海州香薷修复重金属复合污染土壤的田间效应.土壤,2006,38:609-613
    [79]唐世荣.重金属在海州香薷和鸭跖草叶片提取物中的分配.植物生理学通讯,2000,36:128-129
    [80]田生科,李廷轩,彭红云,杨肖娥,李廷强,Ejaz.铜胁迫对海州香薷和紫花香薷根系形态及铜富集的影响.水土保持学报,2005,19:97-100,183
    [81]王发园,林先贵,尹睿.丛枝菌根真菌对海州香薷生长及其Cu吸收的影响.环境科学,2005,26:174-180
    [82]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21:1196-1203
    [83]翁高艺,汪自强,吴龙华,骆永明,宋静,钱薇,林琦,王发园,蒋玉根,戴学龙,裘希雅.可降解络合剂及微生物调控对海州香薷修复污染土壤的效应.土壤,2005,37:152-157
    [84]吴龙华,李宁,李振高,骆永明.利用修复植物海州香薷制作含铜有机肥料的方法.发明专利受理号:CN200610037757.3,2006
    [85]夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997,18:72-76
    [86]谢明吉,柯文山,王万贤,熊治廷,吴明煜,陈建军.铜胁迫下两种海州香薷的膜脂过氧化水平及抗氧化能力比较.生态学杂志,2005,24:935-938
    [87]谢学锦,徐邦梁.铜矿指示植物海州香薷.地质学报,1953,32(4):360-368
    [88]杨肖娥,龙新宪,倪吾钟,傅承新.东南景天(Sedum alfredii Hance)——一种新的锌超富集植物.科学通报,2002,47:1003-1006
    [89]于宝章,王遂义.河南植物志(第三册).郑州:河南科学技术出版社,1997
    [90]中国科学院林业土壤研究所编辑(刘慎谔主编).东北药用植物志.北京:科学出版社,1959
    [91]周乃元,王仁武.植物修复——治理土壤重金属污染的新途径.中国生物工程杂志,2002,22:53-57
    [1]Chen YX,Wang YP,Lin Q,Luo YM.Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.Environment International,2005,31:861-866
    [2]Chen YX,Wang YP,Wu WX,Lin Q,Xue SG.Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator.Science of the Total Environment,2006,356:247-255
    [3]Garbisu C,Alkorta I.Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment.Bioresource Technology,2001,77:229-236
    [4]Jiang LY,Yang XE,He ZL.Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens.Chemosphere,2004,55:1179-1187
    [5]Jiang LY,Yang XE,Ye ZQ Shi WY.Uptake,distribution and accumulation of copper in two ecotypes of Elsholtzia.Pedosphere,2003,13:359-366
    [6]Luo CL,Shen ZG,Li XD.Enhanced phytoextraction of Cu,Pb,Zn and Cd with EDTA and EDDS.Chemosphere,2005,59:1-11
    [7]McGrath SP,Zhao FJ,Lombi E.Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils.Plant and Soil,2001,232:207-214
    [8]Nakajima A.Electron spin resonance study of copper biosorption by bacteria.Water Research,2002,36:2091-2097
    [9]Salam AK,Helmke PA.The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution.Geoderma,1998,83:281-291
    [10]Salt DE,Smith RD,Raskin I.Phytoremediation.Annual Review of Plant Physiology & Plant Molecular Biology,1998,49:643-668
    [11]Sauve S,Novell W.Speciation and complexation of cadmium in extracted soil solutions.Environmental Science & Technology,2000,34:291-296
    [12]Smith LA,Means JL,Chen A,Alleman B,Chapman CC,Tixier JS,Brauning JSE,Gavaskar AR,Royer MD.Remedial options for metals-contaminated sites.New York:Lewis Publishers,1995
    [13]Song J,Zhao FJ,Luo YM,McGrath SP,Zhang H.Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils.Environmental Pollution,2004,128:307-315
    [14]Wang FY,Lin XG,Yin R,Wu LH.Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions.Applied Soil Ecology,2006,31:110-119
    [15]Wang FY,Lin XG,Yin R.Role of microbial inoculation and chitosan in phytoextraction of Cu,Zn,Pb and Cd by Elsholtzia splendens-a field case.Environmental Pollution,2007,147:248-255
    [16]Weng GY,Wu LH,Wang ZQ,Luo YM,Christie P.Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture.Environment International,2005,31:880-884
    [17]Whiting SN,de Souza MP,Terry N.Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens.Environmental Science & Technology,2001,35:3144-3150
    [18]Yang MJ,Yang XE,R(o|¨)mheld V.Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity.Journal of Plant Nutrition,2002,25:1359-1375
    [19]Yang XE,Shi WY,Fu CX,Yang MJ.Copper-hyperaccumulators of Chinese nitive ports:Characteristics and possible use for phytoremediation//Bassam NEL.Sustainable Agriculture for Food,Energy and Industry.London,UK:James,James Publishers Ltd,1998
    [20]彭红云,杨肖娥.香薷植物修复铜污染土壤的研究进展.水土保持学报,2005,19:195-199
    [21]施积炎,陈英旭,林琦,王远鹏.根分泌物与微生物对污染土壤重金属活性的影响.中国环境科学,2004,24:316-319
    [22]江春玉,盛下放,夏娟娟.重金属铜抗性菌株的筛选及其生物学特性的研究.生态学杂志,2005,24:6-8
    [23]王发园,林先贵,尹睿.丛枝菌根真菌对海州香薷生长及其Cu吸收的影响.环境科学,2005,26:174-180
    [24]翁高艺,汪自强,吴龙华,骆永明,宋静,钱薇,林琦,王发园,蒋玉根,戴学龙,裘希雅.可降解络合剂及微生物调控对海州香薷修复污染土壤的效应.土壤,2005,37:152-157
    [1]Abbott LK,Robson AD,De Boer G.The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus,Glomus fasciculatum.New Phytologist,1984,97:437-446
    [2]Bradley R,Burr AJ,Read DJ.Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris.Nature,1981,292:335-337
    [3]Bradley R,Burt AJ,Read DJ.The biology of mycorrhiza in the Ericaceae.Ⅷ.The role of mycorrhizal infection in heavy metal resistance.New Phytologist,1982,91:669-682
    [4]Brundrett MC.Coevolution of roots and mycorrhizas of land plants.New Phytologist,2002,154:275-304
    [5]Bucheli-Witschel M,Egli T.Environmental fate and microbial degradation of aminopolycarboxylic acids.FEMS Microbiology Reviews,2001,25:69-106
    [6]Cao A,Carucci A,Lai T,Colla PL,Tamburini E.Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. European Journal of Soil Biology, 2007, 43(4): 200-206
    [7] Christie P, Li XL, Chen BD. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 2004, 261: 207-217
    [8] Evangelou MWH, Bauer U, Ebel M, Schaeffer A. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere, 2007,68(2): 345-353
    [9] Heggo A, Angle JS, Chaney RL. Effects of vesiculararbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biology & Biochemistry, 1990, 22, 865-869
    [10] Hetrick BAD, Wilson GWT, Figge DAH. The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy-metal mine spoil. Environmental Pollutiont,1994,86:171-179
    [11] Jiang LY, Yang XE, He ZL. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere, 2004, 55: 1179-1187
    [12] Jiang LY, Yang XE, Ye ZQ, Shi WY. Uptake, distribution and accumulation cf copper in two ecotypes of Elsholtzia. Pedosphere, 2003, 13(4): 359-366
    [13] Jones MD, Hutchinson TC. Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Sclerodermaflavidun. 1. Effects on growth, photosynthesis, respiration and transpiration.New Phytologist, 1988a, 108,451-459
    [14] Jones MD, Hutchinson TC. Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Sclerodermaflavidwn. 2. Uptake of nickel, calcium, magnesium, phosphorus and iron.New Phytologist, 1988b, 108,461-470
    [15] Killham K, Firestone MK. Vesicular-arbuscular mycorrhizal mediation of grass response to acidic and heavy metal deposition. Plant Soil, 1983, 72: 39-48
    [16] Li XL, Christie P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere, 2001, 42(2): 201-207
    [17] Liu D, Islam E, Li TQ, Yang, XE, Jin XF, Mahmood Q. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials, 2007 (on line)
    [18] McLaughlin MJ. Bioavailability of metals to terrestrial plants. In: Allen HE (Ed.). Bioavailability of Metals in Terrestrial Ecosystems: Importance of Partitioning for Bioavailability to Invertebrates,Microbes, and Plants. Pensacola, Florida, SETAC Press: 2002, 39-68
    [19] Meers E, Laing GD, Unamuno V, Ruttens A, Vangronsveld J, Tack FMG, Verloo MG. Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma,2007, 141:247-259
    [20] Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 2005,58(8): 1011-1022
    [21] Meers E, Tack FMG, Verloo MG. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: Implications for its use soil remediation. Chemosphere, 2008, 70(3):358-363
    [22] Ni CY, Shi JY, Luo YM, Chen YX. "Co-culture engineering" for enhanced phytoremediation of metal contaminated soils. Pedosphere, 2004, 14(4): 475-482
    [23] Quartacci MF, Irtelli B, Baker AJM, Navari-Izzo F. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere,2007,68(10): 1920-1928
    [24] Sauve S, Dumestre A, McBride M, Hendershot W. Derivation of soil quality criteria using predicted chemical speciation of Pb~(2+) and Cu~(2+). Environmental Toxicology and Chemistry, 1998,17: 1481-1489
    [25] Schowanek D, Feijtel TCJ, Perkins CM, Hartman FA, Federle TW, Larson RJ. Biodegradation of [S, S], [R, R] and mixed stereoisomers of Ethylene Diamine Disuccinic Acid (EDDS), a transition metal chelator. Chemosphere, 1997, 34(11): 2375-2391
    [26] Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environmental Pollution, 2004, 128: 307-315
    [27] Tandy S, Ammann A, Schulin R, Nowack B. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environmental Pollution, 2006a, 142(2): 191-199
    [28] Tandy S, Schulin R, Nowack B. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflower. Chemosphere, 2006b, 62 (9): 1454-1463
    [29] Tinker PB, Gildon A. Mycorrhizal fungi and ion uptake. In: Robb DA, Pierpoint WS (Ed.). Metals and Micronutrients: Uptake and Utilization of Metals by Plants. London: Academic Press, 1983,21-32
    [30] Wang FY, Lin XG, Yin R, Wu LH. Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Applied Soil Ecology, 2006, 31: 110-119
    [31]Wang FY,Lin XG,Yin R.Role of microbial inoculation and chitosan in phytoextraction of Cu,Zn,Pb and Cd by Elsholtzia splendens-a field case.Environmental Pollution,2007,147:248-255
    [32]Weissenhorn I,Leyval C.Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and Cadmium uptake in sand culture.Plant and Soil,1995,175:233-238
    [33]Wu LH,Sun XF,Luo YM,Xing XR and Christie P.Influence of[S,S]-EDDS on phytoremediation of copper and zinc by Elsholtzia splendens from metal-contaminated soil.International Journal of Phytoremediation,2007,9:228-241
    [34]Yang MJ,Yang XE,R(o|¨)mheld V.Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity.Journal of Plant Nutrition,2002,25:1359-1375
    [35]黄艺,李婷,费颖恒.外生丛枝菌根真菌对油松幼苗根际土壤重金属赋存的影响.生态与农村环境学报,2007,23(3):70-76
    [36]李晓林,冯固.丛枝菌根生理生态.北京:华文出版社,2001
    [37]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999
    [38]彭红云,杨肖娥.香薷植物修复铜污染土壤的研究进展.水土保持学报,2005,19(5):195-199
    [39]钱猛,沈振国,魏岚.螯合剂EDDS和EDTA诱导海州香薷积累土壤重金属的比较研究.农业环境科学,2006,25(1):113-118
    [40]宋静,钟继承,吴龙华,王国庆,李晨曦,骆永明,钱薇.EDTA与EDDS螯合诱导印度芥菜吸取修复重金属复合污染土壤研究.土壤,2006,38(5):619-625
    [41]孙小峰,吴龙华,骆永明.EDDS对海州香薷修复重金属复合污染土壤的田间效应.土壤,2006,38(5):609-613
    [42]王发园,林先贵,尹睿.丛枝菌根真菌对海州香薷生长及其Cu吸收的影响.环境科学,2005,26(5):174-180
    [43]翁高艺,汪自强,吴龙华,骆永明,宋静,钱薇,林琦,王发园,蒋玉根,戴学龙,裘希雅.可降解络合剂及微生物调控对海州香薷修复污染土壤的效应.土壤,2005,37(2):152-157
    [44]谢学锦,徐邦梁.铜矿指示植物海州香薷.地质学报,1953,32(4):360-368
    [1]Cui YS,Dong YT,Li HF,Wang QR.Effect of elemental sulfur on solubility of soil heavy metals and their uptake by maize.Environment International,2004a,30:323-328
    [2]Cui YS,Wang QR,Dong YT,Li HF,Christie P.Enhanced uptake of soil Pb and Zn by Indian mustard and winter wheat following combined soil application of elemental sulfur and EDTA.Plant and Soil,2004b,261:181-188
    [3]Kayser A,Wenger K,Keller A,Attinger W,Felix HR,Gupta SK,Schulin R.Enhancement of phytoextraction of Zn,Cd,and Cu from calcareous soil:the use of NTA and sulfur amendments.Environmental Science & Technology,2000,34(9):1778-1783
    [4]Lee A,Boswell CC,Watkinson JH.Effect of particle size on the oxidation of elemental sulfur,thiobacilli numbers,soil sulfate and its availability to pasture.New Zealand Journal of Agricultural Research,1988,31:179-186
    [5]Martinez CE,Motto HL.Solubility of lead and copper added to mineral soils.Environmental Pollution,2000,107:153-158
    [6]Quartacci MF,Argilla A,Baker AJM,Navari-Izzo F.Phytoextraction of metals from a multiply contaminated soil by Indian mustard.Chemosphere,2006,63:918-925
    [7]Seidel H,Ondruschka J,Morgenstem P,Stottmeister U.Bioleaching of heavy metals from contaminated aquatic sediments using indigenous sulfur-oxidizing bacteria:a feasibility study.Water Science and Technology,1998,37:387-394
    [8]Tandy S,Schulin R,Nowack B.The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 2006, 62(9): 1454-1463
    [9] Tichy R, Fajtl J, Kuzel S, Kolar L. Use of elemental sulfur to enhance a cadmium solubilization and its vegetative removal from contaminated soil. Nutrient Cycling in Agroecosystems, 1997, 46:249-255
    [10] Wang GQ, Koopmans GF, Song J, Temminghoff EJM, Luo YM, Zhao QG Japenga J. Mobilization of heavy metals from a contaminated paddy soil by EDDS, EDTA and elemental sulfur.Environmental Geochemistry and health, 2007, 29: 221-235
    [11] Wang QR, Dong Y, Cui Y, Liu X. Instances of soil and crop heavy metal contamination in China.Soil & Sediment Contamination, 2001, 10: 497-510
    [1] Bucheli-Witschel M, Egli T. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiology Reviews, 2001, 25: 69-106
    
    [2] Cao A, Carucci A, Lai T, Colla PL, Tamburini E. Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. European Journal of Soil Biology, 2007, 43(4): 200-206
    [3] Cui YS, Dong YT, Li HF, Wang QR. Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize. Environment International, 2004a, 30: 323-328
    [4] Cui YS, Wang QR, Dong YT, Li HF, Christie P. Enhanced uptake of soil Pb and Zn by Indian mustard and winter wheat following combined soil application of elemental sulphur and EDTA.Plant and Soil, 2004b, 261: 181-188
    [5] Evangelou MWH, Bauer U, Ebel M, Schaeffer A. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere, 2007a,68(2): 345-353
    [6] Evangelou MWH, Ebel M, Schaeffer A. Chelate assisted phytoextraction of heavy metals from soil.Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 2007b, 68: 989-1003
    [7] Jaworska JS, Schowanek D, Feijtel TCJ. Environmental risk assessment for trisodium [S,S]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications.Chemosphere, 1999, 38(15): 3597-3625
    [8] Jiang LY, Yang XE, Ye ZQ, Shi WY. Uptake, distribution and accumulation of copper in two ecotypes of Elsholtzia. Pedosphere, 2003, 13(4): 359-366
    [9] Jiang LY, Yang XE. Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens.Journal of Zhejiang University Science, 2004, 5(4): 450-456
    [10] Jung SJ, Jang KH, Sihn EH, Park SK, Park CH. Characteristics of sulfur oxidation by a newly isolated Butkholderia spp. Journal of Microbiology and Biotechnology, 2005, 15: 716-721
    
    [11] Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environmental Science & Technology, 2000, 34(9): 1778-1783
    
    [12] Lou LQ, Shen ZG, Li XD. The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environmental and Experimental Botany, 2004, 51: 111 -120
    
    [13] Luo CL, Shen ZG, Li XD. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.Chemosphere, 2005, 59: 1-11
    [14] Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. Asilicon transporter in rice. Nature, 2006, 440: 688-691
    [15] Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M. An efflux transporter of silicon in rice. Nature, 2007, 448: 209-212
    [16] Ma M, Lau PS, Jia YT, Tsang WK, Lam SKS, Tarn NFY, Wong YS. The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Science, 2003, 164(1): 51-60
    [17] Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 2005,58(8): 1011-1022
    [18] Moser US, Olson RV. Sulfur oxidation in 4 soils as influenced by soil moisture tension and sulfur bacteria. Soil Science, 1953, 76: 251-257
    [19] Ni CY, Shi JY, Luo YM, Chen YX. "Co-culture engineering" for enhanced phytoremediation of metal contaminated soils. Pedosphere, 2004, 14(4): 475-482
    [20] Schowanek D, Feijtel TCJ, Perkins CM, Hartman FA, Federle TW, Larson RJ. Biodegradation of [S,S], [R,R] and mixed stereoisomers of Ethylene Diamine Disuccinic Acid (EDDS), a transition metal chelator. Chemosphere, 1997, 34(11): 2375-2391
    [21] Shi JY, Chen YX, Huang YY, He W. SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron, 2004, 35: 557-564
    [22] Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environmental Pollution, 2004, 128: 307-315
    [23] Sun XF, Wu LH, Luo YM. Determination of ethylenediaminedisuccinic acid in soils and plants using reversed phase high performance liquid chromatography. Chinese Journal of Analytical Chemistry, 2006, 34( 10): 1375-1378
    [24] Tandy S, Ammahn A, Schulin R, Nowack B. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environmental Pollution, 2006a, 142(2): 191-199
    [25] Tandy S, Schulin R, Nowack B. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 2006b, 62(9): 1454-1463
    [26] Wang FY, Lin XG, Yin R. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn,Pb and Cd by Elsholtzia splendens-a field case. Environmental Pollution, 2007a, 147: 248-255
    [27] Wang GQ, Koopmans GF, Song J, Temminghoff EJM, Luo YM, Zhao QG, Japenga J. Mobilization of heavy metals from a contaminated paddy soil by EDDS,EDTA and elemental sulphur.Environmental Geochemistry and health,2007b,29:221-235
    [28]Witschel M,Egli T,Zehnder AJB,Wehrli E,Spycher M.Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.Microbiology,1999,145:973-983
    [29]Wu LH,Sun XF,Luo YM,Xing XR and Christie R Influence of[S,S]-EDDS on phytoremediation of copper and zinc by Elsholtzia splendens from metal-contaminated soil.International Journal of Phytoremediation,2007,9:228-241
    [30]Yang MJ,Yang XE,R(o|¨)mheld V.Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity.Journal of Plant Nutrition,2002,25:1359-1375
    [31]Yang XE,Peng HY,Jiang LY.Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA,citric acid,and compost.International Journal of Phytoremediation,2005,7(1):69-83
    [32]Yang XE,Shi WY,Fu CX,Yang MJ.Copper-hyperaccumulators of Chinese nitive ports:Characteristies and possible use for phytoremediation//Bassam NEL.Sustainable Agriculture for Food,Energy and Industry.London,UK:James,James Publishers Ltd,1998
    [33]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999
    [34]钱猛,沈振国,魏岚.螯合剂EDDS和EDTA诱导海州香薷积累土壤重金属的比较研究.农业环境科学,2006,25(1):113-118
    [35]孙小峰,吴龙华,骆永明.EDDS对海州香薷修复重金属复合污染土壤的田间效应.土壤,2006,38(5):609-613
    [36]周德庆.微生物学教程.北京:高等教育出版社,1993,304
    [1]Baker AJM,McGrath SP,Sidoli CMD,Reeves RD.The possibility of in-situ heavy-metal decontamination of polluted soils using crops of metal-accumulating plants.Resources Conservation and Recycling,1994,11(1-4):41-49
    [2]Cleon WR.Plant Physiology Laboratory Manual.Wadsworth Publishing Company,Inc,Belmont,CA.,1974
    [3]Graham RD,Nambiar EKS.Advance in research on copper deficiency in cereals.Aust.J.Agri.Res.,1981,32:1009-1037
    [4]Marschner H,Romheld V,Horst WJ,Martin R Root induced changes in the rhizosphere:importance for mineral nutrition of plants.Z.Pflanzenernachr.Bodenk,1986,149:441-456
    [5]Penney DC,Solbeng ED.Proceeding of the International Symposium on the Role of Sulphur,Magnesium and Micronutients in Balanced Plant Nutrient:1991,273-280
    [6]Qin SC,Luo YM,Huang CY,Wu Z,Zhu LC.Study on "Blind-Ear"-copper deficiency symptom in wheat on subtropic hill soils.Pedosphere,1992,2(1):85-92
    [7]Sas-Nowosielska A,Kucharski R,Malkowski E,Pogrzeba M,Kuperberg JM.Phytoextraction crop disposal-an unsolved problem.Environmental Pollution,2004,128:373-379
    [8]Tilston EL,Pitt D,Fuller MP,Groenhof AC.Compost increases yield and decreases take-all severity in winter wheat.Field Crops Research,2005,94(2-3):178-188
    [9]Weng GY,Wu LH,Wang ZQ,Luo YM,Christie P.Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture.Environment International,2005,31(6):880-884
    [10]Zhao F,McGrath SP,Crosland AR.Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP-AES).Communications in Soil Science and Plant Analysis,1994,25:407-418
    [11]胡延吉.两个不同适应性冬小麦品种的竞争能力.作物学报,2003,29(2):175-180
    [12]黄增奎,徐素君,方桂鑫,娄峰.浙江省土壤有效态微量元素浓度和微肥应用.土壤肥料,1995,3:28-32
    [13]蒋德安.植物生理学实验指导.四川:成都科技大学出版社,1999,pp 22-23
    [14]李洪连,黄俊丽,袁红霞.有机改良剂在防治植物土传病害中的应用.植物病理学报,2002, 32(4):289-295
    [15]刘桂芬,李艳华.合理利用有机肥的技术措施.内蒙古农业科技.1998(增刊):189-190
    [16]刘铮,朱其清,唐丽华,徐俊祥,尹楚良.我国缺乏微量元素的土壤及其区域分布.土壤学报,1982,19(3):209-221
    [17]鲁如坤.土壤农业化学分析方法.中国农业科技出版社,北京,1999,12-14,211
    [18]马镜波.畜禽粪便无害化处理制商品有机肥及有机无机复混肥.磷肥与复肥,1998,5:49-51
    [19]秦遂初,骆永明,黄昌勇,吴政,竺陆春.小麦缺铜不实与花粉淀粉积累的关系.作物学报,1994,20(4):453-456
    [20]唐世荣,黄昌勇,朱祖祥.利用植物修复污染土壤研究进展.环境科学进展,1996,4(6):10-16
    [21]吴龙华,骆永明.铜污染土壤修复的有机调控研究Ⅲ-EDTA和低分子量有机酸的效应土壤学报,2002,39(5):679-685
    [22]郑树亮,黑恩成.应用胶体化学.上海:华东理工大学出版社,1996
    [23]周可金,马成泽.微肥配施对花生产量与效益的影响.中国油料作物学报,2003,25(3):76-78
    [1]Graham RD,Nambiar EKS.Advance in research on copper deficiency in cereals.Australian Journal of Agricultural Research,1981,32:1009-1037
    [2]Halliwell B,Gutteridge JMC.Oxygen toxicity,oxygen radicals,transition metals and diseases.The Biochemical Journal,1984,219(1):1-14
    [3]Kim DW,Son KH,Chang HW,Bae K,Kang SS,Kim HP.Anti-inflammatory activity of Elsholtzia splendens.Archives of Pharmacal Research,2003,26:232-236
    [4]Konieczynski P,Wesolowski M.Total phosphorus and its extractable form in plant drugs.Interrelation with selected micro-and macroelements.Food Chemistry,2007,103(1):210-216
    [5]Marschner,H.Mineral nutrition of higher plants.Academic Press,London,UK,1995
    [6]Peng HY,Yang XE.Volatile constituents in the flowers of Elsholtzia argyi and their variation:a possible utilization of plant resources after phytoremediation.Journal of Zhejiang University Science,2005,6B(2):91-95
    [7]Predki PF,Sarkar B.Effect of replacement of "zinc finger" zinc on estrogen receptor DNA interactions.The Journal of Biological Chemistry,1992,267:5842-5846
    [8]Qin SC,Luo YM,Huang CY,Wu Z,Zhu LC.Study on "Blind-Ear"-copper deficiency symptom in wheat on subtropic hill soils.Pedosphere,1992,2(1):85-92
    [9]Rashid A,Chaudhry FM,Sharif M.Micronutrient availability to cereals from calcareous soils Ⅲ.Zinc absorption by rice and its inhibition by important ions of submerged soils.Plant and Soil,1976,45(3):613-623
    [10]Sas-Nowosielska A,Kucharski R,Malkowski E,Pogrzeba M,Kuperberg JM.Phytoextraction crop disposal-an unsolved problem.Environmental Pollution,2004,128:373-379
    [11]Sch(u|¨)tzend(u|¨)bel A,Polle A.Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization.Journal of Experimental Botany,2002,53(372):1351-1365
    [12]Shi JY,Chen YX,Huang YY,He W.SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens.Micron,2004,35:557-564
    [13]Yang MJ,Yang XE,R(o|¨)mheld V.Growth and nutrient composition of Elsholtzia splendens Nakal under copper toxicity.Journal of Plant Nutrition,2002,25:1359-1375
    [14]Zhao F,McGrath SP,Crosland AR.Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP-AES).Communications in Soil Science and Plant Analysis,1994,25:407-418
    [15]柯文山,席红安,杨毅,王万贤,陈世俭.大冶铜绿山矿区海州香薷(Elsholtzia haichowensis)植物地球化学特征分析.生态学报,2001,21(6):907-912
    [16]李宁,吴龙华,李法云,骆永明.不同铜污染土壤上海州香薷生长及铜吸收动态.土壤,2006,38(5):598-601
    [17]刘克锋.土壤、植物营养与施肥.气象出版社,北京,2006
    [18]刘铮,朱其清,唐丽华,徐俊祥,尹楚良.我国缺乏微量元素的土壤及其区域分布.土壤学报,1982,19(3):209-221
    [19]鲁如坤.土壤农业化学分析方法.中国农业科技出版社,北京,1999,12-14,211
    [20]彭红云,杨肖娥.香薷植物修复铜污染土壤的研究进展.水土保持学报,2005,19(5):195-199
    [21]秦遂初,骆永明,黄昌勇,吴政,竺陆春.小麦缺铜不实与花粉淀粉积累的关系.作物学报,1994,20(4):453-456
    [22]束文圣,杨开颜,张志权,杨兵,蓝崇钰.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属浓度研究.应用与环境生物学报,2001,7(1):7-12
    [23]唐明灯,吴龙华,李宁,骆永明,胡锋,张良兴.修复植物香薷堆肥对缺铜土壤上冬小麦生长和铜吸收的初步研究.土壤,2006,38:614-618
    [24]GB 15199-94.中华人民共和国国家标准,食品Cu限量,1994
    [25]GB 13106-91.中华人民共和国国家标准,食品Zn限量,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700