用户名: 密码: 验证码:
核酸适配子在生化检测中的应用及基因突变位点识别新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸适配子(核酸适体, Aptamer)是人工合成的核酸序列,能以高的亲合力同各种靶分子(小分子、蛋白质,甚至整个细胞)特异性结合。它们是从含大量自由序列的核酸文库中通过体外筛选分离出来的。含有富guanine (G)-片段的某些核酸适配子,例如,具有生物活性的抗增生性、抗艾滋病与抗血凝固的核酸适配子[1],能够通过氢键作用组成四元G平面,这种四元G平面能彼此重叠堆积,形成G-四股螺旋。这种四股螺旋能使核酸适配子具有特定的活性。某些物质分子就是通过与G-四股螺旋的特异性结合来实现它们治疗与调节基因功能活性的作用[2]。在生化分析领域,由于核酸适配子,包括富G-核酸序列,具有高的目标结合特异性与强的亲和作用力,生物活性稳定而易于保存,在活体组织中能快速渗透,而且易于合成,已经被视为一种富有应用潜力的探针,与抗体相媲美。目前,核酸适配子已经被应用于各种蛋白质检测系统的构建中,为免疫检测方法与免疫传感器的研究提供了一个新的平台[3]。尽管如此,相对于传统的抗体技术,核酸适配子的研究尚处于起始阶段[4]。在用核酸适配子构建靶物质检测体系的过程中,关键的一步是将靶物质分子与核酸适配子的结合作用成功地转换成可检测的响应信号。
     单核苷多形态(SNPs)是指基因组中特定位置的碱基发生突变的现象,是遗传变异中一种最为普遍的形式。由于氨基酸的替代、基因表达的更改与基因拼接的变化,SNP能够影响基因组的功能,进而导致各种疾病的发生与药物代谢的个体差异[5]。虽然目前用于基因突变检测的方法已有不少报道,多数体系需要对目标序列进行放大,比如,PCR放大。为了灵敏、准确、快速而低消耗地识别突变位点,需要继续发展一些较为通用的检测方法[6]。
     基于以上考虑,综合文献报道,本论文利用普通序列与富G-序列(这种序列可以形成分子内或者分子间四股螺旋结构)核酸适配子发展了一序列的生物检测体系,研究了富G-DNA衍生纳米颗粒的团聚行为;此外,利用核苷酸杂交作用发展了DNA序列检测与点突变识别的新型电化学与光学生物传感技术。具体细节如下:
     1.基于核酸适配子的生物检测体系
     A)富G-DNA衍生纳米金的团聚行为与基于G-四股螺旋结构的电化学传感器。
     基于核酸适配子构型转换,利用腺苷做目标分析物,第2章构建了可再生、电化学传感平台,用于小分子物质的灵敏检测。首先在金电极表面修饰酪胺聚合膜和纳米金层,再通过硫-金键的强亲合力将巯基衍生的固定探针组装在电极表面;特异性识别腺苷的二茂铁-适配子探针与固定探针杂交后即完成传感器的制备。腺苷的存在使二茂铁标记的适配子探针从电极表面脱落而导致氧化还原峰电流下降。峰电流的降低幅度与腺苷含量成正比。此传感界面可提供较宽的线性响应范围和较低的检测下限,此外,还具有较高的选择性、良好的重现性、稳定性及再生性等优点。回收试验证实了此电化学传感系统用于腺苷检测的可行性。
     第3章考察了末端碱基为四个鸟嘌呤、含27个碱基的DNA序列修饰的金纳米颗粒的团聚行为。研究发现,某种程度上,纳米颗粒间的G-四股螺旋促进了纳米金的团聚。另一方面,金属离子络合的现象发生部分钝化:富G-DNA衍生纳米颗粒的稳定性比普通DNA衍生纳米颗粒稍低;衍生纳米颗粒团聚过程中的金属选择性被有效抑制。据此,本章提出了富G-DNA衍生纳米颗粒可能的团聚机理。
     基于富G-DNA的构型转换,第4章构建了开/关型纳米电子器件。巯基化、氨基修饰的富G-DNA固定于金电极表面,然后标记电化学活性物质二茂铁(Fc)。表面限定的DNA序列能够在刚性四元G-四股螺旋与弹性单链结构间相互转换。这种较大的形态改变使得DNA序列能够象尺蠖一样做伸―缩运动,产生了电流变化。因钾离子能够与G-四股螺旋发生特异性结合,使用这种无试剂的电化学传感界面,不需任何额外的检测试剂,就可实现对钾离子的简便、快速、选择性检测。
     第5章利用分子间的G-四股螺旋结构,不需任何信号增强试剂,构建了高灵敏的电化学DNA生物传感器。为了获得传感界面,通过巯-金键作用将捕获探针(巯基DNA序列)组装到金电极表面;用具有电化学活性的二茂铁分子衍生末端富G-片段的DNA序列,作为信号报道探针,这条探针设计成能够形成分子间的四股螺旋,且与捕获探针序列相匹配。信号探针与表面限定捕获探针的杂交能使电极产生氧化还原峰电流。少量的目标DNA与捕获探针的预先杂交能够使电极的峰电流发生显著变化,产生电化学响应信号。用这种竞争杂交型的电化学检测方法,获得的浓度响应范围为9.92×10-14到9.92×10-10 M,检测限为2.48×10?19 mol。相对于普通序列探针构建的传感界面,该传感界面具有较高的灵敏度。此外,本检测体系操作简便、快速、消耗低,而且回避了信号扩大过程中可能产生的各种问题。B)为了进一步说明核酸适配子在生化分析中的优越性,本部分内容以IgE为待测目标物质、核酸适配子为识别探针,构建了生物检测体系,考察了核酸适配子检测体系的分析性能。
     在第6章,以含抗-IgE适配子标准序列片段、能形成发夹型结构的核酸分子为识别探针,构建了IgE的电化学检测平台。没有目标IgE时,由于双臂末端的杂交作用,电极表面限定的核酸适配子可以形成大的发夹型结构,溶液中的电化学活性分子能产生氧化还原峰电流;有待测物质IgE时,目标蛋白质的结合不但能使电极表面介电层增厚,而且导致核酸适配子形态发生较大的改变:发夹结构的打开将生物分子层与溶液的界面推离电极表面,电子传递距离增大,传递效率被有效抑制,产生增强的检测信号。
     基于核酸适配子对IgE的特异性识别作用,并借助短序列杂交反应,第7章提出了IgE荧光增强均相检测体系。用与核酸适配子匹配的德克萨斯红标记的DNA (T-DNA)作为信号探针,在形成IgE/aptamer/T-DNA的三元复合物后,其荧光明显增强;以4′-(4′-二甲基氨基叠氮苯)苯甲酸(DABCYL,猝灭基团)标记的另一条DNA (Q-DNA)为猝灭探针,这条DNA序列能与核酸适配子序列中同信号探针相邻的另一片段发生杂交反应,由于猝灭基团与荧光基团之间发生能量转移而有效降低荧光背景。用这种方法检测IgE取得的动力学响应浓度范围为9.2×10~(-11)到3.7×10~(-8) M,检测限为5.7×10~(-11) M.
     2. DNA杂交检测与单核苷多形态识别方法研究
     通过反转分子信标与DNA连接酶的联合使用,第8章提出了一种DNA检测与点突变识别的新策略。用5'端磷酸化、3'端修饰二茂铁的DNA为信号探针,这条探针在目标序列与连接酶存在时能被连接到表面限定的捕获探针上,产生氧化还原电流;洗脱目标DNA后,连接生成物可以形成发夹型结构,电流响应强度进一步增大。利用这种检测方法,在3.4×10~(-12)到1.4×10~(-7) M浓度范围内的目标DNA序列能被定量检测,检测限为1.0×10~(-12) M。
     以纳米金作为DNA捕获探针的富集基体和检测探针的荧光猝灭剂,第9章研究了一种新型的荧光淬灭DNA杂交均相检测系统。以5'端修饰纳米金的DNA作为捕获探针,3'端修饰羧基四甲基罗丹名(TAMRA)的DNA作为信号探针,溶液中加入匹配DNA后,由于杂交反应,TAMRA接近纳米金表面而发生荧光淬灭;荧光淬灭效率随着目标DNA浓度的增大而增强,因此适合于DNA的定量测量。检测线性范围为1.4~92 nM。
     第10章报道了5'-单磷酸腺苷(AMP),一种带负电荷分子,可导致纳米金强烈团聚的现象。据此,研发出一种基于切割碎片诱导纳米金团聚、用于核酸序列检测的均相非标记比色检测技术。这种比色检测技术用于DNA序列检测,通过目视比色法和UV/vis分光光度法,均可获得较为理想的响应性能(如灵敏度,选择性和线性范围)。
Aptamers are synthetic oligonucleotides with high binding affinity for a broad range of targets, including small molecules, proteins, or even whole cells. They are isolated from random-sequence nucleic acid libraries by“in vitro selection”. Some aptamers with guanine (G)-rich segments, biologically active RNA and DNA sequences including anti-proliferative, anti-HIV and anti-coagulation aptamers[1], can assemble into G-quartets, planar structures of four H-bonded Gs, which stack on top of each other to form G-quadruplexes that are essential for nucleotide fuctions. Some species that bind to G-quadruplexes can find significant applications as therapeutics or as probes for gene function[2]. In biochemical analysis, aptamers, including G-rich oligonucleotides, rival antibodies as highly promising tools due to the specificity, the easy storage, the fast tissue penetration, the high binding affinity and simplicity of in vitro selection. Aptamers have been used for the preparation of numerous sensing atrageies for the detection of various proteins and provide a interesting alternative to immunoassays and immunosensors[3]. Nevertheless, aptamer research is still in its infancy compared with the bellwether antibody technology[4]. The key in the development of aptamer-based sensing systems is to transducer successfully aptamer recognition events to detectable signals.
     Single-nucleotide polymorphisms (SNPs) are point mutations that occur at specific positions in a genome and constitute the most common form of genetic variation. SNP may affect gene function resulting from amino acid substitution, modification of gene expression or alteration of gene splicing and are closely associated with various common diseases and individual differences in drug metabolism[5]. Although numerous technologies for the point mutation detection have been reported to date, most of these approaches require target amplification, typically with PCR. Additional efforts are thus needed to explore more broadly applicable methods for the sensitive, accurate, rapid, and low-cost SNP identification[6]. In this doctoral thesis, several bioassay systems have been developed based on aptamers with the common sequences and those with with G-rich segments that can form the intramolecular or intermolecular G-quadruplex structures; the aggregation behavior of G-rich DNA-modified nanoparticles has been inveastigatedd; electrochemical sensing interfaces as well as optical methods for the detection of DNA hybridization and the screening of SNPs. The details are summarized as follows:
     1. Aptamer–based bioassay systems
     A) The aggregation behavior of gold nanoparticles modified with G-rich DNA sequences and electrochemical biosensors based on G-quadruplex structures.
     (1) In chapter 2, a reusable electrochemical sensing platform based on structure-switching signaling aptamers for highly sensitive detection of small molecules is developed using adenosine as a model analyte. A gold electrode is firstly modified with polytyramine (Pty) and gold nanoparticles (GNPs). Then, thiolated-capture probe is assembled onto the modified electrode surface via sulfur-gold affinity. Ferrocene (Fc)-labeled aptamer probe, which is designed to hybridize with capture DNA sequence and specifically recognize adenosine, is immobilized on electrode surface by hybridization reaction. The introduction of adenosine triggers structure switching of aptamer. As a result, Fc-labeled aptamer probe is forced to dissociate from the sensing interface, resulting in a decrease in redox current. The decrement of peak current is proportional to the amount of adenosine. The present sensing system could provide both a wide linear dynamic range and a low detection limit. In addition, high selectivity, good reproducibility, stability and reusability are achieved. The recovery test demonstrates the feasibility of the designed sensing system for adenosine assay.
     (2) In chapter 3, the aggregation behavior of the nanoparticles, which are functionalized with four-guanine-terminated 27-base sequences, is investigated. To some extent, the guanine-quadruplex structures between gold nanoparticles (GNPs) promote the nanoparticle aggregation. However, the coordination site of the metal ion on the nanoparticle surfaces is partly passivated: the stability of guanine-rich DNA-GNPs is slightly lower than that of the common DNA-GNPs, and the metal-ion specificity of nanoparticle assembly is substantially decreased. Accordingly, a mechanism for the aggregation of guanine-rich sequence-modified GNPs is proposed.
     In chapter 4, a novel on/off electronic nanoswitch is described based on the conformational change of DNA sequence possessing a single guanine (G)-rich stretch. A thiolated, amine-containing G-rich DNA sequence is immobilized on the surface of gold electrode and is then labeled with redox-active ferrocene molecules. The surface-confined DNA sequence is able to change its configuration between rigid tetramolecular G-quadruplex and flexible single-stranded structures. The large conformational change enables the probes to perform an inchworm like extending-shrinking motion, which is reflected by the fluctuation in current intensity. Since potassium ion can specifically bind to G-quadruplex, using this reagentless reusable electrochemical sensing platform, the simple, rapid and selective detection of potassium ion can be accomplished without the use of exogenous reagents.
     In chapter 5, a highly sensitive electrochemical DNA biosensor without any signal amplifier has been reported by employing an intermolecular tetrameric guanine (G)-quadruplex structure. To fabricate a sensing interface, thiolated DNA sequence (capture DNA) is assembled onto the surface of a gold electrode through the covalent thiol-gold binding. Redox-active ferrocene (Fc)-conjugated DNAs with single guanine (G)-rich stretches are used as signaling probes, which can form intermolecular G-quadruplexes and are complementary sequences of capture DNAs. The introduction of signaling probes onto the sensing interface can lead to a redox current. A marked current response is observed even if small amounts of target DNA are prehybridized with the surface-confined capture DNA. Target sequences can be detected in a competition setup in the concentration range from 9.92×10-14 to 9.92×10-10 M with a detection limit of 2.48×10?19 mol, indicating a substantial improvement in the sensitivity compared with a common signaling probe-based scheme. The present strategy exhibits other advantages of simplicity, rapidity, low cost and circumvents various problems associated with the additional signal amplifiers. B) To demonstrate that aptamers can provide several advantages over the corresponding antibodies, we have developed biosensing systems using IgE and aptamers as the model analyte and probe molecules, respectively, and investigated their analytical characteristic by comparison.
     In chapter 6, an aptamer-based electrochemical sensing platform for the direct protein detection has been developed using immunoglobulin E (IgE) and a specifically designed oligonucleotide strand with hairpin structure that has the standard aptamer segment as the model analyte and probe sequence, respectively. In the absence of IgE, the aptamer immobilized on an electrode surface forms a large hairpin due to the hybridization of the two complementary arm sequences, and peak currents of redox species dissolved in solution can be achieved. However, the target protein-binding can not only cause the increase of the dielectric layer but also trigger the significant conformational switching of the aptamer due to the opening of the designed hairpin structure that pushes the biomolecule layer/electrolyte interface away from the electrode surface, suppressing substantially the electron transfer (eT) and resulting in a strong detection signal.
     In chapter 7, we demonstrate a fluorescence immunoglobulin E (IgE) assay sensor based on DNA aptamer. A Texas red labeled short DNA strand (T-DNA) complementary with part of the IgE aptamer sequence was used to produce the enhanced fluorescence upon the binding of IgE to the aptamer. Another short DNA strand labeled with dabcyl quencher (Q-DNA) complementary with part of aptamer sequence nearby the T-DNA location was used to lower the background fluorescence. The IgE can be detected in the concentration range from 9.2×10~(-11) to 3.7×10~(-8) mol·L~(-1) with a detection limit of 5.7×10~(-11) mol? L~(-1).
     2. The methods for the detection of DNA hybridization and the identification of SNPs.
     In chapter 8, a novel strategy is described for highly sensitive DNA detection and point mutation identification based on the combination of reverse molecular beacon with DNA ligase. A 5'-phosphorylated and 3'-ferrocene terminated DNA sequence is used as detection probe, which may be ligated to capture DNA immobilized on an electrode surface in the presence of a target DNA strand that is complementary to the ends of each DNA since this allows formation of a nicked, double-stranded DNA. A redox current is observed. The ligation product may form a hairpin structure after the removal of target DNA, resulting in an enhanced electrochemical signal. By this method, target DNA can be determined in the range from 3.4×10~(-12) to 1.4×10~(-7) M with a detection limit of 1.0×10~(-12) M.
     In chapter 9, a novel system for the detection of DNA hybridization in a homogenous format is developed. This method is based on fluorescence quenching by gold nanoparticles used as both nano-scaffolds for the immobilization of capture sequences and nano-quenchers of fluorophores attached to detection sequences. The oligonucleotide-functionalized gold nanoparticles are synthesized by derivatizing the colloidal gold solution with 5'-thiolated 12-base olignucleotides. Introduction of sequence-specific target DNAs (24 bases) into the mixture containing dye-tagged detection sequences and olignucleotide-functionalized gold nanoparticles results in the quenching of carboxytetramethylrhodamine(TAMRA)-labeled DNA fluorescence because DNA hybridization occurs and brings fluorophores into close proximity with olignucleotide-functionalized gold nanoparticles. The quenching efficiency of fluorescence increases with the target DNA concentration and provides a quantitative measurement of sequence-specific DNA in sample. A linearity is obtained within the range from 1.4 to 92 nM.
     In chapter 10, an exciting discovery that the adsorption of negatively charged molecules onto nanoparticle surfaces can induce the intensive aggregation of citrate-stabilized gold nanoparticles has been reported. Along this line, a homogeneous, colorimetric system for DNA detection is described based on the aggregation of gold nanoparticles induced by the products of DNA cleavage. Excellent response characteristics (for example, sensitivity, selectivity and linear response range) are achieved using either UV/vis spectrophotometer or the naked eye.
引文
[1] Keniry M A. Quadruplex structures in nucleic acids. Biopolymers, 2000, 56(3): 123-146
    [2] Marin V L, Armitage B A. RNA guanine quadruplex invasion by complementary and homologous PNA probes. Journal of the American Chemical Society, 2005, 127(22): 8032-8033
    [3] Ruta J, Ravelet C, Baussanne I, et al. Aptamer-based enantioselective competitive binding assay for the trace enantiomer detection. Analytical Chemistry, 2007, 79(12): 4716-4719
    [4] Wang X-L, Li F, Su Y-H, et al. Ultrasensitive detection of protein using an aptamer-based exonuclease protection assay. Analytical Chemistry, 2004, 76(19): 5605-5610
    [5] Wang Y, Li C, Li X, et at.Unlabeled hairpin-DNA probe for the detection of single-nucleotide mismatches by electrochemical impedance spectroscopy. Analytical Chemistry, 2008, 80(6): 2255-2260
    [6] Liu G, Lin Y. Electrochemical quantification of single-nucleotide polymorphisms using nanoparticle probes. Journal of the American Chemical Society, 2007, 129(34): 10394-10401
    [7]金钦汉.分析化学的第二个春天,理化检验一化学分册,2004, 1(40): 1-5
    [8]马心英.生命科学中的分析化学,菏泽师专学报,2002,2(24):51-53
    [9]汪尔康.分析化学新进展,南京:南京大学出版社, 1997: 4-7
    [10]汪尔康. 21世纪的分析化学,北京:科学出版社, 1999: 136-151
    [11] Tuerk C, Gold L. Systematic evolution of ligands by exponentialenrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505-510
    [12] Ellington D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822
    [13] Pavski V, Le X C. Detection of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using Aptamers as Probes in Affinity Capillary Electrophoresis. Analytical Chemistry, 2001, 73(24): 6070-6076
    [14] Huang C-C, Cao Z, Chang H-T, et al. Protein-protein interaction studies based on molecular aptamers by affinity capillary electrophoresis. AnalyticalChemistry, 2004, 76(23): 6973-6981
    [15] Basnar B, Elnathan R, Willner I. Following aptamer-thrombin binding by force measurements. Analytical Chemistry, 2006, 78(11): 3638-3642.
    [16] Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Analytical Chemistry, 2006, 78(9): 2918-2924.
    [17] Zhang H, Li X-F, Le X C. Tunable aptamer capillary electrophoresis and Its application to protein analysis. Journal of the American Chemical Society, 2008, 130(1): 34-35
    [18] Tang Z, Shangguan D, Wang K, et al. Selection of aptamers for molecular recognition and characterization of cancer cells. Analytical Chemistry, 2007, 79(13): 4900-4907
    [19] Guo X, Liu Z, Liu S, et al. Structural features of the L-argininamide-binding DNA aptamer studied with ESI-FTMS. Analytical Chemistry, 2006, 78(20): 7259-7266
    [20] Hansen J A, Wang J, Kawde A-N, et al. Quantum-Dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. Journal of the American Chemical Society, 2006, 128(7): 2228-2229
    [21] Huang Y-F, Chang H-T, Tan W. Cancer cell targeting using multiple aptamers conjugated on nanorods. Analytical Chemistry, 2008, 80(3): 567-572
    [22] Zhao Q, Li X-F, Le X C. Aptamer-modified monolithic capillary chromatography for protein separation and detection. Analytical Chemistry, 2008, 80(10): 3915-3920
    [23] Tang Z, Mallikaratchy P, Yang R, et al. Aptamer switch probe based on intramolecular displacement. Journal of the American Chemical Society, 2008, 130(34): 11268-11269
    [24] Zhu Z, Tang Z, Phillips J A, et al. Regulation of singlet oxygen generation using single-walled carbon nanotubes. Journal of the American Chemical Society, 2008, 130(33): 10856-10857
    [25] Hamula C L A, Zhang H, Guan L L, et al. Selection of aptamers against live bacterial cells. Analytical Chemistry, 2008, 80(20): 7812-7819
    [26] Li W, Yang X, Wang K, et al. Real-time imaging of protein internalization using aptamer conjugates. Analytical Chemistry, 2008, 80(13): 5002-5008
    [27] Medley C D, Smith J E, Tang Z, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Analytical Chemistry, 2008,80(4); 1067-1072
    [28] Shangguan D, Meng L, Cao Z C, et al. Identification of liver cancer-specific aptamers using whole live cells. Analytical Chemistry, 2008, 80(3): 721-728
    [29] Shlyahovsky B, Li D, Weizmann Y, et al. Spotlighting of cocaine by an autonomous aptamer-based machine. Journal of the American Chemical Society, 2007, 129(13): 3814-3815
    [30] Smith J E, Medley C D, Tang Z, et al. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Analytical Chemistry, 2007, 79(8): 3075-3082
    [31] Du Y, Li B, Wei H, et al. Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Analytical Chemistry, 2008, 80(13): 5110-5117
    [32] Zhao Q, Li X-F, Shao Y, et al. Aptamer-based affinity chromatographic assays for thrombin. Analytical Chemistry, 2008, 80(19): 7586-7593
    [33] Zhang S, Xia J, Li X. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Analytical Chemistry, 2008, 80(22): 8382-8388
    [34]付玉荣,邱宗荫. SELEX技术及其应用研究进展,国外医学病毒学分册,2005,3(12): 70-72
    [35]邬芳玉,张贝,张妮和. SELEX技术及核酸适配子在临床诊断中的应用前景,国外医学内科学分册,2006,11(33):489-492
    [36]谢海燕,陈薛钗,邓玉林.核酸适配体及其在化学领域的相关应用,化学进展,2007,19(6):1026-1033
    [37] Tasset D M, Kubik M F, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology, 1997, 272(5): 688-698
    [38] Song S, Wang L, Li J, et al. Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 2008, 2(27): 108-117
    [39]穆传杰,韩佩珍.寡核苷酸适配子在核医学中的应用,华核医学杂志,2006,4(26):246-249
    [40] Mendonsa S D,Bowser M T.In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Ana1ytical Chemistry, 2004, 76(18):5387-5392
    [41] Jayasena S D. Aptamers: an emerging class of molecules that rival antibodiesin diagnostics. Clinical Chemistry, 1999, 45(9): 1628-1650
    [42] Stojanovic M N, de Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society, 2001, 123(21): 4928-4931
    [43] Radi A.-E, Acero Sanchez J L, Baldrich E, et al. Reusable impedimetric aptasensor. Analytical Chemistry, 2005, 77(19): 6320-6323
    [44] Rodriguez M. C, Kawde A-N, Wang J, et al. Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chemical Communications, 2005, 4267-4269
    [45] Cheng A K H, Ge B, Yu H-Z Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Analytical Chemistry, 2007, 79(14): 5158-5164
    [46] Le Floch F, Ho H A, Leclerc M. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Analytical Chemistry, 2006, 78(13): 4727-4731
    [47] Xiao Y, Lubin A A, Heeger A J, et at. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie International Edition, 2005, 44 (34): 5456–5459
    [48] Zuo X, Song S, Zhang J, et al. Target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society, 2007, 129(5): 1042-1043
    [49] Lu Y, Li X, Zhang L, et al. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Analytical Chemistry, 2008, 80(6): 1883-1890
    [50] Numnuam A, Chumbimuni-Torres K Y, Xiang Y, et al. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Analytical Chemiatry, 2008, 80(3): 707-712
    [51] Li B, Wang Y, Wei H, et al. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosensors and Bioelectronics, 2008, 23(7): 965-970
    [52] Zheng J, Feng W, Lin L, et al. A new amplification strategy for ultrasensitive electrochemical aptasensor with network-like thiocyanuric acid/gold nanoparticles. Biosensors and Bioelectronics, 2007, 23(3): 341-347
    [53] Ikebukuro K, Kiyohara C, Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosensors and Bioelectronics,2005, 20(10): 2168-2172
    [54] Centi S, Tombelli S, Minunni M. et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry, 2007, 79(4): 1466-1473
    [55] He P, Shen L, Cao Y, et al. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle Bio Bar Codes. Analytical Chemistry, 2007, 79(21): 8024-8029
    [56] Polsky R, Gill R, Kaganovsky L, et al. Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry, 2006, 78(7): 2268-2271
    [57] Xiang Y, Xie M, Bash R, et al. Ultrasensitive label-free aptamer-based electronic detection. Angewandte Chemie International Edition, 2007, 46(47): 9054–9056
    [58] Zhou L, Ou L-J, Chu X, et al. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein. Analytical Chemistry, 2007, 79(19): 7492-7500
    [59] Zhang Y-L, Huang Y, Jiang J-H, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemical Society, 2007, 129(50): 15448-15449
    [60] Li B, Wei H, Dong S, et al. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. Chemical Communications, 2007, 73(1): 73-75
    [61] Li H X, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society, 2004, 126(35): 10958-10961
    [62] Wei H, Li B, Li J, et al. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chemical Communications, 2007: 3735-3737
    [63] Liu C W, Hsieh Y T, Huang W W, et al. Detection of mercury (II) based on Hg2+–DNA complexes inducing the aggregation of gold nanoparticles. Chemical Communications, 2008: 2242-2244
    [64] Jiang Y, Fang X, Bai C. Signaling aptamer/protein binding by a molecular light switch complex. Analytical Chemistry, 2004, 76(17): 5230-5235
    [65] Wang J, Jiang Y, Zhou C, et al. Aptamer-based ATP assay using a luminescentlight switching complex. Analytical Chemistry, 2005, 77(11): 3542-3546
    [66] Ho H-A, Leclerc M. Optical Sensors Based on Hybrid Aptamer/Conjugated Polymer Complexes. Journal of the American Chemical Society, 2004, 126(5): 1384-1387
    [67] Stojanovic M N, Kolpashchikov D M. Modular aptameric sensors. Journal of the American Chemical Society, 2004, 126(30): 9266-9270
    [68] Kolpashchikov D. M. Binary malachite green aptamer for fluorescent detection of nucleic acids. Journal of the American Chemical Society, 2005, 127(36): 12442-12443
    [69] Li D, Shlyahovsky B, Elbaz J, et al. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. Journal of the American Chemical Society, 2007, 129(18): 5804-5805
    [70] Yang L, Fung C W, Cho E J, et al. Real-time rolling circle amplification for protein detection. Analytical Chemistry, 2007, 79(9): 3320-3329
    [71] Merino E J, Weeks K M. Facile conversion of aptamers into sensors using a 2'-ribose-linked fluorophore. Journal of the American Chemical Society, 2005, 127(37): 12766-12767
    [72] Katilius E, Katiliene Z, Woodbury N W. Signaling aptamers created using fluorescent nucleotide analogues. Analytical Chemistry, 2006, 78(18): 6484-6489
    [73] Fang X, Cao Z, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry, 2001, 73(23): 5752-5757.
    [74] Gokulrangan G, Unruh J R, Holub D F, et al. Aptamer-based bioanalysis of IgE by fluorescence anisotropy. Analytical Chemistry, 2005, 77(7): 1963-1970
    [75] Zhao W, Chiuman W, Lam J C F, et al. DNA Aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. Journal of the American Chemical Society, 2008, 130(11): 3610-3618
    [76] Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging. Therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters, 2007, 7(10): 3065-3070
    [77] He F, Tang Y, Wang S, et al. Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform forhomogeneous potassium detection. Journal of the American Chemical Society, 2005, 127(35): 12343-12346
    [78] Huang C-C, Chiu S-H, Huang Y-F, et al. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Analytical Chemistry, 2007, 79(13): 4798-4804
    [79] Potyrailo R A, Conrad R C, Ellington A D, et al. Adapting selected nucleic acid ligands (aptamers) to biosensors. Analytical Chemistry, 1998, 70(16): 3419-3425
    [80] Li Y, Lee H J, Corn R M. Fabrication and characterization of RNA aptamer microarrays for the study of protein–aptamer interactions with SPR imaging. Nucleic Acids Research, 2006, 34(22): 6416-6424
    [81] Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Analytical Biochemistry, 2001, 294 (2): 126-131
    [82] Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences USA, 2005, 102(48): 17278-17283
    [83] Stojanovic M N, de Prada P, Landry D W. Fluorescent sensors based on aptamer self-assembly. Journal of the American Chemical Society, 2000, 122(46): 11547-115480
    [84] Su S, Nutiu R, Filipe C D M, et al. Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose. Langmuir, 2007, 23(3): 1300-1302
    [85] Nutiu R, Li Y. Structure-switching signaling sptamers. Journal of the American Chemical Society, 2003, 125(16): 4771-4778
    [86] Liu J, Lu Y. Click here to read fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie International Edition, 2005, 45(1): 90-94
    [87] Li N, Ho C-M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. Journal of the American Chemical Society, 2008, 130(8): 2380-2381
    [88] Pavlov V, Shlyahovsky B, Willner I. Fluorescence detection of DNA by the catalytic activation of an aptamer/thrombin complex. Journal of the American Chemical Society, 2005, 127(18): 6522-6523
    [89] Deng M, Zhang D, Zhou Y, et al. Highly Effective Colorimetric and Visual Detection of Nucleic Acids Using an Asymmetrically Split Peroxidase DNAzyme. Journal of the American Chemical Society, 2008, 130(39):13095-13102
    [90] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409(6822): 928–933
    [91] Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291(5507): 1304–1351
    [92] Wang D G, Fan J B, Siao C J, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280(5366): 1077-1082
    [93] McCarthy, J. J.; Hilfiker, R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nature Biotechnology, 2000, 18(5): 505-508
    [94] Duan X, Li Z, He F, et al.A Sensitive and Homogeneous SNP Detection Using Cationic Conjugated Polymers. Journal of the American Chemical Society, 2007, 129(14): 4154-4155
    [95]张炯,万莹,王丽华等,电化学DNA生物传感器.化学进展,2007,19(10):1576-1584
    [96] Millan K M, Mikkelsen S R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Analytical Chemistry, 1993, 65(17): 2317-2323
    [97] Takenaka S, Yamashita K, Takagi M, et al. DNA Sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Analytical Chemistry, 2000, 72(6): 1334-1341
    [98] Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Chemical Society, 2003, 125(11): 3214-3215
    [99] Lapierre M A, O'Keefe M, Taft B J, et al. Electrocatalytic detection of pathogenic DNA sequences and antibiotic resistance markers. Analytical Chemistry, 2003, 75(22): 6327-6333
    [100] Caruana D J, Heller A. Enzyme-amplified amperometric detection of hybridization and of a single base pair mutation in an 18-base oligonucleotide on a 7- m-diameter microelectrode. Journal of the American Chemical Society, 1999, 121(4): 769-774
    [101] Wang J, Liu G, Jan M R. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. Journal of the American Chemical Society, 2004, 126(10):3010-3011
    [102] Haugland R P, Handbook of fluorescent probes and research chemicals, sixth edition. Molecular probes, Inc., Eugene, OR, 1996
    [103]张志毅,周涛,巩伟丽等,荧光共振能量转移技术在生命科学中的应用及研究进展。电子显微学报,2007, 26(2):620-624
    [104] Didenko V V.Fluorescent energy transfer nucleic acid probes, New Jersey:Humana Press Inc,2006
    [105]张阳德,纳米生物技术学。北京:科学出版社,2005: 61-65
    [106] Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293-346
    [107] Encarna??o J M, Stallinga P, Ferreira G N M. Influence of electrolytes in the QCM response: discrimination and quantification of the interference to correct microgravimetric data. Biosensors and Bioelectronics, 2007, 22(7): 1351-1358
    [108] Sastry M, Ramakrishnan V, Pattarkine M, et al. Hybridization of DNA by sequential immobilization of oligonucleotides at the air-water interface. Langmuir, 2000, 16(24): 9142-9146
    [109] Nicolini C, Erokhin V, Facci P, et al. Quartz balance DNA sensor. Biosensors and Bioelectronics, 1997, 12(7): 613-618
    [110] Okahata Y, Matsunobu Y, Ijiro K. et al, Hybridization of nucleic acids immobilized on a quartz crystal microbalance. Journal of the American Chemical Society, 1992, 114(21): 8299-8300
    [111] Hashimoto K, Ito K, Ishimori Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Analytical Chemistry, 1994, 66(21): 3830-3833
    [112] Vaknin D, Als-Nielsen J, Piepenstock M, et al. Recognition processes at a functionalized lipid surface observed with molecular resolution. Biophysical Journal, 1991, 60(6): 1545-1552
    [113] Caruso F, Rodda E, Furlong D N, et al. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Analytical Chemistry, 1997, 69(11): 2043-2049
    [114] Piestert O, Barsch H, Buschmann V, et al. A single-molecule sensitive DNA hairpin system based on intramolecular electron transfer. Nano Letters, 2003, 3(7): 979-982
    [115] Wang J, Jiang M, Nilsen T W, et al. Dendritic nucleic acid probes for DNAbiosensors. Journal of the American Chemical Society, 1998, 120(32): 8281-8282
    [116] Juskowiak B. Analytical potential of the quadruplex DNA-based FRET probes. Analytica Chimica Acta, 2006, 568(1/2): 171-180
    [117] Zahler A M, Williamson J R, Cech T R, et al. Inhibition of telomerase by G-quartet DNA structure. Nature, 1991, 350(6320): 718-720
    [118] Neidle S, Parkinson G. Telomere maintenance as a target for anticancer drug discovery. Nature Reviews Drug Discovery, 2002, 1(5): 383-393
    [119] Mergny J L, Riou J F, Mailliet P, et al. Natural and pharmacological regulation of telomerase. Nucleic Acids Research, 2002, 30(4):839-865
    [120] Liu J, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Analytical Chemistry, 2004, 76(6): 1627-1632
    [121] Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine. Journal of the American Chemistry Society, 2002, 124(33): 9678-9679
    [122] Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles seleno-modifizierte RNA. Angewandte Chemie International Edition, 2006, 118(1): 96-100
    [123] Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins. Analytical Chemistry, 2005, 77(4): 1147-1156
    [124] Jhaveri S, Kirby R, Conrad R, et al. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. Journal of the American Chemistry Society, 2000, 122(11): 2469-2473
    [125] Jhaveri S, Rajendran M, Ellington A D. In vitro selection of signaling aptamers. Nature Biotechnology, 2000, 18(12): 1293-1297
    [126] Yamamoto R, Baba T, Kumar P K. Molecular beacon aptamer fluoresces in the presence of tat protein of HIV-1. Genes to Cells, 2000, 5(5): 389-396
    [127] Xu D, Yu X, Liu Z, et al. Label-free electrochemical detection for aptamer- based array electrodes. Analytical Chemistry, 2005, 77(16): 5107-5113
    [128] Xiao Y, Piorek B D, Plaxco K W, et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemistry Society, 2005, 127(51): 17990-17991
    [129] Zayats M, Huang Y, Gill R, et al. Label-free and reagentless aptamer-based sensors for small molecules. Journal of the American Chemistry Society, 2006, 128(42): 13666-13667
    [130] Baker B R, Lai R Y, Wood M S, et al. An electronic, aptamer-based small- molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemistry Society, 2006, 128(10): 3138-3139
    [131] Phillis J W. Adenosine in the control of the cerebral circulation. Cerebrovasc Brain Metab Rev, 1989, 1(1): 26-54
    [132] Portellos M, Riva C E, Cranstoun S D, et al. Effects of adenosine on ocular blood-flow. Investigative Ophthalmology and Visual Science, 1995, 36(9): 1904-1909
    [133] McMillan M R, Burnstock G, Haworth S G. Vasodilatation of intrapulmonary arteries to p2-receptor nucleotides in normal and pulmonary hypertensive newborn piglets. British Journal of Pharmacology, 1999, 128(3): 543-548
    [134] Dunwiddie T V, Masino S A. The role and regulation of adenosine in the central nervous system. Annual Review of Neuroscience, 2001, 24(1): 31-55
    [135]“Damping the flames: inflammation control mechanism determined by NIH researchers”, to be found under http://www.aarda.org/infocus_article.php?ID=12
    [136] Zu X, Rusling J F. Amphiphilic ferrocene alcohols as electroactive probes in micellar solutions and microemulsions. Langmuir, 1997, 13(14): 3693-3699
    [137] D’Souza F, Zandler M E, Smith P M, et al. A ferrocene-c60-dinitrobenzene triad: synthesis and computational, electrochemical, and photochemical studies. Journal of Physical Chemistry A, 2002, 106(4): 649-656
    [138] Laforge F O, Kakiuchi T, Shigematsu F, et al. Comparative study of electron transfer reactions at the ionic liquid/water and organic/water interfaces. Journal of the American Chemistry Society, 2004, 126(47): 15380-15381
    [139] Long Y-T, Li C-Z, Sutherland T C, et al. A Comparison of electron-transfer rates of ferrocenoyl-linked DNA. Journal of the American Chemistry Society, 2003, 125(29): 8724-8725
    [140] Khan M A K, Kerman K, Petryk M, et al. Noncovalent modification of carbon nanotubes with ferrocene-amino acid conjugates for electrochemical sensing of chemical warfare agent mimics. Analytical Chemistry, 2008, 80(7); 2574-2582
    [141] Wang J, Zhu X, Tu Q, et al. Capture of p53 by Electrodes modified with consensus DNA duplexes and amplified voltammetric detection using ferrocene-capped gold nanoparticle/streptavidin conjugates. Analytical Chemistry, 2008, 80(3): 769-774
    [142] Cardona C M, Kaifer A E. Asymmetric redox-active dendrimers containing a ferrocene subunit, preparation, characterization, and electrochemistry. Journal of the American Chemistry Society, 1998, 120(16): 4023-4024
    [143] Yu C J, Wang H, Wan Y, et al. 2'-Ribose-ferrocene oligonucleotides for electronic detection of nucleic acids. Journal of Organic Chemistry, 2001, 66(9): 2937-2942
    [144] Patolsky F, Weizmann Y, Willner I. Redox-active nucleic-acid replica for the amplified bioelectrocatalytic detection of viral DNA. Journal of the American Chemistry Society, 2002, 124(5): 770-772
    [145] Gibbs J M, Park S J, Anderson D R, et al. Polymer-DNA hybrids as electrochemical probes for the detection of DNA. Journal of the American Chemistry Society, 2005, 127(4): 1170- 1178
    [146] Chin H L, Dinshaw J P. Structural basis of DNA folding and recognition in an amp-dna aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chemistry and Biology, 1997, 4(11): 817-832
    [147] Huang M F, Kuo Y C, Huang C C, et al. Separation of long double-stranded DNA by nanoparticle-filled capillary electrophoresis. Analytical Chemistry, 2004, 76(1): 192-196
    [148] Dai J, Baker G L, Bruening M L. Use of porous membranes modified with polyelectrolyte multilayers as substrates for protein arrays with low nonspecific adsorption. Analytical Chemistry, 2006, 78(1): 135-140
    [149] Wu Z S, Li J S, Deng T, et al. A sensitive immunoassay based on electropolyme- rized films by capacitance measurements for direct detection of immunospecies. Analytical Biochemistry, 2005, 337(2): 308-315
    [150] Green L S, Jellinek D, Jenison R, et al. Inhibitory DNA ligands to platelet- derived growth factor b-chain. Biochemistry, 1996, 35(45): 14413- 14424
    [151] Situmorang M, Gooding J J, Hibber D B, et al. Electrodeposited polytyramine as an immobilisation matrix for enzyme. Biosensors and Bioelectronics, 1998, 13(9): 953-962
    [152] Sumner J J, Weber K S, Hockett L A, et al. Long-range heterogeneous electron transfer between ferrocene and gold mediated by n-alkane and n-alkyl- carboxamide bridges. Journal of Physical Chemistry B, 2000, 104(31): 7449-7454
    [153] Jordan C E, Frutos A G, Thiel A J, et al. Surface plasmon resonance imagingmeasurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Analytical Chemistry, 1997, 69(24): 4939-4947
    [154] Porter M D, Bright T B, Allara D L, et al. Spontaneously organized molecular assemblies-structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. Journal of the American Chemistry Society, 1987, 109(12): 3559-3568
    [155] Chidsey C E D, Loiacono D N. Chemical functionality in self-assembled monolayers: structural and electrochemical properties. Langmuir, 1990, 6(3): 682-691
    [156] Cho M, Lee S, Han S Y, et al. Electrochemical detection of mismatched DNA using a mut-spec probe. Nucleic Acids Research, 2006, 34(10): e75
    [157] Sumner J J, Creager S E. Redox kinetics in monolayers on electrodes: electron transfer is sluggish for ferrocene groups buried within the monolayer interior. Journal of Physical Chemistry B, 2001, 105(37): 8739-8745
    [158] Thomas K G, Kamat P V. Making gold nanoparticles glow: enhanced emission from a surface-bound fluoroprobe. Journal of the American Chemistry Society, 2000, 122(11): 2655-2656
    [159] Emory S R, Haskins W E, Nie S. Direct observation of size-dependent optical enhancement in single metal nanoparticles. Journal of the American Chemistry Society, 1998, 120(31): 8009-8010
    [160] Gao X, Nie S. Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Analytical Chemistry, 2004, 76(8): 2406-2410
    [161] Duan H, Nie S. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. Journal of the American Chemistry Society, 2007, 129(11): 3333-3338
    [162] Kairdolf B A, Smith A M, Nie S. One-pot synthesis, encapsulation, and solubilization of size-tuned quantum dots with amphiphilic multidentate ligands. Journal of the American Chemistry Society, 2008, 130(39): 12866-12867
    [163] Smith A M, Nie S. Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. Journal of the American Chemistry Society, 2008, 130(34): 11278-11279
    [164] Mancini M C, Kairdolf B A, Smith A M, et al. Oxidative quenching anddegradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. Journal of the American Chemistry Society, 2008, 130(33): 10836-10837
    [165] Wang J, Liu G, Zhu Q. Indium microrod tags for electrochemical detection of DNA hybridization. Analytical Chemistry, 2003, 75(22): 6218-6222
    [166] Yezhelyev M V, Qi L, O’Regan R M, et al. Gao, X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. Journal of the American Chemistry Society, 2008, 130(28): 9006-9012
    [167] Ruan G, Agrawal A, Marcus A I, et al. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. Journal of the American Chemistry Society, 2007, 129(47): 14759-14766
    [168] Mandal H S, Kraatz H-B. Effect of the surface curvature on the secondary structure of peptides adsorbed on nanoparticles. Journal of the American Chemistry Society, 2007, 129(20): 6356-6357
    [169] Qian X, Peng X-H, Ansari D O, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology, 2008, 26(1): 83-90
    [170] Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 22(8): 969-976
    [171] Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology, 2001, 19(7): 631-635
    [172] Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Journal of Physical Chemistry B, 2006, 110(14): 7238-7248
    [173] Mucic R C, Storhoff J J, Mirkin C A, et al. DNA-directed synthesis of binary nanoparticle network materials. Journal of the American Chemistry Society, 1998, 120(48): 12674-12675
    [174] Weizmann Y, Patolsky F, Popov I, et al. Telomerase-generated templates for the growing of metal nanowires. Nano Letters, 2004, 4(5): 787-792
    [175] Taton T A, Mucic R C, Mirkin C A, et al. The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. Journal of the American Chemistry Society, 2000, 122(26): 6305-6306
    [176] Le J D, Pinto Y, Seeman N C, et al. DNA-templated self-assembly of metallicnanocomponent arrays on a surface. Nano Letters, 2004, 4(12): 2343-2347
    [177] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemistry Society, 2004, 126(38): 11768-11769
    [178] Maxwell D J, Taylor J R, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemistry Society, 2002, 124(32): 9606-9612
    [179] Qian X, Zhou X, Nie S. Surface-enhanced raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. Journal of the American Chemistry Society, 2008, 130(45): 14934–14935
    [180] Li Z, Mirkin C A. G-quartet-induced nanoparticle assembly. Journal of the American Chemistry Society, 2005, 127(33): 11568-11569
    [181] Seela F, Jawalekar A M, Chi L, et al. Gold DNA-conjugates: ion specific self-assembly of gold nanoparticles via the dG-quartet. Chemistry and Biodiversity, 2005, 2(1): 84-91
    [182] Baldrich E, Restrepo A, O’Sullivan C K. Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Analytical Chemistry, 2004, 76(23): 7053-7063
    [183] Jing N, Xiong W, Guan Y, et al. Potassium-dependent folding: a key to intracellular delivery of G-quartet oligonucleotides as HIV inhibitors. Biochemistry, 2002, 41(17): 5397-5403
    [184] Risitano A, Fox K R. Stability of intramolecular DNA quadruplexes: comparison with DNA duplexes. Biochemistry, 2003, 42(21): 6507-6513
    [185] Demers L M, Mirkin C A, Mucic R C, et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol- capped oligonucleotides bound to gold thin films and nanoparticles. Analytical Chemistry, 2000, 72 (2): 5535-5541
    [186] Storhoff J J, Elghanian R, Mirkin C A, et al. Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir, 2002, 18(17): 6666-6670
    [187] Ueyama H, Takagi M, Takenaka S. A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. Journal of the American Chemistry Society, 2002, 124(48): 14286-14287
    [188] Chen Y, Mao C. Putting a brake on an autonomous DNA nanomotor. Journal ofthe American Chemistry Society, 2004, 126(28): 8626-8627
    [189] Simmel F C, Yurke B. Using DNA to construct and power a nanoactuator. Physical Review E, 2001, 63(041913): 1-5
    [190] Yurke B, Turberfield A J, Mills A P, et al. A DNA-fuelled molecular machine made of DNA. Nature, 2000, 406(6796): 605-608
    [191] Simmel F C, Yurke B. A DNA-based molecular device switchable between three distinct mechanical states. Applied Physics Letters, 2002, 80(5): 883-885.
    [192] Chen Y, Lee SH, Mao CD. A DNA nanomachine based on a duplex–triplex transition. Angewandte Chemie International Edition, 2004, 43(40): 5335-5338
    [193] Muller B K, Reuter A, Simmel F C, et al. Single-pair FRET characterization of DNA tweezers. Nano Letters, 2006, 6(12): 2814-2820
    [194] Buranachai C, McKinney S A, Ha T. Single molecule nanometronome. Nano Letters, 2006, 6(3): 496-500
    [195] Mao C D, Sun W Q, Shen Z Y, et al. A nanomechanical device based on the B±Z transition of DNA. Nature, 1999, 397(6715): 144-146
    [196] Yan H, Zhang X P, Shen Z Y, et al. A robust DNA mechanical device controlled by hybridization topology. Nature, 2002, 415(6867): 62-65
    [197] Zhong H, Seeman N C. RNA used to control a DNA rotary nanomachine. Nano Letters, 2006, 6(12): 2899-2903
    [198] Yin P, Yan H, Daniell X G, et al. A unidirectional DNA walker that moves autonomously along a DNA track. Angewandte Chemie International Edition, 2004, 43(37): 4906-4911
    [199] Tian Y, Mao C D. Molecular gears: a pair of DNA circles continuously rolls against each other. Journal of the American Chemical Society, 2004, 126(37): 11410-11411
    [200] Sherman W B, Seeman N C. A precisely controlled DNA biped walking device. Nano Letters, 2004, 4(7): 1203-1207
    [201] Shin JS, Pierce NA. A synthetic DNA walker for molecular transport. Journal of the American Chemical Society, 2004, 126(35): 10834-10835
    [202] Alberti P, Mergny J L. DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proceedings of the National Academy of Sciences USA, 2003, 100(4): 1569-1573
    [203] Li J, W J, Tan W H. A single DNA molecule nanomotor. Nano Letters, 2002, 2(4): 315-318
    [204] Dittmer W U, Reuter A, Simmel F C. A DNA-based machine that can cyclicallybind and release thrombin. Angewandte Chemie International Edition, 2004, 43 (27): 3550-3553
    [205] Alberti P, Bourdoncle A, Sacca B, et al. DNA nanomachines and nanostructures involving quadruplexes. Org Biomol Chem, 2006, 4(18): 3383-3391
    [206] Liu D S, Balasubramanian S. A proton-fueled DNA nanomachine. Angewandte Chemie International Edition, 2003, 42(46): 5734-5736
    [207] Liu D, Bruckbauer A, Abell C, et al. A reversible pH-driven DNA nanoswitch array. Journal of the American Chemical Society, 2006, 128(6): 2067-2071
    [208] Shu W, Liu D, Watari M, et al. DNA molecular motor driven micromechanical cantilever arrays. Journal of the American Chemical Society, 2005, 127(48): 17054-17060
    [209] Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences USA, 2003, 100(16): 9134-9137
    [210] Immoos C E, Lee S J, Grinstaff M W. DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. Journal of the American Chemical Society, 2004,126(35): 10814-10815
    [211] Radi A E, Acero Sanchez J L, Baldrich E, rt al. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society, 2006, 128(1): 117-124
    [212] Lai R Y, Plaxco K W, Heeger A J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry, 2007, 79(1): 229-233
    [213] Radi A E, O'Sullivan C K. Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chemical Communications, 2006: 3432-3434
    [214] Lai R Y, Seferos D S, Heeger A J, et al. Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6- or 11-carbon self-assembled monolayers. Langmuir, 2006, 22(25): 10796-10800
    [215] Xiao Y, Qu X, Plaxco KW, et al. Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. Journal of the American Chemical Society, 2007, 129(39): 11896-11897
    [216] Xiao Y, Lubin A A, Baker B R, et al. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proceedings of the National Academy of Sciences USA, 2006, 103(45): 16677-16680
    [217] Lai R Y, Lagally E T, Lee S H, et al. Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor. Proceedings of the National Academy of Sciences USA, 2006, 103(11): 4017-4021
    [218] Stryer L D. Biochemistry, 3rd edn. Freeman, New York, 1988: 949-974
    [219] Kolusheva S, Shahal T, Jelinek R. Cation-selective color sensors composed of ionophore-phospholipid-polydiacetylene mixed vesicles. Journal of the American Chemical Society, 2000, 122(5): 776-780
    [220] Guo X Q, Castellano F N, Li L, et al. Use of a long-lifetime re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes. Analytical Chemistry, 1998, 70(3): 632-637
    [221] Liu B, Bard A J, Mirkin M V, et al. Electron transfer at self-assembled monolayers measured by scanning electrochemical microscopy. Journal of the American Chemical Society, 2004, 126(5):1485-1492
    [222] Smalley J F, Finklea H O, Chidsey C E D, et al. Heterogeneous electron-transfer kinetics for ruthenium and ferrocene redox moieties through alkanethiol monolayers on gold. Journal of the American Chemical Society, 2003, 125(7): 2004-2013
    [223] Pinnavaia T J, Marshall C L, Mettler C M, et al. Alkali metal ion specificity in the solution ordering of a nucleotide, 5'-guanosine monophosphate. Journal of the American Chemical Society, 1978, 100(11): 3625-3627
    [224] Jurga-Nowak H, Banachowicz E, Dobek A, et al. Supramolecular guanosine 5'-monophosphate structures in solution. light scattering study. Journal of Physical Chemistry B, 2004, 108(8): 2744-2750
    [225] Dominick P K, Jarstfer M B. A conformationally constrained nucleotide analogue controls the folding topology of a DNA G-quadruplex. Journal of the American Chemical Society, 2004, 126(16): 5050-5051
    [226] Wu Z S, Guo M M, Shen G L, et al. G-rich oligonucleotide-functionalized gold nanoparticle aggregation. Anal Bioanal Chem, 2007, 387: 2623-2626
    [227] Yu C J, Wan Y, Yowanto H, et al. Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. Journal of the American Chemical Society, 2001, 123(45): 11155-11161
    [228] Wong A, Wu G. Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5-monophosphate: A solid-state NMR study. Journal of the American Chemical Society, 2003, 125(45):13895-13905
    [229] Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry, 2007, 79(7): 2933-2939
    [230] Creager S E, Wooster T T. A new way of using ac voltammetry to study redox kinetics in electroactive monolayers. Analytical Chemistry, 1998, 70(20): 4257-4263
    [231] Creager S, Yu C J, Bamdad C, et al. Electron transfer at electrodes through conjugated "molecular wire" bridges. Journal of the American Chemical Society, 1999, 121(5): 1059-1064
    [232] Xia W S, Schmehl R H, Li C J. A highly selective fluorescent chemosensor for K+ from a bis-15-crown-5 derivative. Journal of the American Chemical Society, 1999, 121(23): 5599-5600
    [233] Ferguson J A, Steermer F J, Walt D R. High-density fiber-optical DNA random microsphere array. Analytical Chemistry, 2000, 72(27): 5618-5624
    [234] Bowden M, Song L, Walt D R. Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection. Analytical Chemistry, 2005, 77(17): 5583-5588
    [235] Epstein J R, Lee M, Walt D R. High-density fiber-optic genosensor microsphere array capable of zeptomole detection limits. Analytical Chemistry, 2002, 74(8): 1836-184
    [236] He F, Feng F, Duan X, et al. Selective and Homogeneous Fluorescent DNA Detection by Target-Induced Strand Displacement Using Cationic Conjugated Polyelectrolytes. Analytical Chemistry, 2008, 80(6): 2239-2243
    [237] Cui D, Pan B, Zhang H, et al. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Analytical Chemistry, 2008, 80(21): 7996-8001
    [238] Su H, Kallury K, M R, Thompson M. Interfacial nucleic acid hybridization studied by random primer 32P labeling and liquid-phase acoustic network analysis. Analytical Chemistry, 1994, 66(6): 769-777
    [239] Li X, Lee J S, Kraatz H-B. Electrochemical detection of single nucleotide mismatches using an electrode micro-array. Analytical Chemistry, 2006, 78(17):6096-6101
    [240] Li X, Zhou Y, Sutherland T C, et al. Chip-based microelectrodes for detection of single-nucleotide mismatch. Analytical Chemistry, 2005, 77(17): 5766-5769
    [241] Zhou X C, O'Shea S J, Li S F Y. Amplified microgravimetric gene sensor using Au nanoparticle modified oligo nucleotide. Chemical Communications, 2000: 953-954
    [242] Wang J, Pumera M, Chatrathi M P, et al. Towards disposable lab-on-a-chip: Poly(methyl-methacrylate) microchip electrophoresis device with electrochemical detect ion. Electrophoresis, 2002, 23(4): 596-601
    [243] Campbell C N, Gal D, Cristler N, et al. Enzyme-amplified amperometric sandwich test for RNA and DNA. Analytical Chemistry, 2002, 74(1): 158-162
    [244] Patolsky F, Lichtenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature Biotechnology, 2001, 19: 253-257
    [245] Nam J-M, Stoeva S I, Mirkin C A. Bio-Bar-Code-based DNA detection with PCR-like sensitivity. Journal of the American Chemical Society, 2004, 126(19): 5932-5933
    [246] Wang J, Xu D, Kawde A, et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Analytical Chemistry, 2001, 73(22): 5576-558
    [247] Wang J, Xu D, Polsky R Magnetically-induced solid-state electrochemical detection of DNA hybridization. Journal of the American Chemical Society, 2002, 124(16): 4208-4209
    [248] Munge B, Liu G, Collins G, et al. Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Analytical Chemistry, 2005, 77(14): 4662-4666
    [249] O'Connor S D, Olsen G T, Creager S E J. A Nernstian electron source model for the ac voltammetric response of a reversible surface redox reaction using large-amplitude ac voltages. Journal of Electroanalytical Chemistry, 1999, 466(2): 197-202
    [250] Herne T M, Tarlov M J. Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society, 1997, 119(38): 8916-8920
    [251] Perterson A W, Heaton J R, Geogiadis R M. The effect of surface probe density on DNA hybridization. Nucleic Acids Research, 2001, 29(24): 5163-5168
    [252] Su L, Sankar C G, Sen D, et al. Kinetics of ion-exchange binding of redoxmetal cations to thiolate-DNA monolayers on gold. Analytical Chemistry, 2004, 76(19): 5953-5959
    [253] Du H, Strohsahl C M, Miller B L, et al. Sensitivity and specificity of metal surface-immobilized "Molecular Beacon" biosensors. Journal of the American Chemical Society, 2005, 127(21): 7932-7940
    [254] Ahn S, Walt D R. Detection of salmonella spp. using microsphere-based, fiber-optic DNA microarrays. Analytical Chemistry, 2005, 77(15): 5041-5047
    [255] Nielsen U B, Geierstanger B H. Multiplexed sandwich assays in microarray format. Journal of Immunological Methods, 2004, 290(1-2): 107-120
    [256] Kim K, Yang H, Park S H, et al. Washing-free electrochemical DNA detection using double-stranded probes and competitive hybridization reaction. Chemical Communications, 2004: 1466-1467
    [257] Patolsky F, Litchenstein A, Willner I. Electrochemical transduction of liposome-amplified DNA sensing. Angewandte Chemie International Edition, 2000, 39(5): 940-943
    [258] Chang H, Yuan Y, Shi N, et al. Electrochemical DNA biosensor based on conducting polyaniline panotube array. Analytical Chemistry, 2007, 79(13): 5111-5115
    [259] Tansil N C, Xie H, Xie F, et al. Direct detection of DNA with an electrocatalytic threading intercalator. Analytical Chemistry, 2005, 77(1): 126-134
    [260] Harris N C, Kiang C-H. Defects can increase the melting temperature of DNA-nanoparticle assemblies. Journal of Physical Chemistry B, 2006, 110(33): 16393-16396
    [261] Guo Z, Guilfoyle R A, Thiel A J, et al. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Research, 1994, 22(24): 5456-5465
    [262] Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. Journal of the American Chemical Society, 2003, 125(27): 8102-8103
    [263] Mendonsa S D, Bowser M T. In vitro evolution of functional DNA using capillary electrophoresis. Journal of the American Chemical Society, 2004, 126(1): 20-21
    [264] Yamana K, Ohtani Y, Nakano H, et al. Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor. Bioorganic & Medicinal Chemistry Letters,2003, 13(20): 3429-3431
    [265] Ferapontova E E, Olsen E M, Gothelf K V. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. Journal of the American Chemical Society, 2008, 130(13): 4256-4258
    [266] Sutton B J, Gould H J. The human IgE network. Nature, 1993, 366(4): 421-428
    [267] Maehashi K, Katsura T, Kerman K, et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Analytical Chemistry, 2007, 79(2): 782-787
    [268] Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor. Analytical Chemistry, 2002, 74(17): 4488-4495
    [269] German I, Buchanan D D, Kennedy R T. Aptamers as ligands in affinity probe capillary electrophoresis. Analytical Chemistry, 1998, 70(21): 4540-4545
    [270] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 2003, 31(13): 3406-3415
    [271] SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Science USA, 1998, 95(4): 1460-1465
    [272] Wu Z S, Chen C R, Shen G L, et al. Reversible electronic nanoswitch based on DNA G-quadruplex conformation: a platform for single-step, reagentless potassium detection. Biomaterials, 2008, 29(17): 2689-2696
    [273] Wiegand T W, Williams P B, Dreskin S C, et al. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. Journal of Immunology, 1996, 157(1): 221-230
    [274] Katilius E, Flores C, Woodbury N W. Exploring the sequence space of a DNA aptamer using microarrays. Nucleic Acids Research, 2007, 35(22): 7626-7635
    [275] Steel A B, Herne T M, Tarlov M J. Electrochemical quantitation of DNA immobilized on gold. Analytical Chemistry, 1998, 70(22): 4670-4677
    [276] Pan S, Rothberg L. Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopy. Langmuir, 2005, 21(3): 1022-1027
    [277] Liao W, Cui X T. Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF. Biosensor and Bioelectronics, 2007, 23(2): 218-224
    [278] Stadtherr K, Wolf H, Lindner P. An aptamer-based protein biochip. Analytical Chemistry, 2005, 77(11): 3437-3443
    [279] Jiang Y. Zhu C, Ling L, et al. Specific aptamer-protein interaction atudied by atomic force microscopy. Analytical Chemistry, 2003, 75(9): 2112-2116
    [280] Cole J R, Dick L W Jr, Morgan E J, et al. Affinity capture and detection of immunoglobulin E in human serum using an aptamer-modified surface in matrix-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry, 2007, 79(1): 273-279
    [281] Piuuno P A E, Krull U J, Hudson R H E, et al. Fiber-optic DNA sensor for fluorometric nucleic acid determination. Analytical Chemistry, 1995, 67(15): 2635-2643
    [282] Drummond T G, Hill M G, Barton J K. Electrochemical DNA sensors. Nature Biotechnology, 2003, 21: 1192-1199
    [283] Hoffman D, Hesselberth J, Ellington A D. Switching nucleic acids for antibodies. Nature Biotechnology, 2001, 19: 313-314
    [284] Camarero J A. New developments for the site-specific attachment of proteins to surfaces. Biophysical Reviews and Letters, 2006, 1(1): 1-28
    [285] Henke L, Krull U J. Immobilization technologies used for nucleic acid biosensors: a review. Canadian Journal of Analytical Sciences and Spectroscopy, 1999, 44(2): 61-70
    [286] Luzi E, Minunni M, Tombelli S, et al. New trends in affinity sensing: aptamers for ligand binding. Trends in Analytical Chemistry, 2003, 22(11): 810-818
    [287] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosensors and Bioelectronics, 2005, 20(12): 2424-2434
    [288] Berezovski M, Krylov S N. Using DNA-binding proteins as an analytical tool. Journal of the American Chemical Society, 2003, 125(44): 13451-13454
    [289] Buchanan D D, Jameson E E, Perlette J, et al. Effect of buffer, electric field, and separation time on detection of aptamer-ligand complexes for affinity probe capillary electrophoresis. Electrophoresis, 2003, 24(9): 1375-1382
    [290] Rehder-Silinski M A, McGown L B. Capillary electrochromatographic separation of bovine milk proteins using a G-quartet DNA stationary phase. Journal of chromatography A, 2003, 1008(2): 233-245
    [291] Michaud M, Jourdan E. Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers. Analytical Chemistry, 2004, 76(4): 1015-1020
    [292] Rajendran M, Ellington A D. In vitro selection of molecular beacons. Nucleic Acids Research, 2003, 31(19): 5700-5713
    [293] Yang H, Liu H, Kang H, et al. Engineering target-responsive hydrogels based on aptamer-target interactions. Journal of the American Chemical Society, 2008, 130(20): 6320-6321
    [294] Yang R, Tang Z, Yan J, et al. Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Analytical Chemistry, 2008, 80(19): 7408-7413
    [295] Lakowicz J R, Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, 1999
    [296] Kumke M U, Li G, McGown L B. Hybridization of fluorescein-labeled DNA oligomers detected by fluorescence anisotropy with protein binding enhancement. Analytical Chemistry, 1995, 67(21): 3945-3951
    [297] Merino E J, Weeks K M. Fluorogenic resolution of ligand binding by a nucleic acid aptamer. Journal of the American Chemical Society, 2003, 125(41): 12370-12371
    [298] Rupcich N, Nutiu R, Li Y, Brennan J D. Entrapment of fluorescent signaling DNA aptamers in sol-gel-derived silica. Analytical Chemistry, 2005, 77(14): 4300-4307
    [299] Kelley S O, Boon E M, Barton J k, et al. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Research, 1999, 27(24): 4830–4837
    [300] Galasso K, Livache T, Roget A, et al. Electrogravimetric detection of DNA hybridization on polypyrrole copolymer. Journal de Chimie Physique et de Physico-Chimie Biologique, 1998, 95(6): 1514-1517
    [301] Cooper M A, Dultsev F N, Minson T, et al. Direct and sensitive detection of a human virus by rupture event scanning. Nature Biotechnology, 2001, 19: 833–837
    [302] Weizmann Y, Patolsky F, Willner I. Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst, 2001, 126(9): 1502-1504
    [303] Park S J, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes. Science, 2002, 295(5559): 1503-1506
    [304] Peterson A W, Wolf L K, Georgiadis R M. Hybridization of mismatched or partially matched DNA at surfaces. Journal of the American Chemical Society, 2002, 124(49): 14601-14607
    [305] Li J, Chu X, Liu Y, et al. A colorimetric method for point mutation detectionusing high-fidelity DNA ligase. Nucleic Acids Research, 2005, 33(19): e168
    [306] Wang J, Palecek E, Nielsen P E, et al. Peptide Nucleic Acid Probes for Sequence-Specific DNA Biosensors. Journal of Electroanalytical Chemistry, 1996, 118(33): 7667-7670
    [307] Wang J, Rivas G, Luo D, et al. DNA-modified electrode for the detection of aromatic amines. Analytical Chemistry, 1996, 68(24): 4365-4369.
    [308] Wang J, Cai X, Fernandes J R, et al. Electrochemical measurements of oligonucleotides in the presence of chromosomal DNA using membrane-covered carbon electrodes. Analytical Chemistry, 1997, 69(19): 4056-405
    [309] Wang J, Fernandes J R, Kubota L T. Polishable and renewable DNA hybridization biosensors. Analytical Chemistry, 1998, 70(17): 3699-3702
    [310] Wang J, Bollo S, Lopez Paz J L, et al. Ultratrace measurements of nucleic acids by baseline-corrected adsorptive stripping square-wave voltammetry. Analytical Chemistry, 1999, 71(9): 1910-1913
    [311] Wang J, Jiang M, Mukherjee B. Flow detection of nucleic acids at a conducting polymer-modified electrode. Analytical Chemistry, 1999, 71(18): 4095-4099
    [312] Li X, Song H, Nakatani K, et al. Exploiting small molecule binding to DNA for the detection of single-nucleotide mismatches and their base environment. Analytical Chemistry, 2007, 79(6): 2552-2555
    [313] Liu G, Wan Y, Gau V, et al. et al. An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. Journal of Electroanalytical Chemistry, 2008, 130(21): 6820-6825.
    [314] Numnuam A, Chumbimuni-Torres K Y, Xiang Y, et al. Potentiometric detection of DNA hybridization. Journal of Electroanalytical Chemistry, 2008, 130(2): 410-411
    [315] Wei F, Chen C, Zhai L, et al. Recognition of single nucleotide polymorphisms using scanning potential hairpin denaturation. Journal of the American Chemical Society, 2005, 127(15): 5306-5307
    [316] Miao J, Cao Z, Zhou Y, et al. Instantaneous derivatization technology for simultaneous and homogeneous determination of multiple DNA targets. Analytical Chemistry, 2008, 80(5): 1606-1613
    [317] Zhang S, Zhong H, Ding C. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles. Analytical Chemistry, 2008, 80(19): 7206-7212
    [318] Weng J, Zhang J, Li H, et al. Label-free DNA sensor by boron-doped diamond electrode using an ac impedimetric approach. Analytical Chemistry, 2008, 80(18): 7075-7083
    [319] Whittemore N A, Mullenix A N, Inamati G B, et al. Synthesis and electrochemistry of anthraquinone-oligodeoxynucleotide conjugates. Bioconjugate Chemistry, 1999, 10(2): 261-270
    [320] Kertesz V, Whittemore N A, Chambers J Q, et al. Surface titration of DNA-modified gold electrodes with a thiol-tethered anthraquinone. Journal of Electroanalytical Chemistry, 2000, 493(1-2): 28-36
    [321] Boon E M, Ceres D M, Drummond T G, et al. Mutation detection by electrocatalysis at DNA-modified electrodes. Nature Biotechnology, 2000, 18: 1096-1100
    [322] Alfonta L, Singh A K, Willner I. Liposomes labeled with biotin and horseradish peroxidase: a probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Analytical Chemistry, 2001, 73(1): 91-102
    [323] Ozkan D, Erdem A, Kara P, et al. Allele-specific genotype detection of factor V leiden mutation from polymerase chain reaction amplicons based on label-free electrochemical genosensor. Analytical Chemistry, 2002, 74(23): 5931-5936
    [324] Kim E, Kim K, Yang H, et al. Enzyme-amplified electrochemical detection of DNA using electrocatalysis of ferrocenyl-tethered dendrimer. Analytical Chemistry, 2003, 75(21): 5665-5672
    [325] Wong E L S, Gooding J J. Electronic detection of target nucleic acids by a 2,6-disulfonic acid anthraquinone intercalator. Analytical Chemistry, 2003, 75(15): 3845-3852
    [326] Kerman K, Saito M, MoritaY, et al. Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Analytical Chemistry, 2004, 76(7): 1877-1884
    [327] ZhangY, Pothukuchy A, Shin W, et al. Detection of ~103 copies of DNA by an electrochemical enzyme-amplified sandwich assay with ambient O2 as the substrate. Analytical Chemistry, 2004, 76(14): 4093-4097
    [328] Liu G., Lee T M H, Wang J. Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms. Journal of the American Chemical Society, 2005,127(1): 38-39
    [329] Wang J, Li J H, Baca A J, et al. Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Analytical Chemistry, 2003, 75(15): 3941-3945
    [330] Sato S, Kondo H, Nojima T, et al. Electrochemical telomerase assay with ferrocenylnaphthalene diimide as a tetraplex DNA-specific binder. Analytical Chemistry, 2005, 77(22): 7304-7309
    [331] Anne A, Bouchardon A, Moiroux J. 3'-Ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces: novel model systems for exploring flexibility of short DNA using cyclic voltammetry. Journal of the American Chemical Society, 2003, 125(5): 1112-1113
    [332] Anne A, Demaille C. Dynamics of electron transport by elastic bending of short DNA duplexes. Experimental study and quantitative modeling of the cyclic voltammetric behavior of 3'-ferrocenyl DNA end-grafted on gold. Journal of the American Chemical Society, 2006, 128(2): 542-557
    [333] Immoos C E, Lee S J, Grinstaff M W. Conformationally Gated Electrochemical Gene Detection. ChemBioChem, 2004, 5(8): 1100-1103
    [334] Levicky R, Herne T M, Tarlov M J, et al. Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. Journal of the American Chemical Society, 1998, 120(38): 9787–9792
    [335] Culha M, Stokes D, Allain LR, et al. Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Analytical Chemistry, 2003, 75(22): 6196-6201
    [336] Lao R, Song S, Wu H, et al. Electrochemical Interrogation of DNA Monolayers on Gold Surfaces. Analytical Chemistry, 2005, 77(19): 6475-6480
    [337] Leavy M C, Bhattacharyya S, Cleland W E Jr, et al. Electrochemical and spectroscopic characterization of self-assembled monolayers of unsymmetrical ferrocenyl dialkyl sulfide derivatives on gold. Langmuir, 1999, 15(19): 6582-6586
    [338] Dong T-Y, Chang L S, Tseng I M, et al. Electroactive self-assembled biferrocenyl alkanethiol monolayers on Au(111) surface and on gold nanoclusters. Langmuir, 2004, 20(11): 4471-4479
    [339] Long Y-T, Li C-Z, Sutherland T C, et al. Electrochemical detection of single-nucleotide mismatches: application of M-DNA. Analytical Chemistry, 2004, 76(14): 4059-4065
    [340] Liu J, Tian S, Tiefenauer L, et al. Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene-streptavidin conjugates. Analytical Chemistry, 2005, 77(9): 2756-2761
    [341] Kinsella J M, Ivanisevic A. Enzymatic clipping of DNA wires coated with magnetic nanoparticles. Journal of the American Chemical Society, 2005, 127(10): 3276-3277
    [342] Weizmann Y, Patolsky F, Katz E, et al. Amplified DNA sensing and immunosensing by the rotation of functional magnetic particles. Journal of the American Chemical Society, 2003, 125(12): 3452-3454
    [343] Chen S, Ingram R S, Hostetler M J, et al. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science, 1998, 280(5372): 2098-2101
    [344] Li H, Rothberg L J. DNA Sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Analytical Chemistry, 2004, 76(18): 5414-5417
    [345] Zhao X, Tapec-Dytioco R, Wang K, et al. Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Analytical Chemistry, 2003, 75(14): 3476-3483
    [346] Zhu X, Han K, Li G. Magnetic nanoparticles applied in electrochemical detection of controllable DNA hybridization. Analytical Chemistry, 2006, 78(7): 2447-2449
    [347] Shen L, Chen Z, Li Y, et al. Electrochemical DNAzyme sensor for lead based on amplification of DNA?Au bio-bar codes. Analytical Chemistry, 2008, 80(16): 6323-6328
    [348] Zhang J, Song S, Zhang L, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. Journal of the American Chemical Society, 2006, 128(26): 8575-8580.
    [349] Hu P, Huang C Z, Li Y F, et al. Magnetic particle-based sandwich sensor with DNA-modified carbon nanotubes as recognition elements for detection of DNA hybridization. Analytical Chemistry, 2008, 80(5): 1819-1823
    [350] Liu C-H, Li Z-P, Du B-A, et al. Silver Nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms. Analytical Chemistry, 2006, 78(11): 3738-3744
    [351] Wirtz R, W?lti1 C, Germishuizen W A, et al. High-sensitivity colorimetric detection of DNA hybridization on a gold surface with high spatial resolution. Nanotechnology, 2003, 14: 7-10
    [352] Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998, 120(9): 1959-1964
    [353] Taton T A, Lu G, Mirkin C A. Two-color labeling of oligonucleotide arrays via size-Selective scattering of nanoparticle probes. Journal of the American Chemical Society, 2001, 123(21): 5164-5165
    [354] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(22): 1078-1081
    [355] Reynolds R A, Mirkin C A, Letsinger R L. A gold nanoparticle/latex microsphere-based colorimetric oligonucleotide detection method. Pure and Applied Chemistry, 2000, 72(1-2): 229–235
    [356] Zhu D, Tang Y, Xing D, et al. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method. Analytical Chemistry, 2008, 80(10): 3566-3571
    [357] Hu K, Lan D, Li X, et al. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA?Au bio bar codes. Analytical Chemistry, 2008, 80 (23): 9124–9130
    [358] Gerion D, Chen F, Kannan B, et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Analytical Chemistry, 2003, 75(18): 4766-4772
    [359] Zhou X, Zhou J. Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Analytical Chemistry, 2004, 76(18): 5302-5312
    [360] Bao P, Frutos A G, Greef C, et al. High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering. Analytical Chemistry, 2002, 74(8): 1792-1797
    [361] Gillmor S D, Thiel A J, Strother T C, et al. Lagally, hydrophilic/hydrophobic patterned surfaces as templates for DNA. Langmuir, 2000, 16(18): 7223-7228
    [362] Pirrung M C, How to make a DNA chip. Angewandte Chemie International Edition, 2002, 41(8): 1276-1289
    [363] Walker J M, Books and Software--A starting point for DNA microarrays: february 2002. Analytical Chemistry, 2002, 74(3): 95 A
    [364] Wodicka L, Dong H, Mittmann M, et al. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnology, 1997, 15: 1359-1367
    [365] Gray N S, Wodicka L, Thunnissen A W H, et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science, 1998, 281(5376): 533-538
    [366] Lipshutz R J, Fodor S P A, Gingeras T R, et al. High density synthetic oligonucleotide arrays. Nature Genetics, 1999, 21(1): 20-24
    [367] Pirrung M C, Wang L, Montague-Smith M P. 3'-Nitrophenylpropyloxycarbonyl (NPPOC) protecting groups for high-fidelity automated 5' 3' photochemical DNA synthesis. Organic Letters, 2001, 3(8): 1105-1108
    [368] Hacia J G. Resequencing and mutational analysis using oligonucleotide microarrays. Nature Genetics [supplement], 1999, 21: 42-47
    [369] Yang L, Wang K, Tan W, et al. Using force spectroscopy analysis to improve the properties of the hairpin probe. Nucleic Acids Resarch, 2007, 35(21): e145
    [370] Tang Z, Wang K, Tan W, et al. Real-time investigation of nucleic acids phosphorylation process using molecular beacons. Nucleic Acids Resarch, 2005, 33(11): e97
    [371] Tang Z, Wang K, Tan W, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Resarch, 2003, 31(23): e148
    [372] Li J, Yan H, Wang K, et al. Hairpin fluorescence DNA probe for real-time monitoring of DNA methylation. Analytical Chemistry, 2007, 79(3): 1050-1056
    [373] Mhlanga M M, Malmberg L. Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods, 2001, 25(4): 463-471
    [374] Reichert J, Csáki A, K?hler J M, et al. Chip-based optical detection of DNA hybridization by means of nanobead labeling. Analytical Chemistry, 2000, 72(24): 6025-6029
    [375] Li J J, Fang X, Tan W. Molecular aptamer beacons for real-time protein recognition. Biochemical and Biophysical Research Communications, 2002, 292(1): 31-40
    [376] Jin Y, Wang K, Tan W, et al. Monitoring Molecular Beacon/DNA InteractionsUsing Atomic Force Microscopy. Analytical Chemistry, 2004, 76(19): 5721-5725
    [377] Komurian-Pradel F, Perret M, Deiman B, et al. Strand specific quantitative real-time PCR to study replication of hepatitis C virus genome. Journal of Virological Methods, 2004, 116(1): 103-106
    [378] Poddar S K, Le C T. Bordetella pertussis detection by spectrofluorometry using polymerase chain reaction (PCR) and a molecular beacon probe. Molecular and Cellular Probes, 2001, 15(3): 161-167
    [379] Sokol D L, Zhang X, Lu P, et al. Real-time detection f DNA–RNA hybridization in living cells. Proceedings of the National Academy of Sciences USA, 1998, 95(20): 11538-11543
    [380] Zhang J, Qi H, Li Y, et al. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex. Analytical Chemistry, 2008, 80(8): 2888-2894
    [381] Reynolds R A, Mirkin C A, Letsinger R L. Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. Journal of the American Chemical Society, 2000, 122(15): 3795-3796
    [382] Cao Y W, Jin R, Mirkin C A. DNA-modified core-shell Ag/Au nanoparticles. Journal of the American Chemical Society, 2001, 123(32): 7961-7962
    [383] Jin R, Wu G, Li Z, et al. What controls the melting properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society, 2003, 125(6): 1643-1654
    [384] Ho K C, Tsai P J, Lin Y S, et al. Using biofunctionalized nanoparticles to probe pathogenic bacteria. Analytical Chemistry, 2004, 76(24): 7162-7168
    [385] Grabar K C, Allison K J, Baker B E, et al. Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Langmuir, 1996, 12(10): 2353-2361
    [386] Olson L G, Lo Y-S, Beebe Jr T P, et al. Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Analytical Chemistry, 2001, 73(17): 4268-4276
    [387] Castelino K, Kannan B, Majumdar A. Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces. Langmuir, 2005, 21(5): 1956-1961
    [388] Patolsky F, Lichtenstein A, Willner I. Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis ofsingle-base mismatches by tagged liposomes. Journal of the American Chemical Society, 2001, 123(22): 5194-5205
    [389] Chowdhury M H, Julian A M, Coats C J, et al. Detection of differences in oligonucleotide-influenced aggregation of colloidal gold nanoparticles using absorption spectroscopy. Journal of Biomedical Optics, 2004, 9(6): 1347-1357
    [390] dos Santos D S Jr, Goulet P J G, Pieczonka N P W, et al. Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir, 2004, 20(23): 10273-10277
    [391] Kumar A, Mandal S, Mathew S P, et al. Benzene- and anthracene-mediated assembly of gold nanoparticles at the liquid-liquid interface. Langmuir, 2002, 18(17): 6478-6483
    [392] Kohara Y. Hybridization reaction kinetics of DNA probes on beads arrayed in a capillary enhanced by turbulent flow. Analytical Chemistry, 2003, 75(13): 3079-3085
    [393] Schafer A J, Hawkins J R. DNA variation and the future of human genetics. Nature Biotechnology, 1998, 16: 33-39
    [394] Okahata Y, Kawase M, Niikura K, et al. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Analytical Chemistry, 1998, 70(7): 1288-1296
    [395] McLaughlin L W, Benseler F, Graeser E, et al. Effects of functional group changes in the ecori recognition site on the cleavage reaction catalyzed by the endonuclease. Biochemistry, 1987, 26(23): 7238-7245
    [396] Alves J, Ruter T, Geiger R, et al. Changing the hydrogen-bonding potential in the DNA binding site of ecori by site-directed mutagenesis drastically reduces the enzymic activity. Biochemistry, 1989, 28(6): 2678-2684
    [397] Waters T R, Connolly B A. Continuous spectrophotometric assay for restriction endonucleases using synthetic oligodeoxynucleotides and based on the hyperchromic effect. Analytical Biochemistry, 1992, 204(1): 204-209
    [398] Li J J, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-strand. Nucleic Acids Research, 2000, 28(11): e52
    [399] Duan H, Nie S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. Journal of the American Chemical Society, 2007, 129(9): 2412-2413
    [400] Kreibig U, Genzel L. Optical absorption of small metallic particles. SurfaceScience, 1985, 156(2-3): 678-700
    [401] Takeuchi Y, Ida T, Kimura K. Temperature effect on gold nanodispersion in organic liquids. Surface Review and Letters, 1996, 3(1): 1205-1208
    [402] Aslan K, Luhrs C C, Perez-Luna V H. Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin. Journal of Physical Chemistry B, 2004, 108(40): 15631-15639
    [403] Huang C C, Huang Y F, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry, 2005, 77(17): 5735-5741
    [404] Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled by dnazymes for simple and fast colorimetric pb2+ detection. Journal of the American Chemistry Society, 2004, 126 (39): 12298-12305
    [405] Liu J, Lu Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. Journal of the American Chemistry Society, 2005, 127(36): 12677-12683
    [406] Li H X, Rothberg L J. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Science U.S.A., 2004, 101(39): 14036-14039
    [407] Wu Z S, Zhang S B, Guo M M, et al. Homogeneous, unmodified gold nanoparticle-based colorimetric assay of hydrogen peroxide. Analytica Chimica Acta, 2007, 584(1): 122-128
    [408] Aslan K, Lakowicz J R, Geddes C D. Nanogold-plasmon-resonance-based glucose sensing. Analytical Biochemistry, 2004, 330(1): 145-155
    [409] Aslan K, Lakowicz J R, Geddes C D. Nanogold plasmon resonance-based glucose sensing: wavelength-ratiometric resonance light scattering. Analytical Chemistry, 2005, 77(7): 2007-2014
    [410] Oosterkamp A J, Irth H, Heintz L, et al. Simultaneous determination of cross-reactive leukotrienes in biological matrices using on-line liquid chromatography immunochemical detection. Analytical Chemistry, 1996, 68 (23): 4101-4106
    [411] Ray P C, Fortner A, Darbha G K. Gold nanoparticle based FRET asssay for the detection of DNA cleavage. Journal of Physical Chemistry B, 2006, 110(42): 20745-20748
    [412] Yin X-B, Qi B, Sun X, et al.4-(Dimethylamino) butyric acid labeling for electrochemiluminescence detection of biological substances by increasingsensitivity with gold nanoparticle amplification. Analytical Chemistry, 2005, 77(11): 3525-3530
    [413] Storhoff J J, Lazarides A A, Mirkin C A, et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemistry Society, 2000, 122(19): 4640-4650
    [414] Thanh N T K, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Analytical Chemistry, 2002, 74 (7): 1624-1628
    [415] Howard J T, Ward J, Watson J N, et al. Heteroduplex cleavage analysis using s1 nuclease. Biotechniques, 1999, 27(1): 18-19
    [416] Till B J, Burtner C, Comai L, et al. Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 2004, 32(8): 2632-2641
    [417] Liu L F, Tang Z W, Wang K M, et al. Using molecular beacon to monitor activity of E. coli DNA ligase. The Analyst, 2005, 130(3): 350-357
    [418] Inouye M, Ikeda R, Takae M, et al. Single-nucleotide polymorphism detection with "wire-like" dna probes that display quasi "on-off" digital action PNAS. Proceedings of the National Academy of Science U.S.A., 2005, 102(33): 11606-11610

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700