用户名: 密码: 验证码:
漳江口红树林湿地沉积物有机质来源追溯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口湿地是海陆相互作用的重要地带,是一个多功能的复杂生态系统,作为陆地生态系统和水生生态系统之间的过渡地带,具有独特的生态价值和资源潜力。由于其与周边生态系统间频繁的物质交换,河口湿地生态系统中生物地球化学过程十分复杂,各种物理、化学和生物过程共同控制着有机质在这一地区中的赋存与转化。同时作为全球碳循环研究中的重要内容之一,有机质在湿地中的生物地球化学过程研究一直备受关注,然而迄今为止,关于河口湿地中有机地球化学的研究还有待进一步的充实和完善。滨海河口湿地一个重要组成成分——红树林湿地,其有机质的生物地球化学研究目前开展则更少被涉及。
     本文选择中国自然分布最北的大面积重要的红树林湿地保护区——漳江口红树林湿地作为研究区域,采集了表层沉积物(林内、林外),柱状沉积物(分别位于三个红树纯林林内林外)、湿地内的主要优势植物样品,并对样品进行元素(C,N,S)、稳定同位素(δ~(13)C,δ~(15)N)、类脂化合物(正构烷烃、n-alkane脂肪酸)等全部或部分参数的测定;同时对采自表层和柱状沉积物样品进行了粒度分析,通过对生物标志化合物参数的判定,对沉积物样品中有机质来源的类型进行了鉴别。结合沉积物样品碳稳定同位素测定,对柱状样中红树源有机质贡献进行了估算,认识有机质在红树林湿地中的来源、分布特征、主要控制因素及红树植物对沉积物有机质的贡献。本研究的主要结论如下:
     湿地表层沉积物中总有机碳(TOC)浓度较低,仅为0.76-1.49%,在各林分中分布无明显规律,但表层沉积物中林内波动比林外强烈。结合表层沉积物中低的C/N比值(6-11),可以初步推测,表层沉积物中有机质可能主要来自其他来源,而湿地植物的贡献相对较小。表层沉积物中C,N,S在沉积物中呈现相似的变化趋势,即林内比林外变化剧烈,这主要是由红树林湿地林内复杂的理化性质与沉积环境造成的。漳江口红树林湿地内沉积物中TOC,TN,TS与沉积物粒度间没有显著相关性,这区别于世界其他一些河口湿地沉积物中,有机质受由河流携带悬浮颗粒主导所致。通过柱状样中C/N比计算,在秋茄、白骨壤和桐花树三个纯林中,3种红树植物对沉积物有机质的贡献率表现为:桐花树林>白骨壤林>秋茄林。在秋茄与白骨壤林内沉积物中,红树植物对有机质的贡献率不足50%。
     碳同位素(δ~(13)C)测定结果显示,湿地内三种主要红树植物秋茄、白骨壤和桐花树的叶片碳同位素体现出与典型C_3植物相似的值,平均值分别为-29.50‰,-29.87‰,-29.98‰。表层沉积物中δ~(13)C值的分布,林外各样点为-23.02--21.61‰,林内为-22.86—-25.53‰,这与湿地植物δ~(13)C值相比,均明显富集轻碳同位素,故而湿地植物有机质可能不是湿地沉积物中有机质的最主要来源。这与根据表层沉积物TOC浓度与C/N比值所得结论~致。表层沉积物中δ~(15)N在林外分布为4.65-7.82‰,在林内分布为5.23-6.78‰。通过对沉积物中δ~(15)N对δ~(13)C,δ~(13)C对C/N,δ~(15)N对C/N等相关性分析以及粒度与稳定同位素相关性分析,得出漳江口红树林湿地内沉积物中δ~(13)C对有机质变化响应良好,可以用于对沉积物中物源的分析,而δ~(15)N值受其他沉积物理化性质影响,在本研究区域内变化复杂不适于对物源判断。利用柱状样中δ~(13)C值,根据两端元混合模型估算了三个纯林样点中红树植物的相对贡献。结果表明秋茄林中贡献最小,桐花树林中最大,与根据TOC浓度进行估算的趋势相互吻合。
     对湿地沉积物中生物标志物(正构烷烃、脂肪酸)的含量分布研究表明,正构烷烃在林外主要成单峰分布,林内为双峰分布,高碳数中有明显的奇偶分布。脂肪酸中有强烈的偶奇分布,结合其他参数判断沉积物中有机质主要来自于海源性和陆源性两种有机质的贡献,并且呈海源性优势分布,这种优势在光滩尤为明显。植物对沉积物有机质的影响在林内明显加强,并主要来自于高等维管乔木植物。由脂肪酸提供的证据显示,研究区域内沉积物中细菌等微生物活动显著,有相当的细菌来源不饱和脂肪酸存在。在柱状样中脂肪酸的降解随深度变化明显。通过对生物标志化合物参数的判定,对沉积物样品中有机质来源的类型进行了鉴别。通过判定的有机质来源类型,利用现有文献资料中的海源性有机质碳稳定同位素比值,接合本研究中柱状样品碳稳定同位素的测定值,对红树源有机质贡献进行了校正。结果显示漳江口红树林沉积物中,红树来源有机质贡献率介于30%-50%,且表现为桐花树林>白骨壤林>秋茄林。
Wetlands are particularly important and productive ecosystems.Coastal wetlands in the intertidal are open,dynamic systems,dominated by tidal currents in contact with open sea.The complex of physical and chemical processes controls the organic matters dynamics in these wetlands.Being an important part of global carbon cycle,the biogeochemical process of organic matters in wetlands has been focused on for the recent decades.However there are little literatures on the organic geochemical processes in estuary wetlands.Mangroves represent a critical ecological habitat in the coastal environment of tropical and subtropical areas.To our knowledge,unfortunately, almost nothing has been published regarding the organic geochemical processes in mangrove wetlands.
     In this dissertation,Zhangjiang mangrove wetland which is the biggest natural distribution of mangrove in north latitude was selected as research site.The aim of this dissertation was to quantify the sources of organic matters input of the mangrove wetlands in the intertidal ecosystem,through the analysis ofδ~(13) C,δ~(15)N isotope values,nutrient(caroon,nitrogen and sulfur),and lipoid compounds(n-alkane,fatty acids) in sediments and plants.
     The main results were show as following
     The concentrations of total organic carbon(TOC) in top sediments are in range from 0.76 to 1.49%.The C/N ratios in top sediments are in range of 6-11. These indicate the source of organic matters in top mangrove wetland sediments may have another origin.Tile mangrove trees contributed little to the sediment organic matters.The distribution of C,N and S elements in mangrove sediments disturb obviously than bare sediments.These may result in complicated deposited environmental characteristics and the involutedly physical and chemical properties of mangrove sediments.TOC,TN and TS have no correlation with grain sizes in Zhangjiang mangrove sediments.These show an obviously different of some other estuaries in the world which organic matters sources dominant by the suspending particles.Three mangrove pure stand contribution of sediments organic matters show as the following trend:A. comiculatum forest>A.marina forest>K.candel,forest.Mangrove trees contribute less than 50%of organic matters in K.candel.and A.marina sediments.
     The average stable carbon isotope value in the leaves of K.candel.,A. marina,A.corniculatum,is-29.50‰,-29.87‰,-29.98‰,respectively.Three mangrove leaves have the similar stable carbon isotope(δ~(13) C) values as typical C_3 plant.The average stable carbon isotope values in outside mangrove sediments are range from -23.02 to 21.61‰.However,mangrove top sediments showed a range from -22.86 to 25.53‰.Compare with wetland plant stable isotope values,top sediments concentrate the light carbon isotope. These indicate that wetland plants are not the major sources of organic matters in wetland sediments.These show the same results as to analysis the data of TOC concentrations and C/N ratios in top sediments.The average nitrogen carbon isotope values in outside mangrove sediments are range from 4.65 to7.82‰.However,mangrove top sediments showed a range from 5.23 to 6.78‰.The data of stable carbon isotope(δ~(13) C) values which significant correlate to the organic matters values can be used to analysis the sources of organic matters origin.But stable nitrogen values(δ~(15)N) are not showing this aspect.Relative contributions of mangrove plant-derived organic matter to the sedimentary organic pool is calculated based on a two end-member mixing model and stable carbon isotope values in the core section.The result indicates that A.comiculatum,input maximum organic matters while K.candel. input the minimum.This result is similar to the trend which base on analysis of TOC concentration.
     The distribution of the lipid composition of n-alkanes,fatty acids indicate that the organic matters in the sediments are mainly from terrestrial-derived and see-derived organic matters.And the see-derived organic matter takes dominant in the sediments.This predominance is obviously showed in the bare beach.In mangrove forest,the plant especially fibro vascular tree significantly influences the organic matters in sediments.The evidences from fatty acids indicated that considerable unsaturated fatty acids which derive from bacteria activity.The fatty acids degraded rates increase with the depth.As indicated by organic matter source,stable carbon isotope values of see-derived organic carbon in literatures and the data of column samples in Zhangjiang estuary,the mangrove-derived organic matters were emendated.The results showed that the contribution of mangrove trees to sediments organic matters are at range from 30 to 50%.The trend of tree mangrove stands contribution follow the order of A.corniculatum forest>A.marina forest>K.candel,forest.
引文
[1] Werner B T. Complexity in natural landform patterns [J]. Science, 1999, 284: 102-104.
    [2] Whitesides G M, Ismagilov R F. Complexity in Chemistry [J]. Science, 1999,284,89-92.
    [3] Goldenfeld N, Kadanoff L P. Simple lessons from Complexity [J]. Science, 1999, 284,87-89
    [4] Cerwall H. Biological effects of eutrophication in the Baltic Sea, particulary the costal zone [J]. Ambio.1990,19, 109-112
    [5] Balls P W. Nutrient inputs to estuaries from nine Scottish east coast rivers: influence of estuarine process on inputs into the North sea [J].Estuarine, Coastal and Shelf Science, 1994, 39: 329-352.
    [6] Sanger D M, Holl A F, Scott G I. Tidal creek and salt marsh sediments in south Carolina coastal estuaries: 1. Distribution of trace metals [J]. Environmental Contamination and Toxicology, 1999, 37:45-457.
    [7] Howarth R W, Marino R, Lane J ,et al. Nitrogen fixation in freshwater, estuarine, and marine ecosystem Rates and importance [J]. Limnology and Oceanography, 1988,33, 669-687.
    [8] Feng H, Han X F, Zhang W G ,et al. A prelim inary study of heavy metal contain ination in Yangtze River inter tidal zone due to urbanization [J]. Marine Pollution Bullete, 2004,49(12): 910-915.
    [9] Vitousek P M, Mooney H A, Lubchenco H A, et al. Human domination of earth's ecosystem [J]. Science, 1997,25, 494-499.
    [10] Gunnarsson J, Bjork M, Gilek M, et al. Effects of eutrophication on contaminant cycling in marine benthic systems [J]. Ambio, 2000,29, 251-257.
    [11] Bennett A, Bianchi T S, Means J C. The effects of PAH contamination and grazing on the abundance and composition of microphytobenthos in alt marsh sediments (Pass Fourchon, LA, U.S.A.): II: The use of plant pigments as biomarkers [J]. Estuarine, Coastal and Shelf Science, 2000. 50: 425-439.
    [12]Botch M S,Kobak K I,Vinson T S,Kolchugina T P.Carbon pools and accumulation in peatlands of the former Soviet Union[J].Global Biogeochemical Cycles,1995,9:37-46.
    [13]林鹏,傅勤。中国红树林环境生态及经济利用[M]。北京,高等教育出版社,1995.1-95.
    [14]Furukawa K,Wolanski E,Mueller H.Currents and Sediment Transport in Mangrove Forests[J].Estuarine,Coastal and Shelf Science,1997,44:301-310.
    [15]Brodie M Y,Edward H L,A Spatial Analysis of the Relationship Between Mangrove(Avicennia marina var.australasica) Physiognomy and Sediment Accretion in the Hauraki Plains,New Zealand,[J]Estuarine,Coastal and Shelf Science,1996,42:231- 246.
    [16]Krauss K W,Allen J A,Cahoon D R.Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests[J],Estuarine,Coastal and Shelf Science,2003,56:251-259.
    [17]张乔民,温孝胜,宋朝景,等.红树林潮滩沉积速率测量与研究[J].热带海洋,1996,15(4):57-62.
    [18]Alongi D M,Tzner J P,Trott L A,et al.Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary,China[J].Estuarine,Coastal and Shelf Science,2005,63:605-618.
    [19]Alongi D M,Wattayakorn G,Pfitzner J,et al.Organic carbon accumulation and metabolicpathways in sediments of mangrove forests in southern Thailand[J].Marine Geology,2001,179:85-103.
    [20]Alongi D M,Sasekumar A,Chong V C,et al.Sediment accumulation and organic material flux in a managed mangrove ecosystem:estimates of land-ocean-atmosphere exchange in peninsular Malaysia[J].Marine Geology,2004,208:383-402.
    [21]Meziane T,Bodineau L,Retiere C,Thoumelin G.The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-fiat ecosystem of Mont-Saint-Michel Bay,France[J].Journal of Sea Research.1997,38:47-58.
    [22]Wang X C,Chen R F,Berry A.Sources and preservation of organic matter in Plum Island salt marsh sediments (MA, USA): long-chain n-alkanes and stable carbon isotope compositions. Estuarine [J], Coastal and Shelf Science, 2003,53: 917-928.
    [23] Chalmers A G, Wiegert R G, Wolf P L. Carbon balance in a salt marsh: Interactions of diffusion export, tidal deposition and rainfall-caused erosion [J]. Estuarine, Coastal and Shelf Science 1985,21:757-771
    [24] Roman C T, Daiber F C . Organic carbon flux through a Delaware Bay salt marsh: tidal exchange, particle size distribution, and storms [J]. Marine Ecology Progress Series ,1989,54: 149-156.
    [25] Hemminga M A, Cattrijsse A, Wielemaker A. Bedload and nearbed detrituss transport in a tidal salt marsh creek [J]. Estuarine, Coastal and Shelf Science.1996,42: 55-62.
    [26] Wolaver T G, Spurrier J D . Carbon transport between a euhaline vegetated marsh in South Carolina and the adjacent tidal creek: contribution via tidal inundation, runoff and seepage [J]. Marine Ecology Progress Series,1988, 42: 53-62.
    [27] Tarn N F Y, Guo C L, Yau VW, Wong Y S. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong [J]. Marine Pollution Bulletin, 2002,45: 316-324.
    [28] Meyers P A, Ishiwatari R. Lacustrine organic geochemistry :An overview of indicators of organic matter sources and diagnosis in lake sediments [J]. Organic Geochemistry, 1993, 20(7):867-900.
    [29] Prahl F G, Ertel J R , Goni IV A , Sparrow M A , Eversmeyer B. Terrestrial organic carbon contributions to sediments on the Washington margin [J]. Geochimica et Cosmochimica Acta, 1994, 58: 3035-3048.
    [30] Chmura G L , Aharon P , Socki R A, Abernethy R. An inventory of ~(13)C abundances in coastal wetlands; of Louisiana, USA: Vegetation and sediments [J]. Oecologia ,1987,74: 264-271.
    [31] Jaffe R, Wolff G A, Cabrera A C, Carvajal-Chitty H. The biogeochemistry of lipids in rivers from the Orinoco Basin [J]. Geochimica et Cosmochimica Acta, 1995, 59: 4507- 4522.
    [32] Wakeham S G. Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water columns of the ocean[J].Deep Sea Research,1995,42:1749-1771.
    [33]Canuel E A,Freeman K H,Wakeham S G.Isotopic composition of lipid biomarker compounds in estuarine plants and surface sediments [J].Limnology and Oceanography,1997,42:1570-1583.
    [34]Bull L D,van Bergen P F,Bol R,et al.Estimating the contribution of Spartina anglica biomass to salt-marsh sediments using stable isotope measurements[J].Organic Geochemistry,1999,30:477-484.
    [35]Mannino A.Harvey H R.Lipid composition in particulate and dissolved organic matter in the Delaware Estuary:Sources and digenetic patterns[J].Geochimica et Cosmochimica Acta,1999,63:2219-2235.
    [36]Galloway J,Cowling E B.Nitrogen and the world[J].Ambio,2002,31:64-71.
    [37]Shimel D S.Terrestrial ecosystem and the carbon cycle[J].Global Change Biology,1995,1:77-91.
    [38]Bordovskiy O K.Accumulation and transformation of organic substances in marine sediments[J].Marine.Geology.1965,3:3-114.
    [39]王苏民,余源盛,吴瑞金,等.岱海一湖泊环境与气候变化[M].合肥:中国科技大学出版社,1990.142-147.
    [40]钱君龙,王苏民,薛滨,等.湖泊沉积研究中一种定量估算陆源有机碳的方法[J].科学通报,1997,42(15)B:1655-1658.
    [41]Lew M.The distribution of some major and trace elements in sediments of Atlantic Ocean(DSDP samples) The distribution of total,fixed and organic nitrogen[J].Chemical Geology,1981,33:225-235.
    [42]Temois Y,Kawamura K,Keigwin L,et al.A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years[J].Geochimica et Cosmochimica Acta,2001,65:791-802.
    [43]Peterson B J,Howarth R W.Sulfur,carbon and nitrogen organic flow in the salt-marsh estuaries of Sapelo isotopes used to Island[J].Georgia.Limnology and Oceanography,1987,32:1195-1213.
    [44]Urey H C.The thermodynamic properties of isotopic substances[J]. Chemical Society,1947:562-581.
    [45]Smith B N,Epstein S.Two categories of(13)~C/(12)~C ratios for higher plants[J].Plant Physiology,1971,47:380-384.
    [46]吴乃琴,吕厚远,聂高众,等.C_3/C_4植物及其硅酸体研究的古生态意义[J].第四纪研究,1992,3:241-251.
    [47]Mook W G,Tan F C.Stable carbon isotopes in rives and estuaries[M].In:Degens E T,Kempe S,Richey(?) E.(eds) Major world rivers.SCOPE,Wiley,1991:245-264.
    [48]Degens,E T,Organic Geochemistry[M],Springer,Heidelberg University Publication,1969,304-329.
    [49]Pfeiffer E M,Janssen H.Characterization of organic carbon,using the δ~(13) C-value of a permafrost site in the Kolyma-lndirka lowland,Northeast Siberia.Proc Meeting on the Classification,Correlation and Management of Permafrost Affected Soils.Lincoln,Nebraska,1993:90-98
    [50]Gundelwein A.Eigenschaften und Umsetzung organischer Substanz in nordisbirischen Permafrostboden[J].Hamburger Bodenkundliche Arb,1998,39:1-162.
    [51]Sackett W,Brooks G,Conkright M,et al.Stable isotope composition of sedimentary organic carbon in Tampa Bay,Florida,U.S.A:implications for evaluating oil contaimimation.Applied Geochemistry,1986,1:31-137.
    [52]Fortugne M R,Duplessy J C.Organic carbon isotope fractionation by marine plankton in the temperature range 1 to 31 ℃[J].Oceanol Acta,1981,4:85-90.
    [53]Rau G H,Takahaschi T,Marais D J D,et al.The relationship between δ~(13)C of organic matter and CO_2(aq) in ocean surface water:data from JGOFS site in the northeast Atlantic and amodel[J].Geochimica et Cosmochimica Acta,1992,56:1412-1419.
    [54]Fry B,Sherr E B.Delta(13)~C measurements as indicators of carbon flow in marine and freshwater ecosystems[J].Contributions in Marine Science.1984,27:13-47.
    [55]王将克,常弘,廖金凤,等.生物地球化学[M].广东科技出版社,1999.
    [56]Dean W E,Arthur M A,Claypool G E.Depletion of(13)~C in Cretaceous marine organic matter:source,diagenetic,or environmental signal[J].Marine.Geology,1986,70:119-157.
    [57]Hedges J I,Parker P L.Land-derived organic matter in surface sediments from the Gulf of Mexico[J].Geochimica et Cosmochimica Acta,1976,40:1019-1029.
    [58]Jia Guo-Dong,Peng Ping-An.Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay(Pearl estuary),southern China[J].Marine Chemistry,2003,82:47-54.
    [59]陈践发,徐永昌.沼泽环境中有机质碳同位素组成特征.科学通报,1992,37(22):2080-2082.
    [60]Hunt J M.The significance of carbon isotope variations in marine sediments[M].In:Advances in Organic Geochemistry.Oxford:Pergamon,1970:27-35.
    [61]Balesclenl J,Wagner G H and Mariolli.Soil organic matter turnover in long term field experiments as revealed by Carbon-13 natural abundance[J].Soil Science Society of America Journal,1988.52(1):17-24.
    [62]Boutton T W,Archer S R,Midwodd A J,et al.δ(13)~C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem[J].Geoderna,1998,82:5-41.
    [63]Nordi L C,Boutton T W,Hallmark C T et al.Late Quaternary vegetation and climatic change in central Texas based on the isotopic composition of organic carbon[J].Quaternary Research,1994,41:109-120.
    [64]Humphrey J K,Ferring C R.Stable isotopic evidence for latest Pleistocene and Holocene climatic change in north-central Texas[J].Quaternary Research,1994,41:200-213.
    [65]Lu H Y,Wang Y J,Wang G A,et al.Analysis of carbon isotope in phytoliths from C_3 and C_4 plants and modem soils[J].Chinese Science Bullutin,2000,45(19):1804-1808.
    [66]郭正堂,彭书珍,郝青振,等.晚第三纪中国西北干早化的发展及其与北极冰盖形成演化和青藏高原隆升的关系[J],第四纪研究,1999,6:556-566.
    [67]吕厚远,顾兆炎,吴乃琴,等,海拔高度的变化对青藏高原表土S~(13)C nrR 的影响[J].第四纪研究.2001,21(5):399-406.
    [68]段毅,马兰华.1996.生物标志化合物碳同位素地球化学研究的几个相关问题[J].地球科学进展,11(4):356-361.
    [69]Yamada K,Ishiwatari R.Carbon isotopic compositions of long-chain n··alkanes in the Japan Sea sediments:implications for paleoenvironmental change over the past 85 kyr[J].Organic Geochemistry,1999,30:367-377.
    [70]Schouten S,Hoefs Marcel J L,Damsté J S,et al.A molecular and stable carbon isotopic study of lipids in late Quaternary sediments from the Arabian Sea[J].Organic Geochemistry,2000,31:509-521.
    [71]Collister J W,Rieley G,Stern B,et al.Compound-specific(13)~C analysis of leaf lipids from plants with differing carbon dioxide metabolisms[J].Organic Geochemistry.1994,21:619-627.
    [72]Freeman K H,Wakeham S G,Hayes J M.Predictive isotopic biogeochemistry:hydrocarbons from anoxic marine basins[J].Organic Geochemistry,1994,21:629-644.
    [73]Ostrom P H,Ostrom N E,Henry J,et aL Changes in the trophic state of Lake Erie:discordance between molecular δ~(13)C and bulk δ~(13)C sedimentary records[J].Chemical Geology,1998,152:163-179.
    [74]Huang Y,Lockheart M J,Collister J W,et al.Molecular and isotopic biogeochemistry of MioceneClarkia Formation:hydrocarbons and alcohols[J].Organic Geochemistry,1995,23:785-801.
    [75]Versteegh G J M,Bosch H J,DE L J W.Potential palaeoenvironmental information of C_(24) to C_(36) midchaindiols,keto-ols and mid-chain hydroxy fatty acids;a critical review[J].Organic Geochemistry,1997,27:1-13.
    [76]Volkman J K,Barrett S M,Dunstan G A,et al.C3ooC32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae.Organic Geochemistry,1992,18:131-138.
    [77]Volkman J K,Barrett S M,Blackburn S I.Eustigmatophyte microalgae are potential sources of C_(29) sterols,C_(22)-C_(28) n-alcohols and C_(28)-C_(32)n-alkyl diols in freshwater environments[J].Organic Geochemistry,1999,30:307-318.
    [78]段毅,文启彬,罗斌杰.南沙海洋和甘南沼泽现代沉积物中单个脂肪酸碳同位素组成及其成因[J].地球化学,1995,24(3):270-275.
    [79]Oldenburg T B P,Rullk(o|¨)tter J,B(o|¨)ttcher M E,et al.Molecular and isotopic characterization of organic matter in Recent and sub-Recent sediments from the Dead Sea[J].Organic Geochemistry,2000,31:251-265.
    [80]Hu Jianfang,Peng Ping'an,Jia Guodong,et al..Biological markers and their carbon isotopes as an approach to the paleoenvironmental reconstruction of Nansha area,South China Sea,during the last 30 ka [J].Organic Geochemistry,2002,33:1197-1204.
    [81]Schouten S,Hartgers W A,Loépez J F,et al.A molecular isotopic study of(13)~C-enriched organic matter in evaporitic deposits:recognition of CO_2-limited ecosystems.Organic Geochemistry,2001,32:277-286.
    [82]Naraoka H.,Ishiwatari R.Molecular and isotopic abundances of long-chain n-fatty acids in open marine sediments of the western North Pacific[J].Chemical Geology,2000,165:23-36.
    [83]Volkman J K,Barret S M,Dunstan G A.C_(25) and C_(30) highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms[J].Organic Geochemistry,1994,21:407-413.
    [84]Wraige E J,Belt S T,Lewis C A,et al.Variations in structures and distributions of the C_(25) highly branched isoprenoid(HBI) alkenes in cultures of the diatom,Haslea ostrearia(Simonson)[J].Organic Geochemistry,1997,27:497-505.
    [85]Eglinton T I,Benitez-Nelson B C,Pearson A,et al.Variability in radio-carbon ages of individual organic compounds from marine sediments[J].Science,1997,277:796-799.
    [86]Popp B N,Laws E A,Bidigare R R,et al.Effect of phytoplankton cell geometry on carbon isotopic fractionation[J].Geochimica et Cosmochimica Acta,1998,62:69-77.
    [87]Schouten S,Schoell M,Rupstra W J C,et al.A molecular stable carbon isotope study of organic matter in immature Miocene Monterey sediments,Pismo basin[J].Geochimica et Cosmochimica Acta,1997,61:2065-2082.
    [88]Schoell M,McCaffrey M A,Fago F J,et al.Carbon isotopic composition of 28.30-bisnorhopanes and other biological markers in a Monterey crude oil [J]. Geochimica et Cosmochimica Acta, 1992, 56: 1391-1399.
    [89] Spooner N , Rieley G , Collister J W, et al .Stable carbon isotopic correlation of individual biolipids in aquatic organisms and a lake bottom sediment [J]. Organic Geochemistry, 1994, 21: 823-827.
    [90] Grice K , Klein-Breteler W C M, Schouten S, et a/.The effect of zooplankton herbivory on the stable carbon isotopic composition of algal markers: Implications for the geochemical record [J]. Paleoceanography, 1998, 13: 686-693.
    [91] Burkill P H, Leakey R J G, Owens N J P, et al .Synechococcus and its importance to the microbial foodweb of the northwestern Indian Ocean [J]. Deep Sea Research II, 1993, 40: 773-782.
    [92] Liu H, Campbell L, Landry M R, et al . Prochlorococcus and Synechococcus growth rates and contributions to productions in the Arabian Sea during the 1995 Southwest and Northeast Monsoons [J]. Deep Sea Research II, 1998, 45: 2327-2352.
    [93] Marloww I T, Brassell S C,Eglintin G, et al .Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments [J]. Chemical Geology ,1990, 88: 349-275.
    [94] Braddell S C.Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene [M]. In Organic Geochemistry (ed. Engel M.H. and Macko S.A.) 1993,pp: 699-738.
    [95] Craft C B, Broome S W, Seneca E D , Showers W J. Estimating sources of soil organic in natureal and transplanted estuaryine marshes using stable isotopes of carbon and nitrogen [J]. Estuarine, Coastal and Shelf Science , 1988,26: 633-641.
    [96] Choi Y, Wang Y. Vegetation succession and carbon sequestration in a coastal wetland in Florida:Evidence from carbon isotopes [J]. Global Biogeochemical Cycles, 2001,15: 311-319.
    [97] Chmura, G L, Aharon P. Stable carbon isotopic signatures of sedimentary carbon in coastal wetlands as indicators of Salinity regime. Journal of Coastal Research , 1995 ,11:124-135.
    [98] Owens N J P. Natural variations in ~(15)N in the marine environment [J]. Advance in Marine Biology,1987,24:411-451.
    [99]傅家漠,盛国英,许家友,等.应用生物标志化合物参数判识古沉积环境[J].地球化学,1991 1:1-12.
    [100]M L Martín-Díaz,J Blasco,D Sales,T A DelValls.Biomarkers as tools to assess sediment quality.Laboratory and field surveys[J].Trends in Analytical Chemistry,2004,23:807-818.
    [101]Tri Prartono,George A Wolff.Organic geochemistry of lacustrine sediments:a record of the changing trophic status of Rostherne Mere,U.K[J].Organic Geochemistry,1998,28(11):729-747.
    [102]谢尉成,梁斌,郭建秋,等.生物标志化合物与相关的全球变化[J].第四纪研究,2003,23(5):521-528.
    [103]Boot C S,Ettwein V J,Maslin M A,Weyhenmeyer C E,Pancost R D.A 35,000 year record of terrigenous and marine lipids in Amazon Fan sediments[J].Organic Geochemistry,2006,37:208-219.
    [104]Dembicki and Meinschein,Possible ecological and environmental significance of the predominance of even-carbon number C_(20)-C_(30)n-alkanes[J].Geochemica et Cosmochemica Acta,1976,40:203-208.
    [105]Didyk B M,Simoneit B R T,Brassell S C,et al.Organic geochemical indicators of paleoenvironmental condition of sedimentation[J].Nature,1978,272:216- 222.
    [106]Cranwell P A.Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change [J].Freshwater Biology,1973,3:259 -265.
    [107]Cranwell P A,Eglinton G,Robinson N.Lipids of aquatic organis ms as potential contributors to lacustrine sediments II[J].Organic Geochemistry,1987,11(6):513- 527.
    [108]Eglinton G,Hamilton R J.The distribution of alkanes[M].In:Swain T.(ed.),Chemistry plant Taxonomy.New York Academic Press,1963,187-217.
    [109]Yen T F.Genesis and degradation of petroleum hydrocarbons in marine environments[M].In:Church T N(ed.),Marine Chemistry in the Coastal Environment.A.C.S Synposium Series 18,Washington:1975, 237.
    [110]吴庆余,殷实,盛围英,等.发现于浮游硅藻中的长链正烷烃[J].科学通报,1992,37(24):2266-2269.
    [111]Volkman J K,Hohns R B,Gillan F T,et al.Microbial lipids of an intertidal sediment.I.Fatty acid and hydrocarbons[J].Geochim.Cosmochim.Acta,1980,44:1133-1143.
    [112]Eglinton G,Hamilton R J.Leaf epicuticular waxes[J].Science,1967,156:1322-1335.
    [113]Simoneit B R T.The organic chemistry of marine sediments[M].In:Riley J.Po,Cheater R.(Eds.),Chemical Oceanography,Academic Press,London,1978,7:233-311.
    [114]Peters K E,Moldowan J M.The Biomarkers Guide:Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M].New York:Prentice Hall,1993:1-363.
    [115]Madureira L A S,Kreveld S A,Eglinton G,eta..Late Quaternary high-resolution biomarker and other sedimentary climate proxies in a northeast Atlantic core[J].Paleoceanography,1997,12:255-269.
    [116]Cidyk B M,Simoneit B R T,Brassell S C,et al.Organic geochemical indicators of paleonenvironmental conditions of sedimentation[J].Nature,1978,272:216-222.
    [117]Gelpi E,Schneider H,Mann J,et al.Hydrocarbons of geochemical significance in microscopic algae[J].Photochemistry,1970,9:603-612.
    [118]Giger W,Schaffner C,Wakeham S G.Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee.Switzerland[J].Geochimica et Cosmochimica Acta,1980,44:119-129.
    [119]Yamamoto M,Shiraiwa Y,Inouge I.Physiological responses of lipids in Emiliania huxleyi and Gephyrocapsa oceanica(Haptophyceae)to growth status and their implications for alkenone paleothermometry [J].Organic Geochemistry,2000,31:799-811.
    [120]Cardoso J N.The use of hydroxy acids as geochernical indicators [J].Geochimica et Cosmochimica Acta,1983,47:723-730.
    [121] Carrie R H, Mitchell L , Black K D . Fatty acids insurface sediment at the. Hebridean shelf edge, west of Scotland [J]. Organic Geochemistry, 1998,29: 1583-1593.
    [122] Cranwell P A. Monocarboxcyclic acids in lake sediments, indicators, derived from terrestrial and aquatic biota, of paleoenvironmental trophic levels[J]. Chemical Geology, 1974,14: 1-14.
    [123] Gaskel S J, Eglinton G.. Rapid hydrogenation of sterols in a contemporary lacustrine sediment [J].Nature ,1975,254: 209-211.
    [124] Duan Y, Song J M, Cui M Z, Luo B J. Organic geochemical studies of sinking particulate material in China Sea area I: organic matter fluxes and distributional features of hydrocarbon compounds and fatty acids [J]. Science in China ,1998,41:208-214.
    [125] Perry G J. Volkman J K , Johns R R , et al. Fatty adds of bacterial origm contemporaxy marine sedments [J]. Geochimica et Cosmochimica Acta, 1979,43:1715-1725.
    [126] Simoneit B R T. Sources of organic matter in oceanic sediments [M]. England: University of Bristol, 1975.
    [127] de Leeuw J W, Rijpstra W I C and Schenck P A. The occurrence and identification of C_(30), C_(31), and C_(32) alky 1-15-diols and alkane -l5-one-1-ols in unit I and unit II Black Sea sediments [J]. Geochemica et Cosmochemica Acta, 1981, 45: 2281 -2285.
    [128] Rowland S J ,Robson J N.The widespread occurrence of highly branched acyclic C_(20)-C_(25) and C_(30) hydrocarbons in recent sediments and biota-a review [J]. Marine Environment Research, 1990, 30: 191-216.
    [129] Bidigare R R, Kennicutt M C, Ongrusek M E, et al. Novel chlorophyll-related compounds in marine phytoplankton: Distributions and geochemical implications[J]. Energy ang Fuels. 1990,4: 653-657.
    [130] Goosens H, de Leeuw J W, Schenck P A, et al. Tocopherols as likely precursors of pristane in ancient sediments and crude oils [J]. Nature, 1984,312:440-442.
    [131] Wraige E J, Belt S T, Lewis C A, et al. Variations in structures and distributions of C25 highly branched isoprenoid alkenes in cultures of diatom, Haslea ostrearia [J]. Organic Geochemistry, 1997, 27: 497-505.
    [132]Huang W Y,Meinschein W G.Sterols as ecological indicators[J].Geochimica et Cosmochimica Acta,1979,43:739-745.
    [133]Volkman J K.A review of sterol markers for marine and terrigenous organic matter[J].Organic Geochemistry,1986,9:83-99.
    [134]Rieley G,Collier R J,Jones D M,et al.The biogeochemistry of Ellesmere Lake,UK-I:Source correlation of leaf wax inputs to the sedimentary lipid record.Organic Geochemistry,1991,17:901-912.
    [135]Volkman J K,Barrett S M,Blackburn S L,et al.Microalgal biomarkers:a review of recent research developments[J].Organic Geochemistry.1998,29:1163-1179.
    [136]Weete J D.Algal and fungal waxes.In:Kolattukudy,P.E.(Ed.),Chemistry and Biochemistry of Natural Waxes.Wisevier,Amsterdam,1976,349-418.
    [137]Heftmann E.Functions of sterols in plants.Lipids,1971,6:128-133.
    [138]Volkman J K,Farrington J W,Gagosian R B.Marine and terrigenous lipids in coastal sediments from the Peru upwelling region at 15~0S:sterols and triterpene alcohols[J].Organic Geochemistry,1987,11:463-477.
    [139]Cranwell P A,Volkman J K.Alkyl and steryl esters in a recent lacustrine sediment[J].Geochimica et Cosmochimica Acta,1981,45:2281 -2285.
    [140]万大娟,李顺义,舒月红,等.土壤和沉积物中1,2,4—三氯苯的超声波提取[J].中山大学学报(自然科学版),2005,44(3):102-104.
    [141]王海霞,饶竹,江林.超临界萃取汽相色谱一质谱测定油页岩中的生物标志物[J].2000,19(2):87-92.
    [142]王永莉,王先彬,陈肖伯,等.超临界流体萃取及GC-MS对极地现代沉积物的分析[J].分析实验室,2003.22:21-22.
    [143]王永莉,王先彬,叶先仁,等,南极湖泊现代沉积物超临界流体萃取的GC-MS分析[J].分析化学,2005,33(2):289-294.
    [144]谢树成,黄俊华,王红梅,等.湖北清江和尚涮石笋脂肪酸的古气候意义[J].中国科学,D辑,地球化学,2005,35(5):246-251.
    [145]卢冰,陈荣华,王自磐,等.亚北极白令海近百年海洋环境变化一来自分子化石的证据[J].中国科学,D辑,地球化学,2004 34(4):67-374.
    [146]孟仟祥,房嬛,徐永昌,等.柴达木盆地石炭系烃源岩和煤岩生物标志物特征及其地球化学意义[J].沉积学报,2004,22(4):729-736.
    [147]Bouillon S,Dahdouh-Guebas F,A V V S Rao,Koedam N Dehairs.Sources of organic carbon in mangrove sediments:variability and possible ecological implications[J].Hydrobiologia,2003,495:33-39.
    [148]Schoeninger M J,DeNiro M J,Tauber H.Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet[J].Science,1983,220:1381-1383.
    [149]Minagawa,M.,Wada,E..Stepwise enrichment of(15)~N along food chains:further evidence and the relation between δ~(15)N and animal age [J].Geochimica et Cosmochimica Acta,1984,48:1135-1140.
    [150]Goering J,Alexander V,Haubenstovk N.Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a North Pacific Bay[J].Estuarine Coastal and Shelf Science,1990,30:239-260.
    [151]McConnaughey T,McRoy C P.(13)~C label indentifies eelgrass (Zostera marine) carbon in an Alaskan estuarine food[J].Marine Biology,1979,53:263-269.
    [152]Bouwman A F.Exchange of greenhouse gases between terrestrial ecosystems and the atmosp.In:Bouwman,A.F.(Eds.)[M].Soils and the Greenhouse Effect.John Wiley,New York,1990.
    [153]Schlesinger W H.An overview of the C cycle,in Soils and Global Change[M].Boca Raton,Fla.:CRC Press.1995,9-26.
    [154]Coultas C L.Soils of the intertidal marshes of the Florida's Gulf Coast[M].In:Coultas,C.L.,Hsieh,Y TP(Eds:).Ecology and Management of Tidal Marshes.St.Lucie,Delray,Fla,1996,53.
    [155]Calador L,Vale C,Catarino F.Accumulaiton of Zn,Pb,Cu,Cr and Ni in sediments between roots of the tagus estuary salt marshes,Portugal[J].Estuarine,Coastal and Shelf Science.1996,42:393-403.
    [156] Wilson J O, Buchsbaum R, Valiela I.Decomposition in salt marsh ecosystems: phenolic dynamics during decay of Spartirta alterniflora [J]. Marine Ecology Progress Series 1986,29: 177-187.
    [157] Davis S E, Corronado-IViolina C, Childers D LTemporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades [J]. Aquatic Botany, 2003,75:199-215.
    [158] Odum W E, Kirk W, Zieman J C. Non-protein nitrogen compounds associated with particles of vascular plant detritus [J]. Oikos ,1979,32: 363-367.
    [159] Marinucci A C. Carbon and nitrogen fluxes during decomposition of Spartina alterniflora in a flow-through percolator [J]. Biological Bulletin, 1982,163:54-69.
    [160] Castro P, Freitas H. Furgal biomass and decomposition in Spartina maritimea in the Mondego salt marsh (Portugal) [J]. Hydrobiologia , 2000,428: 171-177.
    [161] Pozo J, Colino R. Decomposition processes of Spartina maritima in a salt mash of the Basque country [J]. Hydrobiologia, 1992, 231: 165-175.
    [162] Mfilinge P L, Atta N, Tsuchiya M. Nutrient dynamics and leaf litter decomposition in a subtropical mangrove forest at Oura Bay, Okinawa [J]. Japan. Trees, 2002,16: 172-180.
    [163] Mathews C P, Kowalczewski A. The disappearance of leaf litter and its contribution to production in the River Thames [J]. Journal of Ecology, 1968,57:543-552.
    [164] Melillo J M, Naiman R J, Aber J D , Eshleman K N. The influence of substrate quality and stream size on wood decomposition dynamics [J]. Oecologia,1983,58: 281-285.
    [165] Heal O W, Flanagan P W, French D D, MacLean Jr S F. Decomposition and accumulation of organic matter [M]. In Bliss, L. C, Heal O.and Moore, J. J eds. Tundra ecosystems: A comparative analysis. IBP 25. Cambridge Univ. Press Cambridge, England. 1981. 587-633.
    [166] Benner R, Newell S Y, MacCubbin A E. Relative contributions of bacteria and fungi to rates of degradation of lingocellulosic detritus in slat-marsh sediments [J]. Applied Environment Microbiology, 1984,48: 36-40.
    [167] Melillo J M, Naiman R J, Aber J D. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams [J]. Bulletin Marine Science, 1984, 35: 341-356.
    [168] Willcock J, Magan N. Impact of environmental factors on fungal respiration and dry matter losses in wheat straw [J]. Journal of Stored Products Research ,2001,37:35-45.
    [169] Odum E P, De La Cruz A A. Particulate organic detritus in a Georgia salt marsh-estuarine ecosystem [M], in Estuaries, edited by G H. Lauff. 383-388, Pub. No. 83, Amer. Assoc. Adv. Sci., Washington, 1967.
    [170] Heinle D R, Flemer D A. Flows of materials between poorly flooded tidal marshes and an estuary [J]. Marine Biology ,1976,35: 359-373.
    [171] Happ G, Gosselink J G, Day J R. The seasonal distribution of organic carbon in a Louisiana.Estuarine[J]. Coastal and Shelf Science ,1977, 5:695-705.
    [172] Chrzanowski T H, Stevenson L H, Spurrier J D. Transport of particulate organic carbon through the North Inlet ecosystem [J]. Marine Ecology Progress Series , 1982,7: 231-245.
    [173] Smith C J, Delaune R D, Patrick W H. Carbon dioxide emission and carbon accumulation in coastal wetlands [J]. Estuarine, Coastal and Shelf Science, 1983,17: 21-30.
    [174] Hemminga M A, Klap V A, Soelen J V , et al. Effect of salt marsh inundation on estuarine particulate organic matter characteristics [J]. Marine Ecology Progress Series.1993,99: 153-161.
    [175] Pickra J C, Odum W E. Benthic detritus in a salt marsh tidal creek in Estuarine Processes [M].Vol. II, edited by Wiley, M. L.,Academic Press, New York, 1976, 280-292.
    [176] Nixon S W. Between coastal marshes and the coastal waters-a review of twenty years of speculation and research on role of salt marshes in estuarine productivity and water chemistry [M]. In: Hamilton, P.,McDonald,K.B.(Eds.),Estuarine and Wetland Processes with Emphasis on Modeling.Plenum Fress.New York,1980,437.
    [177]段毅,文启彬,罗斌杰.沼泽沉积物中单体正构烷烃碳同位素研究[J].科学通报,1995.40(19):1791-1794.
    [178]高建华,欧维新,杨桂山.潮滩湿地N,P生物地球化学过程研究[J].湿地科学,2004(9):220-227.
    [179]段毅.甘南沼泽泥炭中五环三萜酮系列化合物的检出[J].科学通报,2001,46(11):960-962.
    [180]段毅.甘南沼泽沉积脂类生物标志化合物的组成特征[J].地球化学,2002,31(6):525-531.
    [181]林庆华,洪业汤,朱咏煊,等.中国典型泥炭区现代植物的碳、氧同位素组成及在古环境研究中的意义[J].矿物岩石地球化学通报,2001,20(2):93-97。
    [182]高建华,杨桂山,欧维新,苏北潮滩湿地不同生态带有机质来源辨析与定量估算[J].环境科学,2005,26(6):51-56.
    [183]刘敏,侯立军,许世远,等.长江口潮滩有机质来源的C、N稳定同位素示踪[J].地理学报,2004,59(6),918-926
    [184]张文菊,彭佩钦,童成立,等.洞庭湖湿地有机碳垂直分布与组成特征[J].环境科学,2005,5:56-60.
    [185]白军红,邓伟,朱颜明,等.湿地土壤有机质和全氮含量分布特征对比研究以向海与科尔沁自然保护区为例[J].地理科学,2002,4:232-237.
    [186]温远光.广西英罗港5种红树植物群落的生物量和生产力[J].广西科学,1999,6(2):142-147.
    [187]刘景春,严重玲.福建漳江口红树林湿地沉积物中四种重金属的空间分布特征[J].亚热带植物科学,2006,35(4):1-5.
    [188]咎启杰,王勇军,工伯荪,张炜银.深圳福田红树林无瓣海桑+海桑群落钙镁钠的累积和循环[J].福建林业科技,2002,29(1):1-5.
    [189]郑逢中,卢昌义,郑文教,等.福建九龙江口秋茄红树林凋落物季节动态及落叶能量季节流[J].厦门大学学报(自然科学版),2000,39(5):693-697.
    [190]范航清,林鹏.红树植物秋茄落叶分解碎屑的有效能研究[J].植物学报,1996,38(2):142-149.
    [191]林鹏,卢昌义,林光辉,等.九龙江红树林研究1.秋茄群落的生物量和生产力[J].厦门大学报(自然科学版),1985,24(4):508-514.
    [192]张瑜斌,庄铁诚,杨志伟,等.海南东寨港红树林土壤微生物初探.生态学杂志,2001,20(1):63-64;
    [193]林鹏,王良睦,郑文教.福建和溪亚热带雨林地表微生物的数量动态[J].热带亚热带植物学报,1997,5(1):33-38.
    [194]郑文教,林鹏,薛雄志,等.西红海榄红树林C.H.N的动态研究.应用生态学报,1995,6(1):17-22
    [195]李宝才,董玉莲,李超,等.秋茄和榕树叶片中正构烷烃分布和单体化合物δ~(13)C值及其光合作用,热带海洋学报[J].2003,22(1):62-69.
    [196]卢昌义,林良牧,汪和海.红树植物叶片中脂肪酸组成及其资源价值[J].厦门大学学报(自然科学版),1997,36(3):454-459.
    [197]Lee S Y.Mangrove out welling- a review[J].Hydrobiologia,1995,295(1-3):203-212.
    [198]Wafar S,Untawale A G,Wafar M.Litterfall and energy flux in a mangrove ecosystem[J].Estuarine,Coastal and Shelf Science,1997,44(1):111-124.
    [199]BouillonlS,Dahdouh-Guebas F,Rao AVVS,Sources of organic carbon in mangrove sediments variability and possible ecological implications[J].Hydrobiologia.2003,495(1):33-39.
    [200]林鹏,福建漳江口红树林湿地自然保护区综合科学考察报告[M],厦门:厦门大学出版社,2001.
    [201]黄传忠,池新钦,吕家云.漳江口自然保护区红树林湿地资源研究[J].中南林业调查规划,2002,21(2):55-57.
    [202]李元跃,吴文林.福建漳江口红树林湿地自然保护区的生物多样性及其保护[J].生态科学,2004,23(2):134-136.
    [203]陈长平,闽粤沿海几个红树林区硅藻的生态分布和6种重金属对底栖硅藻胞外产物的影响[D],厦门大学博士论文,2004.
    [204]谭芳林,黄丽,潘辉,乐通朝,吴秋城.福建漳江口湿地人类活动状况调查[J].湿地科学2006,(4)3:198-203.
    [205]林鹏,尹毅,卢昌义.广西红海榄群落的生物量和生产力[J].厦门大学学报,1992,31(2):199-202.
    [206]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [207]S Bouillona,A V Ramanb,P Daubyc,et al.Carbon and Nitrogen Stable Isotope Ratios of Subtidal Benthic Invertebrates in an Estuarine Mangrove Ecosystem(Andhra Pradesh,India)[J].Estuarine,Coastal and Shelf Science,2002,54:901-913.
    [208]王浩然,陈业材.湖泊沉积物有机碳分析的最优化方法[J].贵州环保科技,1996,4:21-24
    [209]Galois R,Blanchard G,Seguignes M,et al.Spatial distribution of sediment particulate organic matter on two estuarine intertidal mudflats:a comparison between Marennes-Oleron Bay(France) and the Humber Estuary(UK)[J].Continental Shelf Research,2000,20:1199-1217.
    [210]Marchand C,Lallier-Vergès E,Baltzer F.The composition of sedimentary organic matter in relation to the dynamic features of a mangrove-fringed coast in French Guiana[J].Estuarine,Coastal and Shelf Science,2003,56:119-130.
    [211]Willem F.de Boer Biomass dynamics of seagrasses and the role of mangrove and seagrass vegetation as different nutrient sources for an intertidal ecosystem[J].Aquatic Botany,2000,66:225-239.
    [212]Thorsten Dittmar,Rubén JoséLara,Gerhard Kattner.River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters[J].Marine Chemistry 2001,73:253-271.
    [213]Ganeshram R S,Culverl S E,Pedersen T F,et al.Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico:Implications for hydrocarbon preservation[J].Geochimica et Cosmochimica Acta,1999,63:1723-1734.
    [214]T J Tolhurst,M G Chapman.Spatial and temporal variation in the sediment properties of an intertidal mangrove forest:implications for sampling[J].Journal of Experirnental Marine Biology and Ecology,2005,317:213-222.
    [215]M G Chapman,T J Tolhurst.Relationships between benthic macrofauna and biogeochemical properties of sediments at different spatial scales and among different habitats in mangrove forests[J].Journal of Experimental Marine Biology and Ecology 2007,343:96-109.
    [216]谢陈笑,丁振华,高卫强,等.漳漳江口红树林区沉积物中Cu、Zn、Cr 的分布及形态特征[J].厦门大学学报(自然科学版).2005,5:100-104增刊
    [217]Reineck H E,Singh I B.Depositional Sedimentary Environments-With Reference to Terrigenous Clastics[M].Berlin:Springer-Verlag,1973.54-65.
    [218]White J S,Bayley,S E,Curtis P J.Sediment storage of phosphorus in a northern prairie wetland receiving municipal and agro-industrial wastewater.Ecological Engineering,2000,14:127-138.
    [219]Middelburg J,Nieuwenhuize J,Lubberts R K,et al.Organic carbon isotope systematic of coastal marshes.Estuarine,Coastal and Shelf Science,1997,45:681-687.
    [220]L D Lacerdaa,V Ittekkotb,S R Patchineelama.Biogeochemistry of Mangrove Soil Organic Matter:a Comparison Between Rhizophora and Avicennia Soils in South-eastern Brazil[J].EstuarineCoastal and Shelf Science,1995,40:713-720.
    [221]Junli Zhou,Ying Wu,Qinshu Kang,et.al.Spatial variations of carbon,nitrogen,phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China[J].Estuarine,Coastal and Shelf Science 2007,71:47-59.
    [222]Thornton S F,McManus J.Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems[J].Coastal and Shelf Science,1994,3:21-33.
    [223]Mǚller A,Voss M.The palaeoenvironments of coastal lagoons in the southern Baltic Sea Ⅱ.δ~(13)C andδ15N ratios of organic matter-sources and sediments[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1999,145:17-32.
    [224]Prahl F G,Bennett J T,Carpenter R.The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay,Washington[J].Geochimica et Cosmochimica Acta,1980,44:1967-1976.
    [225]Meyers P A.Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter[J].Chemical Geology,1994,144:289- 302.
    [226]Volkman J K,Rohjans D,Rullkotter J,et al.Sources and diagenesis of organic matter in lidal flat sediments from the German Wadden Sea[J].Continental Shelf Research,2000,20:1139-1158.
    [227]Emerson S,Hedges J I.Processes Controlling the Organic Carbon Content of Open Ocean Sediments[J].Paleoceanography,1988,3:621-634.
    [228]Stein R.Accumulation of organic carbon in Marine Sediments [M].Springer- Verlag Berlin 1991,217.
    [229]贾国东,彭平安,傅家谟.珠江口近百年来富营养化加剧的沉积记录[J].第四纪研究,2D02,22(2):158-165.
    [230]Dehairs F,Rao RG,Chandra Mohan P,Raman AV,Marguillier S,Hellings L.Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami-Godavari Delta,Bay of Bengal(India)[J].Hydrobiology,2000,431:225 -41.
    [231]Chen R,Twilley R R.Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary[J].Florida.Estuaries,1999,22:955-970.
    [232]Spiker E C,Hatcher P C.Carbon isotope fractionation of sapropelicorganic matter during early diagenesis.Organic Geochemistry.1984,6:283-290.
    [233]Fourqurean J W,Schrlau J E.Changes in nutrient content and stable isotope ratios of C and N cluring decomposition of seagrasses and mangrove leaves along a nutrient availability gradient in Florida Bay,USA[J].Chemistry and Ecology,2003,19:373-390.
    [234]Alfred N N.Muzuka Jude,P Shunula.Stable isotope compositions of organic carbon and nitrogen of two mangrove stands along the Tanzanian coastal zone[J].Estuarine,Coastal and Shelf Science,2006,66:447-458.
    [235]Gearing J N,The use of stable isotope ratios for tracing the nearshoree off shore exchange of organic matter[M].In:Jansson,B.-O.(Ed.),Lecture Notes on Estuaries Studies,vol.22.Springer-Verlag, Berlin, 1988,69-101.
    [236] McKee K L , Feller I C , Popp M , Wanek W. Mangrove isotopic (δ~(15)N and δ~(13)C) fractionation across a nitrogen vs phosphorus limitation gradient [J]. Ecology, 2002, 83:1065-1075.
    [237] Fry B, Bern A L , Ross M S , Meeder J F. δ~(15)N studies of nitrogen use by red mangrove Rhizophora mangle L. in south Florida [J]. Estuarine, Coastal and Shelf Science, 2000, 50:291-296.
    [238] Peterson B J. Stable isotopes as tracers of organic benthic food webs: a review [J]. Oecologia ,1999,20: 479-497.
    [239] Alongi D M. Coastal Ecosystem Processes [M]. CRC Press, New York, 1997,448.
    [240] Valiela L, Teal J M.The nitrogen budget of a salt marsh ecosystem [J]. Nature, 1979,280: 652-656.
    [241] Vernberg F J. Salt-marsh processes: a review [J]. Environmental Toxicology and Chemistry ,1993, 12: 2167-2182.
    [242] Twilley R R, Lugo A E, Patterson-Zucca C. Litter production and turnover in basin mangrove forests in southwest Florida [J]. Ecology ,1996.67: 670-683.
    [243] Walsh J P, C A Nittrouer. Mangrove-bank sedimentation in a mesotidal environment with large sediment supply, Gulf of Papua [J]. Marine Geology, 2004,208:225-248.
    [244] Twilley R R, Ejdung G, Romare P, Kemp W M. A comparative study of decomposition, oxygen consumption, and nutrient release for selected aquatic plants occuring in an estuarine environment [J]. Oikos ,1986,47: 190-198.
    [245] Benner R , Peele E R , Bahamas. E. Organic matter from Hodson, R.leaves of the Fresh Creek Estuary, Microbial utilization of dissolved Red Mangrove, Rhizophora mangle, in the Estuarine, Coastal and Shelf Science, 1988 ,23: 607 -619 .
    [246] Shultz D , Calder J A. Organic carbon ~(13)C/~(12)C variations in estuarine sediments. Geochimica et Cosmochimica Acta, 1976 ,40: 381-385.
    [247]Liu K K,Kaplan I R.The tropical Pacific as a source of(15)~N-enriched nitrate in seawater off southern California[J].Limnology and Oceanography,1989,34:820-830.
    [248]Wada E,Hattori A.Nitrogen in the Sea:Forms,Abundances,and Rate Processes[M].CRC Press,Boca Raton,1990,224.
    [249]Sch(a|¨)fer P,Ittekkot V.Seasonal variability of ISN in settling particles in the Arabian Sea and its pale geochemical significance[J].Naturwissenschaften,1993,80:511-513.
    [250]Holmes M E,M(u|¨)ller P J,Schneider R R,et al.Spatial variations in euphotic zone nitrate utilization based on 815N in surface sediments[J].Geo -Marine Letters 1998,18:58-55.
    [251]Carpenter E J,Montoya J P,Burns J,et al.Extensive bloom of a N_2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean[J].Marine Ecology Progress Series,1999,185:273- 283.
    [252]Voss M,Dippner J W,Montoya J P.Oxygen-deficient waters of the Eastern Nitrogen isotope patterns in the Tropical North Pacific Ocean[J].Deep-Sea Research 1,2001,48:1905-1921.
    [253]Owens N J P.Variation in the natural abundance of(15)~N in estuarine suspended particulate matter a specific indicator of biological processing[J].Estuarine Coastal and Shelf Science,1985,2:820-825.
    [254]Cifuentes L A,Sharp J T,Fogel M L.Stable carbon and nitrogen isotope biogeocheimistry in the Delaware estuary[J].Limnol.Oceanogr,1988,33(5):1102-1115.
    [255]White D S,Howes B L.Long_term(15)~N_nitrogen retention in the vegetated sediments of a New England salt marsh[J].Limnology and Oceanography,1994,39:1878-1892.
    [256]Benner R,Fogel M L.Sprague E K.Diagenesis of below ground biomass of Spartina alterniflora in salt marsh sediments[J].Limnology and Oceanography,1991,36:1358-1374.
    [257]Ember L.M.,Williams D F,Morris J T.Processes that influence carbonisotope variations in salt marsh sediments[J].Marine Ecology Progress Series,1987.36:33-42.
    [258]Gonneea M E,Paytan A,Herrera-Silveira J A.Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years[J].Esturaine,Coastal and Shelf Science,2004,61:211-227.
    [259]Cloern J E,Canuel E A,Harris D.Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system[J].Limnlo.Oceanogr,2002,43(3):713-729.
    [260]Hedges J I,Clark W A,Quay P D,et al.Compositions and fluxes of particulate organic material in the Amazon River[J].Limnlo.Oceanogr,1986,31:717-738.
    [261]Middelburg J J,Nieuwenhuize J.Carbon and nitrogen stable isotopes in suspended matter and sediments from the Scheldt Estuary[J].Marine Chemistry.1998,60:217-225.
    [262]Sherr E B.Carbon isotope composition of organic sesL On and sediments in a Georgia salt marsh estuary[J].Geochimica et Cosmochimica Acta,1982,46:1227-1232.
    [263]Megens L,Plicht,J van der,et al.Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic in an estuary[J].Organic Geochemistry,2002,33:945-952.
    [264]Mariotti A,Lancelot C,Billen G.Natural isotopic composition of nitrogenas a tracer of origin for suspended organic matter in the Scheldt estuary[J].Geochimica et Cosmochimica Acta,1984,48:549-555.
    [265]张雅芝,陈灿忠,王渊源,等.福建红树林区底栖生物生态研究[J].生态学报,1999,19(6):896-901.
    [266]陈长平,高亚辉,林鹏.福建省福鼎市后屿湾红树林区水体浮游植物群落动态研究[J].厦门大学学报(自然科学版),2005,44(1):118-122.
    [267]吴莹,张经,张再峰,等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J].海洋与湖沼,2002,33(5):546-552.
    [268]张瑜斌,林鹏,庄铁诚.九龙江口红树林土壤微生物的时空分布[J].厦门大学学报(自然科学版)2007,46(4):587-592.
    [269]蒋云霞,郑天凌,田蕴.红树林土壤微生物的研究:过去、现在、未来[J].微生物学报,46(5):848-851.
    [270]Graham M C.A study of caroon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the Forth Estuary,Scotland[J].Estuarine Coastal and Shelf Science,2001,52:375-380.
    [271]Volkman J K,Andrew T.Revill Pru I.et al.Sources of organic matter in sediments from the Ord River in tropical northern Australia [J].Organic Geochemistry,2007,38:1039-1060.
    [272]Xie S C,Evershed R P.Peat molecular fossils recording pale climatic matter in replacement[J].Chinese Science Bulletin,2001,46(20):1749-1752.
    [273]谢树成,姚檀栋,康世昌,等.青藏高原希夏邦马峰地区雪冰有机质的气候与环境意义[J].中国科学(D辑),1999,29(5):457-465.
    [274]王志远,刘占红,易轶,等,不同气候和植物区现代土壤类脂物分子特征及其意义[J].土壤学报,2003,40(6):967-970.
    [275]Francisco J,Gonzalez Vilia,Oliva Polvillo,et al.Biomarker patterns in a time- resolved holocene/terminal Pleistocene sedimentary sequence from the Guadiana river area(SW Portugal/Spain border)[J].Organic Geochemistry,2003,34:1601-1613.
    [276]BLUMERM,GUILLARDRP_,CHASET.Hydrocarbons in marine phytoplankton[J].Mar Biology,1971,8:183-189.
    [277]吴莹,张经.类脂分子标志物在海洋有机地球化学中的研究应用[J].海洋环境科学,2001.20(1):71-77.
    [278]Teschner M,Bosecker K.Chemical reaction and stability of biomarkers and stable isotope during in vitrobiodegradation of petroleum[J].Organic.Geochemistry,1986,10:463-471.
    [279]Heras X,Garrimalt O,Albaiges J,et al.Origin and diagenesis of the organic matter in Miocene fresh water lacustrine phosphate (Cerendya Basin Eastern Pynerees )[J].Organic Geochemistry,1989,14:66-76.
    [280]Matsuda H,Koyama T.Early diagensis of fatty acids in lacustrine sndiments from recent sediments and some source materials[J].Geochimica et Cosmochimica Acta,1977.41:1825-1834.
    [281]Boon A R,Duineveld G C A.Phytopigments and fatty acids as molecular markers for the quality of near bottom particulate organic matter in the North Sea [J]. Journal of Sea Research, 1996, 35(4): 279-291.
    [282] Reitan K L, Rainuzzo J R, Olsen Y. Effect of nutrient limitation on acid and lipid content of marine microalgae [J]. Journal of Phycology, 1994,30:972-979.
    [283] BergeJ P, Gouygou J P, Dubacq J P, et al. Reassessment of lipid composition of the diatom, Skeletonema costatum [J]. Phytochemistry, 1995,39: 1017-1021.
    [284] Bradshaw S A, Ohara S C M, Corner E D S, et al. Effects on dietary lipids of the marine bivalve Scrobicularia plana feeding in different modes [J]. Journal of the Marine Biological Association, U.K. 1991,71 :635-653.
    [285] Farrington J W, Quinn J G. Biogeochemistry of fatty acids in recent sediments from Narrabansett BayRhode Island [J]. Geochimica et Cosmochimica Acta,1973,41:289-296.
    [286] Kaneda T. Fatty Acids in the Genus Bacillus I. Iso- and Anteiso-Fatty Acids as characteristics constituents of lipids in 10 species. Bacterial, 1967,93:894-903.
    [287] Kaneda T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, fuction, and taxonomic significance [J]. Microbiology Review, 1991, 55:288-302.
    [288] Wakeham S G, Beier J A.Fatty acid and sterol biomarkers as indicators of particulate matter source and alteration processes in the Black Sea Deep Sea Research [J]. Part A: Oceanographic Research Papers, 1991 ,38:9435-9685.
    [289] Alongi D M , Christoffersen P , Tirendi F. The influence of forest type on microbial- nutrient relationships in tropical mangrove sediments [J].Journal of Experimental Marine Biology and Ecology, 1993, 171: 203-223.
    [290] Alongi D M .Bacterial productivity and microbial biomass in tropical mangrove sediments [J]. Microbial Ecology,1988.15:59-79.
    [291] Colombo J C,Silverberg N, Gearing J N. Lipid biogeochemistry in the Laurentian Trough-Changes in composition of fatty acids, sterols and aliphatic hydrocarbons during early diagenesis[J].Organic Geochemstry,1997,26(3/4):257-274.
    [292]Gong C,Hollander D J.Differential contribution of bacteria to sedimentary to organic matter in oxic and anoxic environments,Santa Monica Basin,California[J].Orgaric Geochemistry,1997,26(9/10):545-563.
    [293]Junli Zhou,Ying Wu,Jing Znang,et al.Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary[J].China.Chemosphere,2006,65::310-317.
    [294]Leeheer M J,Meyers P A.Comparison of lipid character of sediments from the Great Lakes and the Northwestern Atlantic[J].Organic Geochemistry,1984,7:141 -150.
    [295]朱纯,潘建明,卢冰,启传星.长江、老黄河口及东海陆架沉积有机质物源指标及有机碳的沉积环境[J].海洋学研究,2005,23(3):36-46.
    [296]胡建芳,彭平安,麦碧娴,等.珠江口不同沉积有机质的来源及相对含量[J].热带海洋学报,2005,24(1):15-20.
    [297]Minagawa M.Carbon and nitrogen isotopes of marine of marine organic matter:paleocecanographic implications(in Japanese)[J].Ocean,1995,27:520-524.
    [298]Minoura K,Hoshino K,Nakamura T,et al.Late Pleistocene Holocene paleoproductivity circulation in the Japan Sea:sea-level control on δ~(15)N records of sediment organic material[J].Palaeogeography,Palaeo-climatology,Palaeoecology,1997,135:41-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700