用户名: 密码: 验证码:
单粒子格林函数在电子动量谱学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子动量谱学(Electron Momentum Spectroscopy, EMS)以其特有的同时测量物质中电子的能量分布和动量分布的优势,已发展成为研究物质的电子结构、电子关联效应和电离机制的强有力手段,其应用价值已经在物理、化学、生物等多个学科的发展和应用中得到了充分体现。目前,电子动量谱学的实验研究已经发展到高效率、高性能的第三代动量谱仪,可以开辟一些过去无法展开的新的研究领域和方向。
     本论文的内容主要包括单粒子格林函数方法在若干个分子的电子动量谱学研究中的应用和芯轨道动量分布的理论研究两部分。
     以二氧甲基甲烷和正戊烷分子为研究对象,结合焦点分析法(Focal Point Analysis)、单粒子格林函数和电子动量谱学系统地展开了分子构像问题的理论和实验研究。进一步验证了EMS在研究柔性分子的构像问题这个方向上的应用前景,并从轨道层次上观察到二氧甲基甲烷具有的端基异构效应和由正戊烷分子框架扭曲引起的轨道结构的变化。
     采用单粒子格林函数理论重新诠释了环状不饱和分子噻吩(C4H4S)和环戊烯(C5H8)的(e, 2e)电离能谱和动量谱实验数据,分析了轨道动量谱的实验和理论结果,证明了外价轨道和内价轨道的劈裂,弥补了OVGF,Hartree-Fock和DFT理论方法对(e, 2e)复杂过程表述的缺陷;发现了d-like分子轨道在低动量区有异常翘起的现象,显示出在电子电离过程中发生的原子核运动引起的vibroninc coupling也有可能是产生这种“上翘”现象的原因之一,在这种情况下Born-Oppenheimer-平面波冲量近似模型无法正确描述实验测量结果;对比结果让我们在动量空间中观察到轨道电子间的亚甲基σ-hyperconjugation超共轭相互作用。
     对含有等价同元素原子的分子芯轨道开展了电子动量谱学理论研究。由于等价原子轨道间的干涉作用,动量空间中轨道电子密度的分布表现为周期性振荡变化的曲线,通过它可以获得分子的几何结构和取向信息。
Electron momentum spectroscopy (EMS), which can give both of the electron binding energies and the electron momentum density distributions at the same time, has been developed to be a powerful tool for the investigation of electronic structures, electronic correlation effects and electron ionization mechanics. It has extensive applications in the fields of physics, chemistry and biology. With the newly constructed third generation electron momentum spectrometer, which features high efficiency and high resolution, some new and valuable studies, which were very difficult in past, now become possible.
     This thesis mainly includes two parts: one is the interpretion of electron momentum spectra of valence molecular orbitals using one particle Green’s function method (1p-GF), the other is the investigation of electron density distribution in momentum space for core shells of molecules containing two equivalent atoms.
     The conformations of dimethoxymethane and n-pentane have been probed with Focal Point Analysis, one particle Green’s function and EMS. It has been exhibited that EMS has unexploited potential in experimentally studying conformation of versatile molecule, can image anomeric effects in dimethoxymethane, distortions and topological changes that molecular orbitals undergo under internal rotations and variations of forms of n-pentane in momentum space.
     Exhaustive EMS studies on thiophene and cyclopentene have been carried out with one particle Green’s function. Comparison between theoretical electron momentum distributions and experimental results confirms that outer and inner valence orbitals of two unsaturated ring molecules are both subject to breakdown of one electron picture of ionization, shows that, besides distortion effects, vibronic coupling probably results in the difference between experimental data and theoretical predictions at low momentum region in d-like orbitals, which are beyond Born-Oppenheimer plane wave impulse approximation, and moreover images through spaceσ-conjugations electronic interaction.
     The investigation of core states having two equivalent atoms have been presented. The momentum density maps of these core molecular orbitals exhibit periodical oscillation due to the interference effects of the equivalent atoms. Therefore, EMS can provide direct information on the nature of the nuclei geometry and orientation by investigating core states.
引文
[1] Weigold E, McCarthy I E. Electron Momentum Spectroscopy. New York: Kulwer Academic / Plenum Publishers, 1999.
    [2] Brion C E. Looking at orbitals in the laboratory: the experimental investigation of molecular wave functions and binding energies by electron momentum spectroscopy. Int J Quantum Chem, 1986, 29: 1397-1428.
    [3] McCarthy I E, Weigold E. Electron momentum spectroscopy of atoms and molecules. Rep Prog Phys, 1991, 54: 789-879.
    [4] Coplan M A, Moore J H, Doering J P. (e, 2e) spectroscopy. Rev Mod Phys, 1994, 66: 985-1014.
    [5]陈学俊,郑延友.电子动量谱学的原理和应用.北京:清华大学出版社, 2000.
    [6] Ren X G, Ning C G, Deng J K, et al. Ionization excitation of helium by the (e, 2e) reaction. Phys Rev A, 2005, 72: 042718.
    [7] Ren X G, Ning C G, Deng J K, et al. (e, 2e)study on distorted-wave and relativisitic effects in the inner-shell ionization processes of xenon 4d5/2 and 4d3/2 . Phys Rev A, 2006, 73: 042714.
    [8] Ren X G, Ning C G, Deng J K, et al. Direct observation of distorted wave effects in ethylene using (e, 2e) reaction. Phys Rev Lett, 2005, 94: 163201.
    [9] Ning C G, Ren X G, Deng J K, et al. Probing Dyson orbitals with Green Function theory and Electron Momentum Spectroscopy. Chem Phys Lett, 2006, 421: 52-57.
    [10] Ning C G, Ren X G, Deng J K, Su G L, Zhang S F, Li G Q. Turn-up effects at low momentum for the highest occupied molecular orbital of oxygen at various impact energies by electron momentum spectroscopy. Phys Rev A, 2006, 73: 022704.
    [11] Su G L, Ning C G, Deng J K, et al. Direct observations of the chemical shift and electron momentum distributions of core shell in N2O. Chem Phys Lett, 2006, 422: 308-312.
    [12]任雪光.第三代电子动量谱仪的研制及若干样品的实验研究: [博士学位论文].北京:清华大学物理系, 2005.
    [13] Szabo A, Ostlund N S. Modern Quantum Chemistry. McGraw Hill: New York, 1982.
    [14] Frank J M. Introduction to Computational Chemistry, 2nd Edition, Wiley, 2006.
    [15] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1998, 37: 785-789.
    [16] Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648-5652.
    [17] Linderberg J, ?hrn Y. Propagators in Quantum Chemistry. Wiley: Hoboken, New-Jersey, 2004.
    [18] Schirmer J, Cederbaum L S, Walter O. New approach to the one-particle Green’s function for finite Fermi systems. Phys Rev A, 1982, 28: 1237-1259.
    [19] Deleuze M, Scheller M K, Cederbaum L S. On the size-dependence of the static self-energy in propagator calculations. J Chem Phys, 1995, 103: 3578-3588.
    [20] Ortiz J V. Computational Chemistry: Reviews of Current Trends. Singapore, 1997.
    [21] Deleuze M, Delhalle D H, AndréJ–M. Many-body Green’s function study of the valence band formation of polyoxymethyelne. Phys Script, 1994, 51: 111-125.
    [22] Schirmer J, Angonoa G. On Green’s function calculaitons of the static self-energy part, the ground state energy and expection values. J Chem Phys, 1989, 91:1754-1761.
    [23] Weikert H-G, Meyer H-D, Cederbaum L S, Tarantelli F. Block Lanczos and many-bdy theory: Application to the one-particle Green’s function. J Chem Phys, 1996, 104: 7122-7138.
    [24] McCarthy I E, Tandy P C. The off-shell spectator model for (p, 2p) Nucl. Phys A, 1971, 178: 1-8.
    [25] Glassgold A E, Lalongo G. Angular distribution of the outgoing electrons in electronic ionization. Phys Rev, 1968, 175: 151-159.
    [26] Amaldi U, Egidi A, Marconero R, Pizzella G. Use of a two channeltron coincidence in a new line of research in atomic physics. Rev Sci Instrum, 1969, 40: 1001-1004.
    [27] Erhardt H, Schulz M, Tekaat T, Willmann. Inoization of Helium: Angular Correlation of the Scattered and Ejected Electrons. Phys Rev Lett, 1969, 22: 89-92.
    [28] Camilloni R, Guidoni A G, Tiribelli R. Coincidence Measurements of Qusifree Scattering of 9-keV Electron on K and L Shells of Carbon. Phys Rev Lett, 1972, 29: 618-621.
    [29] Weigold E, Hood S T, Teubner P J O. Energy and angular correlations of the scattered and ejected electrons in the electron-impact ionization of argon. Phys Rev Lett, 1973, 30: 475-478.
    [30] Glassgold A E, Lalongo G. Angular distribution of the outgoing electrons in electronic ionization. Phys Rev, 1968, 175: 151-159.
    [31] Levin V G. Structure of wave functions of atoms in the (e, 2e) reaction. Phys Lett A, 1972, 39: 125-126.
    [32] Weigold E, Hood S T, Teubner P J O. Energy and angular correlations of the scattered and ejected electrons in the electron-impact ionization of argon. Phys Rev Lett, 1973, 30: 475-478.
    [33] Hood S T, Hamnett A, Brion C E. An (e, 2e) study of ammonia: Binding energies and momentum distributions of valence electrons. Chem Phys Lett, 1976, 39: 252-256.
    [34] Weigold E, Hood S T, Fuss I, Dixon A J. Ionization of atomic hydrogen: Angular correlation of the outgoing electrons. J Phys B, 1977, 10: L623-627.
    [35] Weigold E, Hood S T, Teubner P J O. Energy and angular correlations of the scattered and ejected electrons in the electron-impact ionization of argon. Phys Rev Lett, 1973, 30: 475-478.
    [36] Weigold E, McCarthy I E, Dixon A J, Dey S. Ground State correlations in H2 measured by (e, 2e) technique. Chem Phys, 1977, 47: 209-212.
    [37] Moore J H, Coplan M A, Skillman T L, Brooks E D. Multichannel (e, 2e) apparatus. Rev Sci Instrum, 1978, 49: 463-468.
    [38] Goruganthu R R, Coplan M A, Moore J H, Tossell J A. (e, 2e) momentum spectroscopic study of the interation of -CH3 and -CF3 groups with the carbon-carbon triple bond. J Chem Phys, 1988, 89: 25-33.
    [39] Takahashi M, Nagasaka H, Udagawa Y. Electron momentum spectroscopy study of lone pair orbitals of thiols and dimethyl sulfide. J Phys Chem A, 1997, 101: 528-532.
    [40] Todd B R, Lermer N, Brion C E. A high sensitivity momentum dispersive multichannel electron momentum spectrometer for studies in experimental quantum chemistry. Rev Sci Instrum, 1993, 65: 349-358.
    [41] Cook J P D, McCarthy I E, Stelbovics A T, Weigold E. Non-coplanar symmetric (e, 2e) momentum profile measurements for helium: an accurate test of helium wavefunctions. J Phys B, 1984, 17: 2339-2352.
    [42] Zheng Y, Neville J J, Brion C E, Wang Y, Davison E R. An electronic structure study of acetone by electron momentum spectroscopy: A comparison with SCF MRSD-CI and density functional theory. Chem Phys, 1994, 188: 109-129.
    [43] Deng J K, Li G Q, He Y, Huang J D, Deng H, Wang X D, Zhang Y A, Ning C G, Gao N F, Wang Y, Chen X J, Zheng Y. Investigation of orbital momentum profiles of methylpropane (isobutene) by binary (e, 2e) spectroscopy. J Chem Phys, 2001, 114: 882-888.
    [44]杨炳忻,陈向军,庞文宁,陈淼华,张芳,田宝利,徐克尊. (e,2e)电子动量谱仪研制和若干原子分子的电子动量谱测量.物理学报, 1997, 46: 862-869.
    [45] Brunger M J, Adcock W. High-resolution electron momentum spectroscopy of molecules. J Chem Soc, Perkin Trans, 2002, 2: 1-22.
    [46] Jones D B, Bolorizadeh M A, Brunger M J, Saha S, Wang F, Gleiter R, Bueber J, Winkler D A. An experimental and theoretical study into the valence electronic structure of bicyclo[2.2.1]hepta-2,5-dione. J Phys B, 2006, 11: 2411-2429.
    [47] Bawagan A O, Brion C E, Davison E R, Feller D. Electron momentum spectroscopy of thevalence orbitals of H2O and D2O: quantitative comparisons using Hartree-Fock limit and correlated wavefunctions. Chem Phys, 1987, 113: 19-42.
    [48] Zheng Y, McCarthy I E, Weigold E, Zhang D. Direct observation of the momentun-density profile of excited and oriented sodium atoms. Phys Rev Lett, 1990, 64:1358-1360.
    [49] Zheng Y, Neville J J, Brion C E. Imaging the electron-density in the highest occupied molecular-orbital of glycine. Science, 1995, 270: 786-788.
    [50] Storer P, Caprari R S, Clark S A C, Vos M, Weigod E. Condensed matter electron momentum spectrometer with parallel detection in energy and momentum. Rev Sci Instrum, 1994, 65: 2214-2226.
    [51] Vos M, Cornish G P, Weigold E. High-energy (e, 2e) spectrometer for the study of the spectral momentum density of materials. Rev Sci Instrum, 2000, 71: 3831-3840.
    [52] Zheng Y, Cooper G, Tixier S, Todd B R, Brion C E. 2πgas phase multichannel electron momentum spectrometer for rapid orbital imaging and multiple ionization studies. J Electron Spectrosc Relat Phenom, 2000, 112: 67-91.
    [53] Takahashi M, Saito T, Matsuo M, Udagawa Y. A high sensitivity electron momentum spectrometer with simultaneous detection in energy and momentum. Rev Sci Instrum, 2002, 73: 2242-2248.
    [54] Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F, Li G Q. A new (e, 2e) electron momentum spectrometer with high sensitivity and high resolution. Rev Sci Instrum, 2005, 76: 063103.
    [55] Shan X, Chen X J, Zhou L X, Li Z J, Liu T, Xue X X, Xu K Z. High resolution electron momentum spectroscopy of dichlorodifluoromethane: Unambiguous assignments of outer valence molecular orbitals. J Chem Phys, 2006, 125: 154307.
    [56] Takahashi M, Watanabe N, Khajuria Y, Udagaw Y, Eland J H D. Observation of a Molecular Frame (e, 2e) Cross Section: An (e, 2e+M) Triple Coincidence Study on H2. Phys Rev Lett, 2005, 94: 213202.
    [57]宁传刚.第三代电子动量谱仪的改进及其应用: [博士学位论文].北京:清华大学物理系, 2007.
    [58] Ning C G, Hajgat? B, Huang Y R, Zhang S F, Liu K, Luo Z H, Knippenberg S, Deng J K, Deleuze M S. High resolution electron momentum spectroscopy of the valence orbitals of water. Chem Phys, 2008, 343:19-30.
    [59] Mazevet S, McCarthy I E, Zhou Y J. Distorting potentials for electron momentum spectroscopy. J Phys B, 1996, 29: L901-L905.
    [60] Brion C E, Zheng Y, Rolke J, et al. Distorted-wave effects at low momentum in binary (e, 2e) cross sections for d-orbital ionization. J Phys B, 1998, 31: L 223-L230.
    [61] Duffy P, Chong D P. Assessment of Kohn-Sham density-functional orbitals as approximate Dyson orbitals for the calculation of electron-momentum spectroscopy scattering cross sections. Phys Rev A, 1994, 50:4707-4728.
    [62] Su G L, Ning C G, Zhang S F, et al. An electron momentum spectroscopy study of the highest occupied molecular orbital of difluoromethane. Chem Phys Lett, 2004, 390: 162-165.
    [63] Su G L, Ren X G, Zhang S F, et al. Experimental and calculated momentum densities for the complete valence orbitals of the antimicrobial agent diacetyl. Chin Phys, 2005, 14: 1966-1973.
    [64] Su G L, Ning C G, Zhang S F, et al. An investigation of valence shell orbital momentum profiles of difluoromethane by binary (e, 2e) spectroscopy. J Chem Phys, 2005, 122: 054301-054308.
    [65] Ning C G, Ren X G, Deng J K, et al. Investigation of valence orbitals of propene by electron momentum spectroscopy. J Chem Phys, 2005, 122: 224302.
    [66] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys, Rev, 1964, 136: B864-B871.
    [67] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys, Rev, 1965, 140: A1133-A1138.
    [68] Slater J C. Quantum Theory of Molecular and Solids. New York: McGraw-Hill, 1974.
    [69] Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phy, 1987, 87: 5968-5975.
    [70] Deleuze M, Pickup B T. Plane wave and orthogonalized plane wave many-body Green’s function calculation of photoionization intensities. Mol Phys, 1994, 83: 655-686.
    [71] Purvis G D, ?hrn Y. Atomic and molecular electronic spectra and properties from the electron propagator. J Chem Phys, 1974, 60: 4063-4069.
    [72] Schirmer J, Domcke W, Cederbaum L S, von Niessen W. Break-down of the molecular-orbital picture of ionisation: CS, PN and P2. J Phys B, 1978, 11: 1901-1915.
    [73] Domcke W, Cederbaum L S, Schirmer J, von Niessen W. Brion C E, Tan K H. Experimental and theoretical investigation of the complete valence shell ionization spectra of CO2 and N2O. Chem Phys, 1979, 40:171-183.
    [74] Deleuze M S, Knippenberg S. Study of the molecular structure, ionization spectrum, and electronic wave function of 1,3-butadinene using electron momentum spectroscopy and benchmark Dyson orbital theories. J Chem Phys, 2006, 125: 104309.
    [75] Huang Y R, Knippenberg S, Hajgat? B, Fran?iois J-P, Deleuze M S. Imaging momentum orbital densities of conformatioanlly versatile molecules: A benchmark theoretical study of the molecular and electronic structures of dimethoxymethane. J Phys Chem A, 2007, 111: 5879-5897.
    [76] Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F, Li G Q. Sensitive observations of orbital electron density image by electron momentum spectroscopy with different impact energies. Chem Phys Lett, 2005, 404: 279-283.
    [77] Yang T C, Su G L, Ning C G, Deng J K, Wang F, Zhang S F, Ren X G, Huang Y R. A new diagnostic of the most populated conformer of tetrahyrofuran in ags phase. J Phys Chem A, 2007, 111: 4927-4933.
    [78]吴芳.若干分子构像异构体相对稳定性的电子动量谱学研究: [博士学位论文].合肥:中国科学技术大学物理系, 2007.
    [79] Neville J J, Zheng Y, Hollebone B P, Cann N M, Brion C E, et al. EMS studies of larger molecules of chemical and biochemical interest. Can J Phys, 1996, 74: 773-781.
    [80] Allinger N L, Fermann J T, Allen W D, Schaefer III H F. The torsional conformations of butane: Definitive energretics from ab initio methods. J Chem Phys, 1997, 106: 5143-5150.
    [81] Salam A, Deleuze M S. High-level theoretical study of the conformational equilibrium of n-pentane. J Chem Phys, 2002, 116: 1296-1302.
    [82] Kwasniewski S P, Claes L, Fran?ois J-P, Deleuze M S. High level theoretical study of the structure and rotational barriers of trans-stilbene. J Chem Phys, 2003, 118: 7823-7836.
    [83] Scuseria, G E, Lee T J. Comparison of coupled-cluster methods which include the effects of connected triple excitations. J Chem Phys, 1990, 93: 5851-5855.
    [84] Bartlett R J. Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. J Phys Chem, 1989, 93: 1697-1708.
    [85] Scuseria, G E; Janssen, C L, Schaefer III H F. An effeicient reformulation of the closed-shell coupled cluster single and double exitation (CCSD) equationas. J Chem Phys, 1988, 89: 7382-7387.
    [86] Feller D. Application of systematic sequences of wave functions to the water dimmer. J. Chem. Phys, 1992, 96: 6104-6114.
    [87] Feller D. The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water. J Chem Phys, 1993, 98: 7059-7071.
    [88] Martin J M L. Ab Initio Thermochemistry Beyond Chemical Accuracy for First- and Second-Row Compounds, in NATO ASI Symposium volume Energetics of Stable Molecules and Reactive Intermediates. Kluwer: Dordrecht, The Netherlands, 1999.
    [89] Schwartz C. Estimating Convergence Rates of Variational Calculations in Methods in Computational Physics. New York: Academic Press, 1963.
    [90] Hu W P, Truhlar D G. Modeling transition state solvation at the single-molecule level: test of correlated ab initio prections against experiment for the gas-phase SN2 reaction of microhydrated fluoride with methyl chloride. J Am Chem Soc, 1994, 116, 7797-7800.
    [91] Corchado J C, Espinogarcia J, Hu W P, Rossi I, Truhlar D G. Dual-level reaction-path dynamics (the approach to VTST with semiclassical tunneling.) application to OH+NH3→H2O+NH2. J Phys Chem, 1995, 99: 687-694.
    [92] Heuts J P A, Gilbert R G, Radom L. Determiation of arrhenius parameters for propagation in free-radical polymerizations: an assessment of ab initio procedures. J Phys Chem, 1996, 100: 18997-19006.
    [93] Hu W P, Truhlar D G. Factor affecting competitive ion-molecues reactions: CIO-+C2H5CL and C2D2CL via E2 and SN2 channels. J Am Chem Soc, 1996, 118: 860-869.
    [94] McClurg R B, Flagan R C, Goddard III W A. The hindered rotor density of states interpolation function. J Chem Phys, 1997, 106: 6675-6680.
    [95] Ayala P Y, Schlegel H B. Identification and treatment of internal rotation in normal mode vibrational analysis. J Chem Phys, 1998, 108: 2314-2325.
    [96] Eliel E L, Allinger N L, Angyal S J. Conformational Analysis. New-York: Interscience Publishers, 1967.
    [97] Kneisler J R, Allinger N L. Ab initio and density functional theory study of structure and energies for dimethoxymethane as model for the anomeric effect. J Comput Chem, 1996, 17: 757-766.
    [98] Astrup E E. The molecular structure of dimethoxymethane, CH3-O-CH2-O-CH3, in the gas phase. Acta Chem Scand, 1973, 27: 3271-3276.
    [99] Astrup E E. The molecualr structure of dimethoxymethane, CH3-O-CH2-O-CH3. Acta Chem Scand, 1971, 25: 1494-1495.
    [100] Yokoyama Y, Ohashi Y. Crytal and molecular structures of methoxy and methyltio compounds. Bull Chem Soc Japan, 1999, 72: 2183-2191.
    [101] Abe A, Inomata K, Tanisawa E, Ando I. Conformation and conformational energies of dimethoxymethane. J Mol Struct, 1990, 238: 315-323.
    [102] Favero L B, Caminati W, Velino B. Conformation of dimethoxymethane: roles of anomeric effects and weak hydrogen bonds. A free jet microwave study. Phys Chem Chem Phys, 2003, 5: 4776-4779.
    [103]傅相锴.立体电子效应.化学通报, 1989, 6: 28-33.
    [104] Deslongchamps P. Stereoelectronic Effects in Organic Chemistr. Oxford: Pergamon Press, 1983.
    [105] Kirby A J. The Anomeric Effects and Related Stereoelectronic Effects at Oxygen. Berlin: Springer-Verlag, 1983.
    [106] J?rgensen F S. Photoelectron spectrum and molecualr orbital (MNDO and PRODDO) study of dimethoxymethane. J Chem Res (S), 1981, 212-213.
    [107] Kimura K, Katsuwata S, Achiba Y, Yamazaki T, Iwata S. Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules. New York: Halsted Press, 1981.
    [108] Deleuze M S, Denis J P, Pickup B T. Theoretical study of spectral differences in the XPS valence bands of polyethylene lamellae and films. J Phys Chem, 1993, 97: 5115-5123.
    [109] Deleuze M S, Delhalle J, Pickup B T, Svensson S. Probing the molecular primary and secondary structures of saturated hydrocarbons by X-ray photoionization spectroscopy. J Am Chem Soc, 1994, 116: 10715-10724.
    [110] Deleuze M, Delhalle J, Pickup B T. Diagonal two-particles-hole Tamm-Dank off approximation Green’s function simulation of the valence X-ray photoelectron spectra of cycloalkanes: theorectial search for signatures of the moelecular structure. J Phys Chem, 1994, 98, 2382-2396.
    [111] Mirkin N G, Krimm S, Ab initio studies of th conformation dependence of the spectra of stable conformers of n-pentane and n-hexane. J Phys Chem, 1993, 97: 13887-13895.
    [112] Kanesaka I, Snyder R G, Strauss H L. Experimental determination of the trans-guache energy difference of gaseous n-pentane and diethyl ether. J Chem Phys, 1986, 84: 395-397.
    [113] McQuarrie D A. Statistical Thermodynamics. New York, 1976.
    [114] Vansteenkiste P, Van Speybroeck V, Marin G B, Waroquier M. Ab initio calculation of entropy and heat capacity of gas-phase n-alkanes using internal rotations. J Phys Chem, 2003, 107: 3139-3145.
    [115] Pireaux J J, Svensson S, Basilier E, Malmqvist P-A, Gelius U, Caudano R, Siegbahn K. Core-electron relaxation energies and valence-band formation of linear alkanes studied in the gas phase by means of electron spectroscopy. Phys Rev A, 1976, 14: 2133-2145.
    [116] Price W C, Potts A W, Streets D G. Electron Spectroscopy. Amsterdam, 1972.
    [117] Deleuze M S, Pang W N, Salam A, Shang R C. Probing Molecular Conformations with Electron Momentum Spectroscopy: The Case of n-Butane. J Am Chem Soc, 2001, 123: 4049-4061.
    [118] Duwez A-S, Di paolo S, Ghijsen J, Riga J, Deleuze M S, Delhalle J. Surface molecular structure of self-assembled alkanethiols evidenced by UPS and photoemission with synchrotron radiation. J Phys Chem B, 1997,101: 884-890.
    [119] Deleuze M S, Delhalle J. Outer-valence Green’s function study of cycloalkane and cycloalkyl-alkane compounds. J Phys Chem A, 2001, 105: 6695-6702.
    [120] Deleuze M S, Trofimov A B, Cederbaum L S. Valence one-electron and shake-up ionizationbands of polycyclic aromatic hydrocarbons. I. benzene, naphthalene, anthracene, naphthacene, and pentacee. J Chem Phys, 2001, 115: 5859-5882.
    [121] Deleuze M S. Valence one-electron and shake-up ionization bands of polycyclic aromatic hydrocarbons. II. azulene, phenanthrene, pyrene, chrysene, triphenylene, and perlene. J Chem Phys, 2002, 116: 7012-7026.
    [122] Deleuze M S. Valence one-electron and shake-up ionization bands of polycyclic aromatic hydrocarbons. III. Coronene, 1.2,6.7-dibenzopyrene, 1.12-benzoperylene, anthanthrene. J Phys Chem A, 2004, 108: 9244-9259.
    [123] Deleuze M S. Valence one-electron and shake-up ionization bands of polycyclic aromatic hydrocarbons. IV. The dibenzathracene species. Chem Phys, 2006, 329: 22-38.
    [124] Holland D M P, Karlsson L, von Niessen W. The identification of the outer valence shellπ?photoelectron bands in furan, pyrrole and thiophene. J Electron Spectrosc Relat Phenom, 2001, 113: 221-239.
    [125] Potts A W, Holland D M P, Trofimov A B, Schirmer J, Karlsson L, Siegbahn K. An experimental and theoretical study of the valence shell photoelectron spectra of purine and pyrimidine molecules. J Phys B, 2003, 36: 3129-3143.
    [126] Trofimov A B, Schirmer J, Holland D M P, Karlsson L, Maipuu R, Siegbahn K, Potts A W. An experimental and theoretical study of the valence shell photoelectron spectra of thiophene, 2-chlorothiophene and 3-chlorothiophene. Chem Phys, 2001, 263: 167-193.
    [127] Potts A W, Trofimov A B, Schirmer J, Holland D M P, Karlsson L. An experimental and theoretical study of the valence shell photoelectron spectra of 2-bromothiophene and 3-bromothiophene. Chem Phys, 2001, 271: 337-356.
    [128] Trofimov A B, Schirmer J, Holland D M P, Potts A W, Karlsson L, Maripuu R, Siegbahn K. The influence of electron correlation and relativistic effects on the valence shell photoelectron spectrum of iodothiophene. J Phys B, 2002, 35: 5051-5071.
    [129] Deleuze M S, Giuffreda M G, Fran?ois J-P, Cederbaum L S. Valence one-electron and shake-up ionization bands of carbon clusters. I. the Cn (n=3,5,7,9) chains. J Chem Phys, 1999, 111: 5851-5865.
    [130] Deleuze M S, Giuffreda M G, Fran?ois J-P, Cederbaum L S. Valence one-electron and shake-up ionization bands of carbon cluster. II. the Cn (n=4,6,8,10) rings. J. Chem. Phys, 2000, 112: 5325-5338.
    [131] Deleuze M S, Giuffreda M G, Fran?ois J-P. Valence one-electron and shake-up ionization bands of carbon cluster. III. the Cn (n=5,7,9,11) rings. J Phys Chem A, 2002, 106: 5626-5637.
    [132] Derrick P J, ?sbrink L, Edqvist O, Jonsson B-?, Lindholm E. Rydberg series in small molecues XI. Photoelectron spectroscopy and electron structure of thiphene. Int J MassSpectrom, Ion Phys, 1971, 6: 177-190.
    [133] Kishimoto N, Yamakado H, Ohno K. Penning ionization of thiophene, furan and pyrrole by collision with He*(23S) metastable atoms. J Phys Chem, 1996, 100: 8204-8211.
    [134] Bawagan A D O, Olsson B J, Tan K H, Chen J M, Yang B X. The correlation states of furan and thiophene by high resolution synchrotron photoelectron spectroscopy. Chem Phys, 1992, 164: 283-304.
    [135] Giertz A, B?ssler M, Bj?meholm O, Wang H, Feifel R, Miron C, Karlsson L, Svensson S. High resolution C1s and S2p photoelectron spectra of thiophene. J Chem Phys, 2002, 117: 7587-7592.
    [136] Ehara M, Ohtsuka Y, Nakatsuji H, Takahashi M, Udagawa Y. Theoretical fine spectroscopy with symmetry-adapted-cluster configuration-interacton method: outer-and inner-valence ionization spectra of furan, pyrrole, and thiophene. J Chem Phys, 2005, 122: 234319.
    [137] Zhang S F, Ren X G, Su G L, Ning C G, Zhou H, Li B, Li G Q, Deng J K. Electron momentum spectroscopy study of thiophene: Binding energy spectrum and valence orbital electron density distributions. Chem Phys, 2006, 327: 269-277.
    [138] Trofimov A B, K?ppel H, Schirmer J. Vibronic structure of the valenceπ-photoelectron bands in furan, pyrrole, and thipohen. J Chem Phys, 1998, 109: 1025-1040.
    [139] Takahashi M, Ogino R, Udagawa Y. Outer valence electronic structure of pyrrole studied by electron momentum spectroscopy. Chem Phys Lett, 1998, 288: 821-827.
    [140] Takahashi M, Otsuka K, UdagawaY. Electron momentum spectroscopy study of furan. Chem Phys 1998, 227: 375-387.
    [141] Villarreal J R, Bauman L E, Laane J, Harris Q C, Bush S F. Low-frequency vibrational spectra and ring puckering of cyclopentene-d8. J Chem Phys, 1975, 63: 3727-3730.
    [142] Green H W. Ring-puckering data from the mid-infrared. J Chem Phys, 1970, 52: 2156-2157.
    [143] Villarreal J R, Bauman L E, Laane J. Ring-puckering vibtational spectra of cyclopentene-d-d1 and cyclopentene-1,2,3,3-d4. J Phys Chem, 1976, 80: 1172-1177.
    [144] Scharpen L H. Rotation-vibration interaction and barrier to ring inverion in cyclopentene. J Chem Phys, 1968, 48: 3552-3556.
    [145] Davis M I, Muecke T W. A molecular structure of cyclopentene. J Phys Chem, 1970, 74: 1104-1108.
    [146] Hamilton I P, Light L C, Whaley K B. Potential energy determination by inverse perturbation analysis with local correction functions. J Chem Phys, 1986, 85: 5151-5157.
    [147] Bauman L E, Killough P M, Cooke J M, Villarreal J R, Laane J. Two-dimensional potential energy surface for the ring puckering and ring twisting of cyclopentene-d0,-1-d1,-1,2,3,3-d4, and -d8. J Phys Chem, 1982, 86: 2000-2006.
    [148] Ren X G, Ning C G, Zhang S F, Su G L, Li B, Zhou H, Huang F, Li G Q, Deng J K. Exploring electron density distribution for the complete valence shell of cyclopentene using a binary (e, 2e) spectrometer. Phys Rev A, 2005, 72: 052712.
    [149] Wiberg K B, Ellison G B, Wendoloski J J, Brundle C R, Kuebler N A. Elctronic states of organic molecules. 3. photoelectron spectra of cycloalkenes and methylenecycloakanes. J Am Chem Soc, 1976, 98: 7179-7182.
    [150] Nevins N, Chen K, Alliger N L. Molecular mechanics (MM4) calculations on alkenes. J Comput Chem, 1996, 17: 669-694.
    [151] Leong M K, Mastryukov V S, Boggs J E. Structure and conformation of cyclopentene, cycloheptene and trans-cyclooctene. J Mol Struc, 1998, 445: 149-160.
    [152] Rathjens G W Jr. Mircrowave investigation of cyclopentene. J Chem Phys, 1962, 36: 2401-2406.
    [153] Malloy T B Jr. Far-infrared spectra of ring compounds: A semi-rigid model for the ring-puckering vibration in some pseudo-four-membered ring molecules. J Mol Spectrosc, 1972, 44: 504-535.
    [154] Svensson S. Soft x-ray photoionization of atoms and molecules. J Phys B, 2005, 38: S821-S838.
    [155] Bharathi S M, Grisogono A M, Lahmam-bennaani A, Pascual R, Weigold E. Electron momentum spectroscopy of molecular core states. J Eletron Spectrosc Relat Phenon, 1991, 53: 271-283.
    [156] Wuilleumier F, Krause M O. Photoioization of neon between 100 and 2000 eV: single and multiple process, angular distributions and subshell cross sections. Phys Rev A, 1974, 10: 242-258.
    [157] Bandarage G, Lucchese R R, Multiconfiguration multichannel schwinger study of the C(1s) photoionization of CO including shake-up satellites. Phys Rev A, 1993, 47: 1989-2003.
    [158] Downton M, Wang F. Chemical bonding mechanisms of n-butane probed by the core orbitals of conformation isomer in r-space and k-space. Chem Phys Lett, 2004, 384: 144-149.
    [159] Fujii K, Akamatsu K, Yokoya A. The measurement of molecular fragments from DNA components using synchrotron radiation. Surface Science, 2003, 528: 249-254.
    [160] Wang F. The electronic structural information from core orbitals of norbornadiene, norbornene and norbornane. J Mol Struct (THEOCHEM.), 2005, 728: 31-43.
    [161] Siegbahn K, Nordling C, Johansson G, Hedman J, Heden P F, et al. ESCA Applied to Free Molecules. Amsterdam: North-Holland Publishing Company, 1969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700