用户名: 密码: 验证码:
非线性演化方程精确解构造性理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性动力学是非线性科学的一个重要分支,非线性动力学研究对象主要包括分叉、混沌、分形、孤立子等新的现象。非线性演化方程精确解的求解方法是孤立子理论的一个主要内容。随着计算机技术的发展,特别是计算机符号计算软件的出现,非线性演化方程精确解构造性理论及算法研究已成为非线性科学中的前沿研究课题和新的热点。虽然目前已经提出和发展了许多构造非线性演化方程精确解的理论和算法,但是由于构造非线性演化方程精确解没有也不可能有统一而普适的方法,因此继续寻找一些行之有效的求解方法依然是一项十分重要和极有价值的工作。本文在归纳和总结现有各种构造非线性演化方程精确解的主要方法的基础上,对非线性演化方程精确解的构造理论及算法进行了较为系统和深入的研究,提出和拓展了几种构造非线性演化方程精确解的新方法,并将这些方法应用到了许多力学和物理学中非常重要的非线性演化方程,结果不仅获得了这些方程已有的精确解,而且得到了许多新解。因此本文的工作丰富和发展了非线性演化方程精确解的构造理论及算法,具有较大的理论意义和应用价值。
     全文共分七章。第一章为绪论,对非线性演化方程精确解的构造理论和算法进行综述,说明课题的来源,介绍本文的研究目的、主要内容和创新点。第二章用力学的方法简单地导出了几个重要的非线性演化方程,说明本文研究中所涉及到的非线性演化方程是有力学或物理学背景的。第三章利用多项式判别系统把范式代数方法扩展到其引入的常微分方程的未知函数的最高次幂大于4的情形,并用该方法构造了KdV方程和变形Boussinesq方程的一系列精确行波解,包括有理函数解,孤波解,三角函数周期解,Jacobi周期函数解和隐函数解。第四章引入了一个低阶辅助常微分方程,并获得该方程的一些新解,基于该辅助方程建立了一个辅助方程法的算法和直接求解的算法。利用辅助方程法构造了组合KdV-mKdV方程,(2+1)维Broer-Kaup-Kupershmidt方程,和两类变系数KdV方程的孤波解和三角函数解。使用直接解法构造了两个非线性演化方程:(1+1)维Klein-Gordon方程,(3+1)维Kadomtsev-Petviashvili方程,和两个非线性耦合演化方程组:(2+1)维耦合色散长波方程,耦合Klein-Gordon-Zakharov方程的孤波解和三角函数解。第五章获得了广义Lienard方程的一些新解,并利用它构造了一维广义Klein-Gordon方程,广义Ablowitz方程和广义Gerdjikov-Ivanov方程的精确解。然后引入一个带任意次幂非线性项的辅助常微分方程,利用任意次幂辅助方程法构造了广义Zakharov方程和广义Benjamin-Bona-Mahony方程的精确解。第六章通过一般化sinh-Gordon方程和构造所研究的方程新的试探解来扩展sinh-Gordon方程展开法。并用它构造了(2+1)维Konopelchenko–Dubrovsky方程,KdV-mKdV方程,双sine-Gordon方程和BBM方程的行波解,包括Jacobi椭圆函数双周期解,孤波解,三角函数解。第七章提出了利用耦合的Riccati方程组构造非线性微分-差分方程精确解的一种新的算法—离散耦合Riccati方程展开法,利用该算法获得了一般格子方程,Toda格子方程和(2+1)维Toda格子方程的扭结孤波解和复数解。最后对本文的工作进行了总结,并对今后的研究方向作了展望。
Nonlinear dynamics is one of the important branches in nonlinear science, and its main research objects are bifurcation, chaos, fractal and solitons, etc.whereas study on how to solve nonlinear evolution equations is one of the main contents in soliton theory. With the development of computer technology, especially the emergence of computer symbol computation softwares, study on the theories and algorithmes for constructing exact solutions of nonlinear evolution equations has become a leading subject and new interest in nonliner science. At present, although a number of algorithmes are proposed and developed to construct exact solutions of nonlinear evolution equations, unfortunately, not all these approaches are universally applicable for solving all kinds of nonlinear evolution equations directly. As a consequence, it is still a very significant task to go on searching for various powerful and efficient approaches to solve nonlinear evolution equations. In this thesis, based on a complete summary and examination of the main methods for constructing exact of nonlinear evolution equations, a systematic investigation into the fundamental theories and algorithmes of looking for exact solutions of nonlinear evolution equations has been studied, and a few new approaches are proposed and developed to seek exact solutions of nonlinear evolution equations. By making use of these approaches proposed, a variety of exact solutions to many physically significant nonlinear evolution equations are obtained. Among them, some are in agreement with those obtained in some literatures, others are new ones which can not be found in the existing literatures to the best of our knowledge. Our studies enrich and develop the theories and algorithmes of constructing exact solutions of nonlinear evolution equations, and have more profound theoretical significance and important application value.
     This dissertation consists of seven chapters. In chapter one, the main theories and algorithmes of constructing exact solutions of nonlinear evolution equations are summarized, and the source of the subject, the research purpose, the primary contents and innovations of this dissertation are reported as well. In chapter two, several important nonlinear evolution equations in mechanics are derived, and it indicate that the nonlinear evolution equations involved in our study have a mechanics or physics background. In chapter three, We extend Fan’s algebraic method to its auxiliary ordinary differential equation’s degree more than 4 by using a complete discrimination system for polynomials, and apply this method to construct a series of traveling wave solutions for KdV equation and the variant Boussinesq equations including rational solutions, solitary wave solutions, triangular periodic solutions, Jacobi periodic wave solutions and implicit function solutions. In chapter four, an auxiliary ordinary differential equation method and a direct method are presented by introducing an auxiliary ordinary differential equation whose some new exact solutions are obtained. By using the auxiliary equation method the Combined KdV-mKdV equation, (2+1)-dimensional Broer-Kaup-Kupershmidt system and two kinds of KdV equation with variable coefficients are investigated and abundant exact traveling wave solutions are obtained that include solitary wave solutions and triangular periodic wave solutions. By making use of the direct method, the same kinds of solutions of (1+1)-dimensional Klein-Gordon equation, (3+1)-dimensional Kadomtsev Petviashvili equation, the (2+1)-dimensional dispersive long wave equations and the Klein- Gordon-Zakharov equations are obtained. In chapter five, some new exact solutions of the generalized Lienard equation are obtained, and the solutions of the equation are applied to construct directly the exact solutions of the generalized one-dimensional Klein-Gordon equation, the generalized Ablowitz equation and the generalized Gerdjikov-Ivanov equation. Then based on an auxiliary ordinary differential equation with nonlinear terms of any order, a new approach called the auxiliary equation with nonlinear terms of any order method is proposed to construct the exact solutions to the generalized Zakharov equations and the generalized Benjamin-Bona-Mahony equation. In chapter six, the sinh-Gordon equation expansion method is further extended by generalizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konopelchenko–Dubrovsky equation, the KdV-mKdV equation, the double sine-Gordon equation and the BBM equation are investigated and abundant exact travelling wave solutions are explicitly obtained including Jacobi elliptic doubly periodic function solutions, solitary wave solutions and trigonometric function solutions. In chapter seven, a new discrete coupled Riccati equations expansion algorithm is presented to construct the exact solutions of nonlinear differential-difference equations by introducing the coupled Riccati equations. As an example, we apply this algorithm to the general lattice equation, the relativistic Toda lattice equations and the (2+1)dimensional Toda lattice equation. As a result, some kink solitary wave solutions and complexiton solutions of them are obtained with the help of symbolic system Mathematica. Finally, the summary of this dissertation and the prospect of study on constructing exact solutions to nonlinear evolution equations are given.
引文
[1]刘秉正,彭建华.非线性动力学.北京:高等教育出版社, 2004
    [2]高普云.非线性动力学中—分叉、混沌与孤立子.长沙:国防科技大学出版社, 2005
    [3]陈予恕,唐云.非线性动力学中的现代分析方法.北京:科学出版社, 2000
    [4]郭建刚,周丽军,张善元.有限变形弹性杆中的几何非线性波.应用数学和力学, 2005, 26(5): 614-620
    [5]段文山.非线性弹性杆中的NLS型孤波.西北师范大学学报(自然科学版), 1999, 35(4): 30-32
    [6]吕克璞,王红艳.非线性弹性杆中的速度孤立子波.西北师范大学学报(自然科学版), 1999, 35(4): 33-36
    [7]吕克璞,洪学仁,石玉仁等.非线性弦的变分原理与减缩摄动解法.西北师范大学学报(自然科学版), 2001, 37(4): 35-39
    [8]郭建刚,周丽军,张善元.有限变形粘弹性杆的波动行为研究.太原理工大学学报(自然科学版), 2002, 33(9): 558-560
    [9]郭鹏,张磊,吕克璞.高次非线性弹性杆纵向振动方程的摄动分析.西北师范大学学报(自然科学版), 2004, 40(1): 38-44
    [10]韩强,郑向锋.非线性弹性杆中的孤波解及其数值分析.华南理工大学学报(自然科学版) , 2004, 32(4): 92-96
    [11]张瑞萍,孙家驹.弦的非线性振动摄动法及其KdV方程的孤波解.上海力学, 1996, 17(3): 233-238
    [12]谷超豪等.孤立子理论与应用.浙江:浙江科学技术出版社,1990
    [13]谷超豪,胡和生,周子翔.孤立子理论中的达布变换及其几何应用.上海:上海科学技术出版社, 2005
    [14]闫振亚.复杂非线性波的构造性理论及其应用.北京:科学出版社, 2007.
    [15]刘志芳.弹性杆波导中几类非线性演化方程及其孤波解和冲击波解.太原理工大学,博士论文,2006
    [16]Russell J S. Report on waves. report of the 14th meeting of the british association for the advancement of science. London: 1844, 311-390
    [17]Airy G B. Tides and waves. Encyclopedia Metropolotana, 1845,5:241-396
    [18]Stokes G. On the theory of oscillatory waves. Trans.Camb.Phil.Soc.,1847, 8:441- 455
    [19]Boussinesq M J. Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, J. Math. Pures. Appl. 1872,17:55-108
    [20]Rayleigh L. On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematic Society,1887, 17:4-11
    [21]Korteweg D J, de Vries G. On the change of rorm of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. Ser., 1895, 39(5):422-443
    [22]B?cklund A V. Lund Universitets Arsskrift 10,1885
    [23]Darboux G. Sur une proposition relative auxéquations linéaires. Compts Rendus Hebdomadaires des Seances det'Academie des Sciences, Paris,1882,94:1456-1459
    [24]刘式适,刘式达.物理学中的非线性方程.北京:北京大学出版社, 2000
    [25]Fermi E, Pasta J, Ulam S. Studies of nonlinear problems. Los Alamos Report., LA1940,1995
    [26]Toda. Development of the theory of a nonlinear lattice. Prog. Theor. Phys. Suppl., 1976, 59: 1-35
    [27]Zabusky N J, Kruskal M D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 1965, 15: 240-243
    [28]Gardner C S,Greene J M, Kruskal M D,et al. Method for solving the Korteweg-de Vries Equation. Phys Rev Lett,1967,19:1095-1097
    [29]Lax.P D. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 1968,21:467–490
    [30]Miura R M. Korteweg-de Vries equation and generalizations I: A remarkable explicit nonlinear transformation. J. Math.Phys.,1968,9:1202-1204
    [31]Hirota R. Exact solution of the Korteweg-de Vries Equation for multiple collisions of solitons.Phys. Rev. Lett.,1971,27:1192-1194
    [32]Weiss J, Tabor M, Carnevale G. The Painlevéproperty for partial differential equations. J. Math. Phys.,1983,24:522-526
    [33]Clarkson P A, Kruskal M D. New similarity solutions of the Boussinesq equation. J.Math. Phys.,1989,30:2201-2213
    [34]Tu G Z. The trace identity, a powerful tool for constructing the Hamilton structure of integrable systems. J. Math. Phys., 1989, 30:330-337
    [35]吴文俊.数学机械化.北京:科学出版社,2003
    [36]范恩贵.可积系统与计算机代数.北京:科学出版社,2004
    [37]Li Y S. The constraint of the Kadomtsev-Petviashvili equation. Phys. Lett. A, 1991, 157: 22-26
    [38]Lou S Y. On the coherent structures of the Nizhnik–Novikov–Veselov equation. Phys. Lett. A, 2000, 277: 94-100
    [39]Malfliet W. Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 1992, 60 (7): 650-654
    [40]Parkes E J, Duffy B R. An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations. Comput. Phys. Commun, 1996, 98: 288-300
    [41]Li Z B, Liu Y P. RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations. Comput. Phys. Commun, 2002,148: 256-266
    [42]Fan E G. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A, 2000, 277: 212-218
    [43]Fan E G, Hon Y C. Generalized tanh method extended to special types of nonlinear equations. Z. Naturforsch A, 2002, 57: 692-700
    [44]LüZ S, Zhang H Q. On a futher tanh method. Phys. Lett. A, 2003, 207: 269-273
    [45]Xie F D, Gao X S. Exact traveling wave solutions for a class of nonlinear partial differential equations. Chaos Solitons and Fractals, 2004, 19: 1113-1117
    [46]Elwakil S A, El-Labany S K, Zahran M A, et al. Modified extended tanh- function method and its applications to nonlinear equations. Appl. Math. Comput., 2005, 161: 403–412
    [47]Gao Y T, Tian B. Generalized hyperbolic-function method with computerized symbolic computation to equations of mathematical physics. Comput. Phys. Commun, 2001, 133: 158-166
    [48]Khuri S A. A complex tanh-function method applied to nonlinear equations of Schr?dinger type. Chaos Solitons and Fractals, 2004, 20: 1037-1040
    [49]Zhang J L, Wang M L. Complex tanh-function expansion method and exact solutions to two systems of nonlinear wave equations. Commun. Theor. Phys., 2004, 42(4): 491-493
    [50]Wang M L. Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A, 1995, 199: 169-172
    [51]Wang M L. Exact solutions for a compound KdV-Burgers equation. Phys. Lett. A, 1996, 213: 279-287
    [52]Wang M L., Zhou Y B, Li Z B. Applications of homogeneous balance method to exact solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A, 1996, 216: 67-73
    [53]Gao Y T, Tian B. New family of overturning soliton solutions for a typical breaking soliton equation. Comput. Math. Appl. 1995,30:97-100
    [54]Gao Y T, Tian B. New families of exact solutions to the integrable dispersive long wave equations in (2+1)-dimensional spaces. J.Phys. A,1996,29:2895-2903
    [55]Gao Y T, Tian B. Variable-coefficient balancing-act method and variable coefficient KdV equation from fliud dynamics and plasma physics. Euro. Phys. J. B, 2001, 22: 351-360
    [56]Fan E G, Zhang H Q. New exact solutions to a system of coupled KdV equations. Phys.Lett.A, 1998,245: 389-392
    [57]范恩贵,张鸿庆.齐次平衡法若干新的应用.数学物理学报,1999,19(3): 286-292
    [58]Zhang J F. Multiple soliton solutions of the dispersive long-wave equation. Chin. Phys. Lett., 1999, 16(1): 4-5
    [59]Zhang J F, Guo G P, Wu F M. New multi-soliton solutions and traveling wave solutions of disperse long-wave equations. Chin. Phys., 2002, 11(6): 533-536
    [60]Liu S K, Fu Z T, Liu S D. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A, 2001, 289: 69-74
    [61]Fu Z T, Liu S K, Liu S D. New Jacobi elliptic function expansion and new periodic wave solutions of nonlinear wave equations. Phys. Lett. A, 2001, 290: 72-76
    [62]Parkes E J, Duffy B R, Abbott P C. The Jacobi elliptic function method for finding periodic-wave solutions to nonlinear evolution equations. Phys. Lett. A, 2002, 295: 280-286
    [63]Chen H T, Zhang H Q. Improved Jacobi elliptic function method and its applications. Chaos Solitons and Fractals, 2003, 15: 585-591
    [64]Xu G Q, Li Z B. Applications of Jacobi elliptic function expansion method for nonlinear differential-difference Equations. Commun. Theor. Phys.,2005,43(3): 385-388
    [65]Wang Q, Chen Y, Zhang H Q. An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation. Phys. Lett. A, 2005, 340: 411-426
    [66]Dai C Q, Meng J P, Zhang J F. Symbolic computation of extended Jacobian elliptic function algorithm for nonlinear differential-different equations. Commun. Theor. Phys., 2005, 43(3): 471-478
    [67]Wang Q, Chen Y, Zhang H Q. A new Jacobi elliptic function rationalexpansion method and its application to (1+ 1)-dimensional dispersive long wave equation. Chaos Solitons and Fractals, 2005, 23: 477-483
    [68]Zhou Y B, Wang M L, Wang Y M. Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A, 2003,308:31-36
    [69]Wang M L,Zhou Y B. The periodic wave solutions for the Klein–Gordon– Schr?dinger equations. Phys. Lett. A, 2003,318:84-92
    [70]Wang M L, Wang Y M, Zhang J L. The periodic wave solutions for two systems of nonlinear wave equations .Chin. Phys., 2003, 12 (12):1341-1348
    [71]Yomba E. The extended F-expansion method and its application for solving the nonlinear wave, CKGZ, GDS, DS and GZ equations. Phys. Lett. A, 2005, 340:149-160
    [72]Wang D S, Zhang H Q. Further improved F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equation. Chaos Solitons and Fractals, 2005, 25: 601-610
    [73]He H S, Chen J, Zhang H Q. Exact solutions for the coupled Klein-Gordon-Schr?dinger equations using the extended F-expansion method. Chin. Phys., 2005, 14 (10):1926-1931
    [74]Yan C T. A simple transformation for nonlinear waves. Phys. Lett. A, 1996, 224:74-84
    [75]Ma W X, Fuchssteiner B. Explicit and exact solutions to a Kolmogorov– Petrovskii–Piskunov equation. Int.J.Non-Linear Mech.,1996, 31:329-338
    [76]Fan E G. Soliton solutions for a generalized Hirota Satsuma coupled Kdv equation and a coupled MKdV equation. Phys Lett A,2001,282:18-22
    [77]Yan Z Y. New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations. Phys. Lett. A, 2001, 292:100-106
    [78]Yan Z Y. Generalized method and its application in the higher-order nonlinear Schrdinger equation in nonlinear optical fibres. Chaos Solitons and Fractals, 2003, 16:759-766
    [79]Yan Z Y. Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method, J.Phys.A:Math.Gen., 2003, 36: 1961-1972
    [80]Yan Z Y. A sinh-Gordon equation expansion method to construct doubly periodic solutions for nonlinear differential equations. Chaos, Solitons and Fractals,2003, 16: 291-297
    [81]Yan Z Y. The new constructive algorithm and symbolic computation applied toexact solutions of nonlinear wave equations. Phys. Lett. A,2004,331:193-200
    [82]Yan Z Y. A new sine-Gordon equation expansion algorithm to investigate some special nonlinear differential equations. Chaos Solitons and Fractals, 2005, 23: 767-775
    [83]Sirendaoreji, Sun J. Auxiliary equation method for solving nonlinear partial differential equations. Phys.Lett.A, 2003, 309:387-396
    [84]Sirendaoreji.New exact travelling wave solutions for the Kawahara and modified Kawahara equations.Chaos Solitons Fractals,2004,19:147-150
    [85]Zhao Q,Liu S K, Fu Z T. New soliton-like solutions for combined KdV and mKdV equation. Commun. Theor. Phys.,2005,43(4):615-616
    [86]Liu C P, Liu X P. A note on the auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A, 2006,348:222-227
    [87]Taogetusang, Sirendaoreji.New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov-Kuzentsov equation. Chin.Phys., 2006, 15(6):1143-1148
    [88]Fan E G. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method. J. Phys. A: Math. Gen., 2002, 35:6853–6872
    [89]Fan E G. An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations. J. Phys. A, 2003, 36: 7009-7026
    [90]Huang D J,Zhang H Q. Link between travelling waves and first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. Chaos Solitons Fractals, 2006, 29:928-941
    [91]Liu S K, Fu Z T, Liu S D.et al. A simple fast method in finding particular solutions of some nonlinear PDE. Appl. Math. Mech., 2001,22(3):326-331
    [92]何宝钢,徐昌智,张解放.扩展的形变映射方法和(2+1)维破裂孤子方程的新解.物理学报,2006,55(2):511-516
    [93]李志斌.非线性数学物理方程的行波解.北京:科学出版社,2007
    [94]Bhatnagar P L. Nonlinear wave in one-dimensional dispersive system. Clarerdon Press, 1979
    [95]Dodd R, Eilbeck J C, Gibbon J D, et al. Soliton and nonlinear wave equations., London, Academic press, 1984
    [96]Ablowitz M J, Clarkson P A. Soliton, nonlinear evolutions and inverse scattering transform. Cambridge University Press, 1991
    [97]郭柏灵.非线性演化方程.上海:上海教育出版社, 1995
    [98]杨伯君,赵玉芳.高等数学物理方法.北京:北京邮电大学出版社, 2003
    [99]王德焴,吴德金,黄光力.空间等离子体中的孤波.上海:上海科技教育出版社, 2000.
    [100]谢元喜.非线性偏微分方程的解法研究.湖南大学,博士论文,2006
    [101]楼森岳,唐晓艳.非线性数学物理方法.北京:科学出版社,2006
    [102]Yang L,Zhu Z G,Wang Y H. Exact solutions of nonlinear equations. Phys. Lett. A, 1999, 260:55-59
    [103]Yan Z Y, Zhang H Q.New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water. Phys. Lett. A, 2001, 285:355-362
    [104]Xie F D, Zhang Y, Lu Z S. Symbolic computation in non-linear evolution equation: application to (3+1)-dimensional Kadomtsev–Petviashvili equation.Chaos Solitons Fractals, 2005,24:257-263
    [105]Fu Z T, Liu S D,Liu S K. Solving nonlinear wave equations by elliptic equation. Commun. Theor. Phys.,2003,39(5):531-536
    [106]Fu Z T, Liu S D,Liu S K. Applications of elliptic equation to nonlinear coupled systems.Commun. Theor. Phys.,2003, 40(3):285-292
    [107]Yomba E. The extended Fan’s sub-equation method and its application to KdV– MKdV, BKK and variant Boussinesq equations.Phys. Lett. A, 2005, 336:463-476
    [108]Elgarayhi A, Elhanbaly A. New exact traveling wave solutions for the two- dimensional KdV–Burgers and Boussinesq equations. Phys. Lett. A, 2005, 343: 85-89
    [109]Fan E G. Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics. Chaos Solitons Fractals,2003,16:819-839
    [110]Fan E G, Hon Y C. A series of travelling wave solutions for two variant Boussinesq equations in shallow water waves. Chaos, Solitons and Fractals, 2003, 15:559-566.
    [111]Fan E G, Dai H.H. A direct approach with computerized symbolic computation for finding a series of traveling waves to nonlinear equations. Comput.Phys. Commun., 2003,153:17-30
    [112]Hu J Q. An algebraic method exactly solving two high-dimensional nonlinear evolution equations. Chaos Solitons Fractals, 2005,23:391-398
    [113]Chen Y, Wang Q. A series of new soliton-like solutions and double-like periodic solutions of a (2+1)-dimensional dispersive long wave equation. Chaos Solitons Fractals, 2005,23:801-807
    [114]Hon Y C, Fan E G. Solitary wave and doubly periodic wave solutions for theKersten-Krasil’shchik coupled KdV-mKdV system. Chaos Solitons Fractals,2004, 19:1141-1146
    [115]ChenY, Wang Q, Li B. A generalized method and general form solutionsto the Whitham–Broer–Kaup equation. Chaos Solitons Fractals,2004, 22:675-682
    [116]杨路,侯晓荣,曾振柄.多项式的完全判别系统.中国科学(E辑),1996,26(5):424-441
    [117]王竹溪,郭敦仁.特殊函数概论.北京:北京大学出版社,2002
    [118]Arnon D.S. Geometric reasoning with logic and algebra. Artificial Intelligence,1988, 37: 37-60
    [119]Whitham G B. Linear and nonlinear waves.Wiley, New York, 1974
    [120]郭柏灵,苏凤秋.孤立子.沈阳:辽宁教育出版社, 1997
    [121]He P, Chen Z, Fu J. Solution of KdV equation by computer algebra. Appl.Math. Comput., 2003, 136: 511-515
    [122]Wazwaz A M. The sine–cosine method for obtaining solutions with compact and noncompact structures. Chaos Solitons and Fractal, 2004, 159:559-576
    [123]Zhang J F, Lai X J. An alternative construction of linear superposition periodic solutions to nonlinear equations. Phys. Lett. A, 2005, 340: 188-193
    [124]Khuri S A. Soliton and periodic solutions for higher order wave equations of KdV type. Chaos Solitons and Fractal, 2005, 26: 25-32
    [125]Liu C S. Exact travelling wave solutions for (1+1)-dimensional dispersive long wave equation. Chin. Phys., 2005,4(9):1710-1715
    [126]Sachs R L. On the integrable variant of the boussinesq system: Painlevéproperty, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy. Physica D,1988,30: 1-27
    [127]范恩贵,张鸿庆.二类变式Boussinesq方程的对称性约化和精确解.数学物理学报,1999,19(4):373-378
    [128]李保安,李修勇,李晓燕等.变形Boussinesq方程组的周期波解和孤立波解.河南科技大学学报(自然科学版),2004,25(2):91-94
    [129]刘成仕.试探方程法及其在非线性发展方程中的应用.物理学报,2005,54(6): 2505 -2509
    [130]Zhang W G, Chang Q S, Fan E G. Methods of judging shape of solitary wave and solution formulae for some evolution equations with nonlinear terms of high order. J. Math. Anal. Appl., 2003,287:1-18
    [131]Wadati M. Wave propagation in nonlinear lattice. J. Phys. Soc. Jpn., 1975, 38: 673-686
    [132]Konno K. A modified Kdv equation for ion acoustics waves. J. Phys. Soc. Jpn., 1974, 37: 1631-1636
    [133]Narayanamurti V. Nonlinear propagation of heat pulses in solids. Phys. Rev. Lett., 1970, 25: 1105-1108
    [134]Tappert F D. Asymptotic theory of self-trapping of heat pulses in fluids. Phys. Rev. Lett., 1970, 25: 1108-1111
    [135]Zhang J F ,Wu F M , Shi J Q. Simple soliton solution method for the combined KdV and MKdV equation. Int. J. Theor. Phys.2000,39:1697-1702
    [136]Peng Y Z. New exact solutions to the combined KdV and mKdV equation. Int. J. Theor. Phys. 2003, 42:863-868
    [137]Fu Z T,Liu S K,Liu S D,et al. Lame function and its application to some nonlinear evolution equations. Commun.Theor. Phys.,2003. 40:53-56
    [138]Dubrovsky V G, Konopelchenko B G, ?-dressing and exact solutions for the (2+1)-dimensional Harry Dym equation. J. Phys. A,1994, 27:4619-4628
    [139]Fang J P, Zheng C L, New exact excitations and soliton fission and fusion for the (2+1)dimensinal Broer-Kaup-Kupershmidt system.Chin.Phys.,2005,14(4):669-675
    [140]智红燕,王琪,张鸿庆. (2+1)维Broer-Kaup-Kupershmidt方程一系列新的精确解.物理学报, 2005, 54(3):1002-1008
    [141]Lou S Y, Hu X B. Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys.,1997,38: 6401-6427
    [142]Chen C L,Li Y S. The exact solutions of some (2+1)-dimensional integrable systems. Commun.Theor.Phys., 2002, 38:129-132
    [143]Miura M R. Backlund Transformation. Berlin: Springer-Verlag,1978
    [144]刘式适,付遵涛,刘式达等. Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用.物理学报, 2001,50(11):2068~2073
    [145]Xu B Z, Zhao S Q. Inverse scattering transformation for the variable coefficient Sine-Gordon type equation. Appl.Math.-JCU 1994,9B:331-337
    [146]Elwakil S A, El-labany S K, Zahran M A,et al. New exact solutions for a generalized variable coefficients 2D KdV equation. Chaos, Solitons and Fractals, 2004,19:1083-1086
    [147]Yomba E.Construction of new soliton-like solutions for the (2 + 1) dimensional KdV equation with variable coefficients. Chaos, Solitons and Fractals, 2004,21: 75-79
    [148]Yomba E. Abundant families of Jacobi elliptic function-like solutions for a generalized variable coefficients 2D KdV equation via the extended mappingmethod. Phys.Lett.A,2006,349:212-219
    [149]毛杰健,杨建荣.变系数KP方程新的类孤波解和解析解.物理学报,2005, 54(11): 4999-5002
    [150]Liu Q, Zhu J M. Exact Jacobian elliptic function solutions and hyperbolic function solutions for Sawada–Kotere equation with variable coefficient. Phys.Lett.A, 2006, 352: 233-238
    [151]Wang M L, Wang Y M. A new Backlund transformation and multi-soliton solutions to the KdV equation with general variable coefficients. Phys.Lett.A, 2001, 287: 211-216
    [152]刘式适,付遵涛,刘式达等.变系数非线性方程的Jacobi椭圆函数展开解.物理学报,2002,51(9):1923-1926
    [153]刘成仕.用试探方程法求变系数非线性发展方程的精确解.物理学报,2005, 54(10): 4506-4510
    [154]李德生,张鸿庆.改进的tanh函数方法与广义变系数KdV和MKdV方程新的精确解.物理学报,2003, 52(7): 1569-1573
    [155]Liu X Q. Exact solutions of the variable coefficient KdV equation and SG type equations. Appl.Math.-JCU, 1998, 13B:25-30
    [156]张解放,陈芳跃.截断展开方法和广义变系数KdV方程新的精确类孤子解.物理学报,2001,50(9):1648-1650
    [157]Zhao X Q, Tang D B,Wang L M. New soliton-like solutions for KdV equation with variable coefficient. Phys.Lett.A, 2005,346:288-291
    [158]Sabry R, Zahran M A, Fan E G. A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients KdV equation. Phys. Lett. A, 2004, 326: 93-101
    [159]Fu Z T, Liu S K, Liu S D. Elliptic equation and new solutions to nonlinear wave equations. Commun. Theor. Phys., 2004, 42(3): 343-346
    [160]Senthilvelan M, On the extended applications of homogenous balance method. Appl. Math.Comput.,2001,123:381-388
    [161]Chen Y, Yan Z Y, Zhang H Q, New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation.Phys. Lett. A,2003, 307:107-113
    [162]Zhao Q, Liu S K, Fu Z T. Exact periodic-wave solutions for (2+1) dimensional Boussinesq equation and (3+1)-dimensional KP equation。Commun.Theor. Phys., 2004, 42: 239-241
    [163]Boiti M, Leon JJP, Pempinelli F. Spectral transformation for a 2-spatialdimension extension of the dispersive long wave equation. Inverse Probl. 1987, 3: 371–387
    [164]Paquin G,Wintermitz P. Group theoretical analysis dispersive long wave equations in 2 space dimensions. Physica D,1990, 46: 122-138
    [165]Lou SY. Nonclassical symmetry reductions for the disspersive wave equations in shallow water. J Math Phys,1992,33:4300-4305
    [166]Kong D X. Explicit exact solutions for the Lienard equation and its applications. Phys.Lett. A, 1995,196:301-306
    [167]张卫国.Rangwala-Rao方程和几个非线性导数Schrodinger型方程的一类显式精确孤波解.应用数学与计算数学学报,1994,8(2):45-51
    [168]张卫国.几类具5次强非线性项的发展方程的显式精确孤波解.应用数学学报, 1998,21(2):249-256
    [169]Feng Z S. On explicit exact solutions for the Lienard equation and its applications. Phys. Lett. A, 2002, 293: 50-56
    [170]Feng Z S.Exact solutions to the Lienard equation and its applications.Chaos Solitons Fractals, 2004, 21:343-348
    [171]Dey B, Khare A, Kumar C N. Exact solutions to the generalized Lienard equation. arXiv:hep-th/9510054, 1995
    [172]Dey B. Dynamics of non-linear monatomic and diatomic chains at a T=0 first- order phase transition point. J. Phys. C: Solid State Phys., 1986,19:3365-3372
    [173]Magyari E. Kinks and periodons at aT=0 first-order phase transition point in one-dimensional anharmonic lattices. Z. Phys. B, 1981,43:345-351
    [174]Zhang W G, Chang Q S, Jiang BG. Explicit exact solitary-wave solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order. Chaos Solitons Fractals, 2002, 13: 311-319
    [175]张卫国,常谦顺,李用声.具任意次非线性项的Liénard方程的精确解及其应用.数学物理学报,2005, 25A(1): 119-129
    [176]Feng Z S.Traveling solitary wave solutions to evolution equations with nonlinear terms of any order. Chaos Solitons Fractals, 2003, 17:861-868
    [177]Sirendaoreji. A new auxiliary equation and exact travelling wave solutions of nonlinear equations. Phys Lett A, 2006,356:124-130
    [178]Zakharov V E. Collapse of langmuir waves.Sov. Phys. JETP, 1972, 35:908-914
    [179]Golman M.V. Langmuir wave solitons and spatial collapse in plasma physics. Physica D,1986,18:67-76
    [180]Bai C L. Exact solutions for nonlinear partial differential equation:a newapproach, Phys.Lett.A, 2001,288:191-195
    [181]Xie F D, Yan Z Y, Zhang H Q. Explicit and exact traveling wave solutions of Whitham–Broer–Kaup shallow water equations.Phys.Lett.A,2001,285:76-80
    [182]李德生,张鸿庆.非线性耦合标量场方程的新双周期解(I).物理学报,2003, 52(10):2373-2378
    [183]Ghosh S, Kundu A, Nandy S. Soliton solutions, Liouville integrability and gauge equivalence of Sasa Satsuma equation. J. Math. Phys.1999, 40:1993-2000
    [184]Konopelchenko B G, Dubrovsky V G. Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A,1984, 102:15-17
    [185]Lin J, Lou S Y, Wang K L. Multi-soliton Solutions of the Konopelchenko- Dubrovsky Equation.Chin. Phys. Lett., 2001,9: 1173-1175
    [186]Song L N, Zhang H Q. New exact solutions for Konopelchenko–Dubrovsky equation using an extended Riccati equation rational expansion method. Commun.Theor. Phys.,2006, 45:769-776
    [187]Li B C,Zhang Y F. Explicit and exact travelling wave solutions for Konopelchenko-Dubrovsky equation.Chaos, Solitons and Fractals,2008,in press
    [188]Zhang S. The periodic wave solutions for the (2 + 1)-dimensional Konopelchenko– Dubrovsky equations. Chaos,Solitons and Fractals, 2006, 30:1213-1220
    [189]Wazwaz A M. New kinks and solitons solutions to the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation. Math.Comput.Model, 2007,45:473-479
    [190]Zhang S, Xia T C. A generalized F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equations. Appl. Math. Comput.,2006, 183:1190-1200
    [191]Bekir A. Applications of the extended tanh method for coupled nonlinear evolution equations.Commun.Nonlinear Sci.Num.Simulat,2008,in press
    [192]Song L N, Zhang H Q. New exact solutions for the Konopelchenko– Dubrovsky equation using an extended Riccati equation rational expansion method and symbolic computation. Appl. Math.Comput., 2007,187:1373-1388
    [193]Zhang S. Symbolic computation and new families of exact non-travelling wave solutions of (2+1)-dimensional Konopelchenko–Dubrovsky equations. Chaos, Solitons and Fractals, 2007, 31:951-959
    [194]Xia T C, Lu Z S, Zhang H Q. Symbolic computation and new families of exact soliton-like solutions of Konopelchenko–Dubrovsky equations.Chaos, Solitons and Fractals, 2004, 20: 561-566
    [195]Bekir A, Boz A. Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations.Chaos, Solitons and Fractals, 2008,in press
    [196]Yao R X, Li Z B. New solitary wave solutions for nonlinear evolution equations. Chin. Phys., 2002, 11(9): 864-868
    [197]Ablowitz M J, Kruskal M D, Ladik J F. Solitary wave collisions. SIAM J. Appl. Math., 1979, 36: 428-437
    [198]Wang M L, Li X Z. Exact solutions to the double Sine-Gordon equation. Chaos, Solitons and Fractals,2006, 27:477-486
    [199]Liu S K, Fu Z T, Liu S D. Exact solutions to sine-Gordon-type equations. Phys.Lett.A, 2006, 351:59–63
    [200]Fan E G, Zhang J.Applications of the Jacobi elliptic function method to special- type nonlinear equations. Phys.Lett.A, 2002,305:383–392
    [201]Tsuchida T, Ujino H, Wadati M.Integrable semi-discretization of the coupled modified KdV equations. J. Phys. A:Math. Gen.,1999, 32: 2239-2262
    [202]Qian X M, Lou S Y, Hu X B. Variable separation approach for a differential difference system: special Toda equation. J. Phys. A: Math.Gen.,2004, 37: 2401- 2411
    [203]Baldwin D, Goktas U, Hereman W.Symbolic computation of hyperbolic tangent solutions for nonlinear differential–difference equations. Comput.Phys. Commun., 2004,162: 203-217
    [204]Wang Z, Zhang H Q. Soliton-like and periodic form solutions to (2+1)- dimensional Toda equation. Chaos, Solitons & Fractals, 2007, 31:197-204
    [205]朱加民,马正义,郑春龙. Hybrid-Lattice系统和Ablowitz-Ladik-Lattice系统的新解探索.物理学报, 2005,54(2): 483-489
    [206]Li H M, Wu F M. Exact discrete soliton solutions of quintic discrete nonlinear Schrodinger equation. Chin. Phys., 2005, 14(6):1069-1074
    [207]Zhu J M. Hyperbolic function method for solving nonlinear differential-different equations. Chin. Phys., 2005, 14(7): 1290-1295
    [208]Zha Q L, Sirendaoreji. A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice. Chin. Phys., 2006,15(3): 475-477
    [209]Zhi H Y, Zhao X Q,Yang Z Y,et. al. A modified hyperbolic function method and its application to the Toda lattice. Appl. Math.Comput.,2006,172: 938-945
    [210]Xie F D, Wang D K, LüZ S. An approach to directly construct exact solutions of nonlinear differential-difference equations. Nonlinear Analysis, 2005, 62:1490- 1497
    [211]张善卿.一种修Volterra链的精确解.物理学报, 2007,56(4): 1870-1874
    [212]Wu X F, Zhu J M, Ma Z Y. Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations. Chin.Phys., 2007,16(8):2159-2166
    [213]Yan Z Y. Discrete exact solutions of modified Volterra and Volterra lattice equations via the new discrete sine-Gordon expansion algorithm. Nonlinear Analysis, 2006,64:1798-1811
    [214]套格图桑,斯仁道尔吉.辅助方程构造(2+1)维Hybrid-Lattice系统和离散的mKdV方程的精确解.物理学报, 2007, 56(2): 627-636
    [215]Xie F D, Wang J Q. A new method for solving nonlinear differential-difference equation. Chaos, Solitons & Fractals, 2006, 27: 1067-1071
    [216]Wang Z, Zhang H Q. New exact solutions to some difference differential equations. Chin. Phys., 2006, 15(10): 2210-2215
    [217]Sahadevan R, Khousalya S, Devi L N. Nonlocal symmetries and recursion operators: partial differential and differential–difference equations. J. Math. Anal. Appl., 2005, 308: 636-655

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700