用户名: 密码: 验证码:
鳞翅目昆虫中piggyBac转座子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
piggyBac转座子是典型的DNA转座子,最初的序列在粉纹夜蛾(Trichoplusia ni)细胞系中分离(IFP2)。该转座子目前已经开发成为转基因昆虫中应用最为广泛的载体之一。虽然目前的研究工作已经表明,piggyBac广泛分布于各类生物的基因组中,但由于发生移码突变或者缺失而使绝大多数序列结构不完整,缺乏转座活性。此外,与mariner等其他转座子相比,piggyBac家族转座子的生物学以及分子进化研究仍然比较滞后,这种现状与piggyBac类转座子在转基因昆虫和基因分离、功能分析研究中的重要地位不相称。因此,本文对鳞翅目昆虫的13个科的41种昆虫展开了piggyBac类转座子分布的调查,对夜蛾中发现的转座子进行全长基因克隆,并对克隆获得的全长转座子进行了活性测定和互作亲和性分析,发现piggyBac转座子末端和亚末端反向重复序列都是活性自主转座子必需的元件。
     1鳞翅目昆虫piggyBac转座子的调查
     采用简并引物PCR和Southern点杂交技术筛查了鳞翅目的13个科,41种昆虫中piggyBac因子的分布情况。结果显示,夜蛾科的五种昆虫被检测到内源性piggyBac因子的存在。这五种昆虫分别是小地老虎(Agrotis ypsilon),银纹夜蛾(Argyrogrammaagnata),银锭夜蛾(或称为连纹夜蛾Macdunnoughia crassisigna),斜纹夜蛾(Spodoptera litura),瘦银锭夜蛾(Macdunoughia confusa)。从以上五种昆虫基因组中克隆获得的片断长350bp~380bp,经Blast比对和序列分析,它们彼此之间以及与IFP2序列的相似性均在57%~97%不等。
     2 piggyBac转座子全序列的克隆
     采用反向PCR和ITR PCR技术,从银锭夜蛾,小地老虎和银纹夜蛾三种昆虫中成功克隆到相应的piggyBac转座子全长,分别命名为McrPLE,AyPLE和AaPLE。McrPLE全长2472bp,编码595个氨基酸,与IFP2序列高度相似,一致性达99.5%。AyPLE1.1和AaPLE1.1分别编码完整的598和600个氨基酸的转座酶,两者之间的相似性为79%,它们与IFP2转座酶的相似性分别为59%和62%,属于IFP2中度相似序列。而AyPLE1.2和AaPLE1.2两个转座子序列均积累了较大的变异,不能编码完整转座酶蛋白。此外,AyPLE和AaPLE两类因子含有完全一致的反向末端重复序列,但都不存在亚末端反向重复。
     3 piggyBac转座子基因的系统进化分析
     收集了14种生物的25个piggyBac类似因子的氢基酸序列,利用CLUSTALX1.8和MEGA3.1构建亲缘关系树,进行系统进化分析。结果显示,进化树中piggyBac转座酶大致分为三大支,即CladeⅠ,CladeⅡ和CladeⅢ。这三大支中都既包含昆虫又包括哺乳动物的piggyBac因子。本文所克隆的McrPLE,AyPLE1.1和AaPLE1.1都出现在CladeⅠ中:McrPLE毗邻IFP2;AyPLE1.1,AaPLE1.1以及HaPLE1所在小分支与IFP2序列亲缘关系最为接近,靴值高达100%。根据以上的进化分析结果以及转座子序列结构特征推断,AyPLE1.1,AaPLE1.1以及HaPLE1因子很可能是同一类新发现的piggyBac亚家族成员。此外,进化树信息还显示不但在不同生物中可含有高度相似的piggyBac因子,而且转座子序列与宿主进化关系并不一致。以上结果揭示:piggyBac转座子的进化不仅仅遵循垂直遗传的规律,而且存在着生殖隔离物种间的水平转移机制。
     4三个piggyBac类似因子转座活性分析
     在果蝇S2细胞中建立起转座子活性检测系统,研究了piggyBac类似因子McrPLE,AaPLE1.1和AyPLE1.1的功能。结果表明,McrPLE不但能够在细胞中精确的剪切,而且能够准确地将KOα片段插入Target载体上的TTAA特异性位点。McrPLE因子的28个转座事件分布于Target载体上可插入位点的85位,101位,209位,363位,491位,603位,945位,992位和1863位,表现出插入位点的非特异性。AyPLE1.1的转座酶不能识别缺少亚末端重复序列的pHa[KOα]Donor载体,但可以准确剪切和转座另一个加入IFP2的亚末端反向重复的pHB[KOα]Donor载体。结果表明,AyPLE1.1转座酶是一个有功能的蛋白,并且亚末端反向重复序列在转座酶识别以及剪切反应中起着重要作用,一旦缺失就会严重影响转座子的功能。AaPLE1.1因子利用本研究采用的方法没有检测到活性检,还有待进一步研究。
     5 piggyBac因子相互作用初探
     利用果蝇S2细胞转化系统,研究了两类活性因子IFP2,McrPLE和AyPLE1.1之间互相识别和作用的关系。结果显示,两类转座酶表现出很强的专一性,均只能识别各自的反向末端重复序列。根据该研究结果推测,反向末端重复序列很可能是决定转座酶识别和作用专一性的重要序列,而亚末端反向重复则似乎没有种类的特异性。在剪切实验阴性对照中,偶然地发现pHB[KOα]Donor载体单独转染果蝇细胞48小时后能检测到不精确地剪切活动,该结果暗示着果蝇S2细胞中的某个未知因子能够与piggyBac转座子载体互相作用,并有待进一步的实验验证分析,对piggyBac转座子的转基因安全性做出评估和鉴定。
     综上所述,本研究调查了鳞翅目中41种昆虫内源性piggyBac转座子的分布情况,分离到一个IFP2高度相似的自主活性因子McrPLE,和一个编码活性转座酶的非自主因子AyPLE1.1。转座子互作研究表明,piggyBac转座子的末端和亚末端反向重复序列都是构成自主活性转座子的必要元件,其中末端反向重复很可能决定着转座酶识别和作用的专一性,而亚末端反向重复序列似乎没有种类的特异性。
     本文探索了在未知基因组生物中分离piggyBac转座子的方法,为其他生物中克隆转座子提供了可借鉴的手段;本研究深入了解了鳞翅目昆虫内源piggyBac转座子的分布,分子进化并探讨了内源性piggyBac转座子和外源IFP2载体的相互作用。本文研究成果为更好地设计piggyBac转基因载体以及为piggyBac载体的生物风险评估提供了理论依据,也为构建具有自主知识产权的昆虫转基因系统奠定了坚实的基础。
PiggyBac is a kind of classⅡtransposable elements,and its first sequence(IFP2) was originally isolated from a cell line of Trichoplusia ni.This piggyBac transposon has been modified and widely used as an effective gene-transfer vector to transform the germ-line of more than a dozen species of insects spanning five different orders.Recently,it was reported that piggyBac also efficiently transposes in vertebrate embryos and cell lines. Actually,previous studies had revealed that piggyBac-like elements(PLEs) were widespread in a variety of organisms.However,among all of these hundreds of PLEs recovered,few were found active or even with intact structure.Furthermore,knowledge of the biological characteristics and evolutionary history of piggyBac elements is still limited.
     This work focused on cloning new intact and potential functional PLEs sequences from lepidopteran insects where the active piggyBac was originally found.And a naturally automobile McrPLE element was isolated,which belongs to the highly conserved IFP2 class.Another moderate related IFP2 sequence amplified was AyPLE1.1,which encoding a functional transposase.Cross-mobility assay showed that the sub-inverted terminal repeat sequence was essential for the transposase recognition,while the inverted terminal repeat determines the speciality of a functional transposase.
     1 Investigation piggyBac-like element in lepidopteran insects
     With nested degenerate PCR,41 lepidopteran insect species spanning thirteen different families have been surveyed for the presence of endogenous PLEs.Only in five noctuid species,Argyrogramma agnate,Agrotis ypsilon,Macdunnoughia confuse,M.crassisigna and Spodoptera litura,the degenerate primers successfully amplified target fragments about 350bp~380bp in length.Sequence analysis revealed these partial fragments sharing 57-97%identities with each other and with IFP2.
     The southern dot blot analysis using degenerate PCR fragments as probes showed clear hybridization signals,confirming the presence of endogenous piggyBac-like element in the genome in five noctuid species.
     2 Cloning of full-length PLEs
     With inverse PCR and ITR PCR,the full length of piggyBac-like element in M. crassisigna,A.ypsilon and A.agnate were cloned and designated as McrPLE,AyPLE and AaPLE respectively.McrPLE is 2472 bp in length with a single open reading frame(ORF) encoding for a transposase of 595 amino acid residues.It shares 99.5%identity with active IFP2 element,and belongs to highly conserved IFP2 class.AyPLE1.1 and AaPLE1.1 encode transposases of 598 and 600 amino acid residues respectively.Sequence alignment showed that AaPLE1.1 shares 79%similarity with AyPLE1.1.These two elements are moderated related IFP2 sequences,and share the same 16bp inverted terminal repeats.
     3 Phylogenetic analysis
     Phylogenetic tree was made with a total 25 transposase sequences from 14 species, including Daphnia pulicaria,Homo sapiens,Mus musculus and insect species from Lepidoptera,Diptera and Coleoptera.The phylogenetic tree reveals three main clades(Ⅰ,ⅡandⅢ),these three clades contain mixture of elements from both insect and vertebrate. Obviously,the evolutionary pattern within the piggyBac family deviates from the phylogeny of their host species,and the existence of nearly identical piggyBac sequence in reproductively isolated species indicate that horizontal transfer were probably involved in the evolution of PLEs.
     According to the phylogenetic tree,McrPLE formed the common clade with IFP2 sequence,which was strongly supported by 100%bootstrapping value.AaPLE1.1,HaPLE1 and AyPLE1.1 clustered in the other same branch,considering these elements sharing the same ITR sequence,it is likely that they might be members of a new sub-family of piggyBac transposon.
     4 Mobility assay of McrPLE,AyPLE1.1 and AaPLE1.1
     Excision and transposition assays were performed in Drosophila S2 cell culture to verify the activity of PLEs.McrPLE was proved to be an active automobile transposable element and transposition in the characteristic cut-and-paste and TTAA target-site specific manner.The transposase of AyPLE1.1 can't recognize the donor pHa[KOα]which had no sub-terminal repeats,while it successfully mediated the excision and transposition of pHB[KOα]donor plasmid into the target pGDV1,which indicated AyPLE1.1 encoding a functional transposase,and sub-terminal repeat sequences were essential for the functional transposon.Although the element AaPLE1.1 shows no active signal in our mobility assay,it is worthy of further study.
     5 Cross-mobility assay of IFP2,McrPLE and AyPLE1.1
     Cross-mobility assay showed that functional IFP2 transposase couldn't recognized the donor pHB[KOα],and the active AyPLE1.1 couldn't mobilize the pB[KOα]either.The difference between two donor plasmids were the inverted terminal repeat sequences,the ITR of pB[KOα]was 13bp and the ITR of pHB[KOα]was 16bp.It seems the inverted terminal repeats determine the speciality of a functional transposase.
     In the negative control of excision assay,the excision of donor pHB[KOα]in the absence of piggyBac transposase in S2 cell culture led us to propose that S2 cells contains related factors that could cross-mobilized with piggyBac vector.This phenomenon is worthy of further study.
引文
[1]程家安,唐振华.昆虫分子科学(第一版)[M].北京:科学出版社,2001.
    [2]刘同先,康乐.昆虫学研究:进展与展望(第一版)[M].北京:科学出版社,2005.
    [3]屠志坚,李嵩,2005.昆虫转座子及其应用.昆虫学研究:进展与展望(第一版)3-30.
    [4]Abe,H.,Ohbayashi,F.,Shimada,T.et al.1998.A complete full-length non-LTR retrotransposon,BMC1,on the Wchromosome of the silkworm Bombyx mori.Genes Genet.Syst.73:353-358.
    [5]Abe,H.,Ohbayashi,F.,Shimada,T.et al.2000.Molecular structure of a novel gypsy-Ty3-like retrotransposon(Kabuki) and nested retrotransposable elements on the W chromosome of the silkworm Bombyx mori.Mol.Gen.Genet.263:916-924.
    [6]Abe,H.,Ohbayashi,F.,Sugasaki,T.et aL 2001.Two novel Pao-llke retrotransposons(Kamikaze and Yamato) from the silkworm species Bombyx mori and B.mandarina:common structural features of Pao-like elements.Mol.Genet.Genomics.265:375-385.
    [7]Abe,H.,Sugasaki,T.,Kanehara,M.et al.2002.Nested retrotransposons on the W chromosome of the wild silkworm Bombyx mandarina.Insect Mol.Biol.11:307-314.
    [8]Adams,D.S.,Eickbush,T.H.,Herrera,R.J.et al.1986.A highly reiterated family of transcribed oligo(A)-terminated,interspersed DNA elements in the genome of Bombyx mori.J.Mol.Biol.187:465-478.
    [9]Agarwal,M.,Bensaadi,N.,Salvado,J.C.et al.1993.Characterization and genetic organization of full-length copies of a LINE retroposon family dispersed in the genome of Culex pipiens mosquitoes.Insect Biochem.Mol.Biol.23:621-629.
    [10]Allen ML,Handler AM,Berkebile DR,et al.,2004.piggyBac transformation of the New World screwworm,Cochliomyia hominivorax,produces multiple distinct mutant strains.Meal.Vet.Entomol.,18(1):1-9.
    [11]Anzai,T.,Takahashi,H.,Fujiwara,H.2001.Sequence-specific recognition and cleavage of telomeric repeat(TTAGG)(n) by endonuclease of non-long terminal repeat retrotransposon TRAS1.Mol.Cell Biol.21:100-108.
    [12]Aparicio S,Chapman J,Stupka E,Putnam N,Chia JM,Dehal P,Christo Vels A,Rash S,Hoon S,Smit A,Gelpke MD,Roach J,Oh T,Ho IY,Wong M,Detter C,Verhoef F,Predki P,Tay A,Lucas S,Richardson P,Smith SF,Clark MS,Edwards YJ,Doggett N,Zharkikh A,Tavtigian SV,Pruss D,Barnstead M,Evans C,Baden H,Powell J,Glusman G,Rowen L,Hood L,Tan YH,Elgar G,Hawkins T,Venkatesh B,Rokhsar D,Brenner S.2002.Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes.Science 297:1301-1310.
    [13] Arends, H. M., Jehle, J. A. 2002. Homologous recombination between the inverted terminal repeats of defective transposon TCp3. 2 causes an inversion in the genome of Cydia pomonella granulovirus. J. Gen. Virol. 83:1573-1578.
    [14] Arkhipova IR, Meselson M. 2005 Diverse DNA transposons in rotifers of the class Bdelloidea.Proc Natl Acad Sci USA. 102(33):l 1781 - 11786
    
    [15] Ashburner, M., 1995. Medfly Transformed-Official! Science 270,1941-1942.
    [16] Bartolome, C, Maside, X., Charlesworth, B. 2002. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol. Biol. Evol. 19: 926-937.
    [17] Barry EG, Witherspoon DJ, Lampe DJ, 2004. A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famarl amplified from the genome of the earwig, Forficula auricularia.Genetics, 166(2):823-833.
    [18] Beeman, R. W., Thomson, M. S., Clark, J. M. et al. 1996. Woot, an active gypsy-class retrotransposon in the flour beetle, Tribolium castaneum, is associated with a recent mutation.Genetics. 143:417-426.
    [19] Bensaadi-Merchermek, N., Cagnon, C, Desmons, I. et al. 1997. CM-gag, a transposable-like element reiterated in the genome of Culex pipiens mosquitoes, contains only a gag gene, Genetica.100:141-148.
    [20] Berghammer, A.J., Klingler, M., Wimmer, E.A., 1999. A universal marker for transgenic insects.Nature 402, 370-371.
    [21] Bernstein, M., Lersch, R. A., Subrahmanyan, L. et al. 1995. Transposon insertions causing sex-lethal activity in Drosophila melanogaster affect Sx1 sex-specific transcript splicing. Genetics.139:631-648.
    [22] Besansky, N. J., Mukabayire, O., Bedell, J. A. et al. 1996. Pegasus, a small terminal inverted repeat transposable element found in the white gene of Anopheles gambiae. Genetica. 98:119-129.
    [23] Bharath, B., Douglas, A.S., Malcolm, J.F., John, H.A., 2005. High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. Proc. Natl. Acad. Sci.USA. 102,16391-16396.
    [24] Biedler, J., Tu, Z. 2003. Non-LTR retrotransposons in the African malaria mosquito, Anopheles gambiae: unprecedenteddiversity and evidence of recent activity. Mol. Biol. Evol. in press.
    [25] Blackman, R.K., Gelbart, W.M., 1989. The transposable element hobo of Drosophila melanogaster. In: Berg, D.E., Howe, M.M. (Eds.), Mobile DNA. American Society for Microbiology, Washington, DC, pp. 523-525.
    [26] Blackman, R.K., Macy, M., Koehler, D., Grimaila, R., Gelbart, W.M., 1989. Identification of a fully functional hobo transposable element and its use for germ-line transformation of Drosophila.EMBO J. 8,211-217.
    [27] Blinov, A. G., Sobanov, Y. V., Gaidamakova, E. K. et al. 1991. MEC: a transposable element from Chironomus thummi (Diptera). Mol. Gen. Genet. 229: 152-154.
    [28] Blinov, A. G., Sobanov, Y. V., Scherbik, S. V. et al. 1997. The Chironomus (Camptochironomus) tentans genome contains two non-LTR retrotransposons. Genome. 40:143-150.
    [29] Bonizzoni, M., Gomulski, L.M., Malacrida, A.R., Capy, P., Gasperi, G., 2007. Highly similar piggyBac transposase-like sequences from various Bactrocera (Diptera, Tephritidae) species. Insect Mol. Biol. 16, 645-650.
    [30] Bradfield, J. Y., Locke, J., Wyatt, G. R. 1985. An ubiquitous interspersed DNA sequence family in an insect. DNA. 4:357-363.
    [31] Braquart, C, Royer, V., Bouhin, H. 1999. DEC: a new miniature inverted-repeat transposable element from the genome of the beetle Tenebrio molitor. Insect Mol. Biol. 8:571-574.
    [32] Bucheton, A., 1995. The relationship between the flamenco gene and gypsy in tame a retrovirus.Trends Genet. 11:349-353.
    [33] Calvi, B. R., Hong, T. J., Findley, S. D. et al. 1991. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell. 66:465-471.
    [34] Capy P, Langin T, Bigot Y, Brunet F, Daboussi MJ, Periquet G, David JR, Hartl DL. 1994.Horizontal transmission versus ancient origin: mariner in the witness box. Genetica. 93:161-170.
    [35] Cary, L. C, Goebel, M., Corsaro, B. G. et al. 1989. Transposon mutagenesis of baculoviruses:analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology. 172:156-169.
    [36] Catteruccia, F., Nolan, T., Loukeris, T.G., Blass, C., Savakis, C., Kafatos, F.C., Crisanti, A.,2000b. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405,959-962.
    [37] Clark, J.B., Maddison, W.P., and Kidwell, M.G., 1994. Phylogenetic analysis supports horizontal transfer of P transposable elements. Mol Biol Evol 11, 40-50.
    [38] Claudianos, C, Brownlie, J., Russell, R. et al. 2002. maT - a clade of transposons intermediate between mariner and Tcl. Mol. Biol. Evol. 19: 2101-2109.
    [39] Coates, C. J., Johnson, K. N., Perkins, H. D. et al. 1996. The hermit transposable element of the Australian sheep blowfly, Lucilia cuprina, belongs to the hAT family of transposable elements.Genetica. 97:23-31.
    [40] Coates, C.J., Jasinskiene, N., Miyashiro, L., James, A.A., 1998. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 95,3742-3751.
    [41] Cockburn, A. F., Mitchell, S. E. 1989. Repetitive DNA interspersion patterns in Diptera. Arch.Insect Biochem. Physiol. 10:105-113.
    [42] Couzin, J. 2002. Breakthrough of the year. Small RNAs make big splash. Science. 298:2296-2297.
    [43] Craig, N. 2002. Mobile DNA: an introduction. In:Craig, N., Craigie, R., Gellert, M. et al. Mobile DNA II. Washington D. C: Am. Soc. Microbiol. Press. 3-11.
    [44] Daniels, S. B., Chovnick, A., Boussy, I. A. 1990. Distribution of hobo transposable elements in the genus Drosophila . Mol. Biol. Evol. 7:589-606.
    [45] de Almeida, L.M. and Carareto, C.M., 2005. Multiple events of horizontal transfer of the Minos transposable element between Drosophila species. Mol Phylogenet Evol 35, 583-594.
    [46] Ding S., Wu X., Li G., et al., 2005. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473-483.
    [47] Doolittle, W. F., Sapienza, C. 1980. Selfish genes, the phenotype paradigm and genome evolution.Nature. 284: 601-603.
    [48] Drabek D, Zagoraiou L, deWit T, Langeveld A, Roumpaki C, Mamalaki C, Savakis C, Grosveld F.2003 .Transposition of the Drosophila hydei Minos transposon in the mouse germ line.Genomics.81:108-11.
    [49] Dupuy AJ, Fritz S, Largaespada DA. 2001. Transposition and gene disruption in the male germline of the mouse. Genesis. 30:82-88.
    [50] Eickbush, T., Malik, H. 2002. Origins and evolution of retrotransposons. In: Craig, N., Craigie, R.,Gellert, M. et al. Mobile DNA II. Washington D. C. Am. Soc. Microbiol. Press. 1111-1144.
    [51] Elick, T.A., Bauser, C.A., Principe, N.M., Fraser, M.J. Jr., 1996. PCR analysis of insertion site specificity, transcription, and structural uniformity of the Lepidopteran transposable element IFP2 in the TN-368 cell genome. Genetica 97, 127-139.
    [52] Evgen'ev, M. B., Zelentsova, H., Shostak, N. et al. 1997. Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA.94:196-201.
    [53] Fadool, J.M., Haiti, D.L., Dowling, J.E., 1998. Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proc. Natl. Acad. Sci. USA 95, 5182-5186.
    [54] Fagerberg, A. J., Fulton, R. E., Black, W. C. 2001. Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito,Aedes aegypti. Insect Mol. Biol. 10: 225-236.
    [55] Felger, I., Hunt, J. A. 1992. A non-LTR retrotransposon from the Hawaiian Drosophila : the LOA element. Genetica. 85:119-130.
    [56] Feschotte, C, Fourrier, N., Desmons, I. et al. 2001. Birth of a retroposon: the Twin SINE family from the vector mosquito Culex pipiens may have originated from a dimeric tRNA precursor. Mol.Biol. Evol. 18:74-84.
    [57] Feschotte, C, Zhang, X., Wessler, S. 2002. Miniature inverted-repeat transposable elements and their relationship to established DNA transposons. In: Craig, N., Craigie, R., Gellert, M. et al.Mobile DNA II. Washington D. C.:Am. Soc. Microbiol. Press.l 147-1158.
    [58] Franz, G., Savakis, C. 1991. Minos, a new transposable element from Drosophila hydei, is a member of the Tcl-like family of transposons. Nucleic Acids Res.19: 6646.
    [59] Fraser, M.J., Brusca, J.S., Smith, G.E., Summers, M.D., 1985. Transposon-mediated mutagenesis of a baculovirus. Virology 145, 356-361.
    [60] Fraser, M.J., Ciszczon, T., Elick, T. and Bauser, C., 1996. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera Insect Mol Biol. 5, 141-151.
    
    [61] Fraser, M.J., Smith, G.E., Summers, M.D., 1983. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa-californica and Galleriamellonella nuclear polyhedrosis viruses. J. Virol. 47,287-300.
    [62] Friesen, P. D., Nissen, M. S. 1990. Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol. Cell Biol. 10: 3067-3077.
    [63] Fischer SE, Wienholds E, Plasterk RH. 2001. Regulated transposition of a fish transposon in the mouse germ line. Proc Natl Acad Sci U S A. 98:6759-6764.
    [64] Fulton, R. E., Salasek, M. L., DuTeau, N. M. et al. 2001. SSCP analysis of cDNA markers provides a dense linkage map of the Aedes aegypti genome. Genetics, 158: 715-726.
    [65] Gale, K. R. 1997. Characterization of the mosquito, Aedes aegypti, at the molecular level of genetics. Univ. Liverpool.
    [66] Garel, A., Nony, P., Prudhomme, J. C. 1994. Structural features of mag, a gypsy-like retrotransposon of Bombyx mori, with unusual short terminal repeats. Genetica.93:125-137.
    [67] Garner, K. J., Slavicek, J. M. 1999. Identification of a non-LTR retrotransposon from the gypsy moth. Insect Mol. Biol. 8: 231-242.
    [68]Garza,D.,Medhora,M.,Koga,A.,Hartl,D.L.,1991.Introduction of the transposable element mariner into the germline of Drosophila melanogaster.Genetics 128,303-310.
    [69]Gomulski,L.M.,Torti,C.,Bonizzoni,M.et al.2001.A new basal subfamily of mariner elements in Ceratitis rosa and other tephritid flies.J.Mol.Evol.53:597-606.
    [70]Gueiros-Filho,F.J.,Beverley,S.M.,1997.Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania.Science 276,1716-1719.
    [71]Hammond,S.M..,Bernstein,E.,Beach,D.et al.2000.An RMA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells.Nature.404:293-296.
    [72]Handler A.M.,2002.Use of the piggyBac transposon for germ line transformation of insects.Insect Biochem.Mol.Biol.32:1211-1220.
    [73]Handler,A.M.,McCombs,S.D.2000.The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome.Insect Mol.Biol.9:605-612.
    [74]Handler,A.M.,2001.A current perspective on insect gene transfer.Insect Biochem.Mol.Biol.31,111-128.
    [75]Handler,A.M.,Gomez,S.P.,1997,A new hobo,Activator,Tam3 transposable element,hopper,from Bactrocera dorsalis is distantly related to hobo and Ac.Gene 185,133-135.
    [76]Handler,A.M.,Harrell,R.A.,1999.Germline transformation of Drosophila melanogaster with the piggyBac transposon vector.Insect Mol.Biol.8,449-458.
    [77]Handler,A.M.,Harrell,R.A.,2001a.Transformation of the Caribbean fruit fly with a piggyBac transposon vector marked with polyubiquitin-regulated GFP.Insect.Biochem.Mol.Biol.31,199-205.
    [78]Handler,A.M.,Harrell,R.A.,200lb.Polyubiquitin-regulated DsRed marker for transgenic insects.Biotechniques 31,820-828.
    [79]Handler,A.M.,McCombs,S.D.,2000.The piggyBac transposon mediates germ-line transformation In the Oriental fruit fly and closely related elements exist in its genome.Insect Mol.Biol.9,605-612.
    [80]Handler,A.M.,McCombs,S.D.,Fraser,M.J.,Saul,S.H.,1998.The lepidopteran transposon vectorm,piggyBac,mediates germline transformation in the Mediterranean fruitfly.Proc.Natl.Acad.Sci.USA 95,7520-7525.
    [81]Hartl,D.L.,Lozovskaya,E.R.,Nurminsky,D.I.,Lobe,A.R..,1997.What restricts the activity of mariner-like transposable elements.Trends Genet.13,197-201.
    [82]Haymer,D.S,Marsh,J.L.1986.Germ line and somatic instability of a white mutation in Drosophila mauritiana due to a transposable genetic element. Dev Genet.;6:281-91.
    [83] Hediger, M., Niessen, M., Wimmer, E.A., Du¨bendorfer, A., Bopp, D., 2001. Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol. Biol. 10, 113-119.
    [84] Hill, S. R., Leung, S. S., Quercia, N. L. et al. 2001. Ikirara insertions reveal five new Anopheles gambiae transposable elements in islands of repetitious sequence. J. Mol. Evol. 52:215-231.
    [85] Hikosaka, A., Kobayashi, T., Saito, Y., Kawahara, A., 2007. Evolution of the Xenopus piggyBac Transposon Family TxpB: Domesticated and Untamed Strategies of Transposon Subfamilies. Mol.Biol. Evol. 24:2648-2656.
    [86] Holt, R. A., Subramanian, G. M., Halpern, A. et al. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 298:129-149.
    [87] Holyoake, A. J., Kidwell, M. G. 2003. Vege and Mar: two novel hAT MITE families from Drosophila willistoni. Mol. Biol. Evol. 20: 63-167.
    [88] Horie K, Kuroiwa A, Ikawa M, Okabe M, Kondoh G, Matsuda Y, Takeda J. 2001.Efficient chromosomal transposition of a Tcl/mariner- like transposon Sleeping Beauty in mice. Proc Natl Acad Sci U S A. 98:9191-6919.
    [89] Jacobson, J. W., Medhora, M. M., Haiti, D. L. 1986. Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl. Acad. Sci. USA. 83: 8684-8688.
    [90] Jasinskiene, N., Coates, C.J., Benedict, M.Q., Cornel, A.J., Rafferty,C.S., James, A.A., Collins,F.H., 1998. Stable transposon mediated transformation of the yellow fever mosquito, Aedes aegypti, using the Hermes element from the housefly. Proc. Natl. Acad. Sci. USA. 95:3743-3747.
    [91] Jasinskiene, N., Coates, C. J., James, A. A. 2000. Structure of hermes integrations in the germline of the yellow fever mosquito, Aedes aegypti. Insect Mol. Biol. 9:11-18.
    [92] Jiang,R.H., Dawe,A.L., Weide,R., van Staveren,M., Peters,S., Nuss,D.L. and Govers,F.2005.Elicitin genes in Phytophthora infestans are clustered and interspersed with various transposon-like elements. Mol. Genet. Genomics. 273:20-32.
    [93] Kaminker; J. S., Bergman, C. M., Kronmiller, B. et al. 2002. The transposable elements of the Drosophila melanogaster genomics perspective. Genome Biol. 3: Research 0084.1-0084.20.
    [94] Kapitonov, V. V., Jurka, J. 2002. Looperl_DM, a family of Looper/PiggyBac DNA transposons in D. melanogaster. Repbase Reps. 2:6.
    [95] Kapitonov, V. V., Jurka, J. 2003a. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc. Natl. Acad. Sci. USA. 100:6569-6574.
    [96] Kapitonov, V. V., Jurka, J. 2003b. A Novel Class of SINE Elements Derived from 5S rRNA. Mol. Biol. Evol. 20:694-702.
    [97] Kawakami, K., and Noda T, 2004. Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics, 166: 895-899.
    [98] Kazazian JrHH, 2004. Mobile elements: drivers of genome evolution. Science, 303: 1626-1632.
    [99] Ke, Z., Grossman, G. L., Cornel, A. J. et al. 1996. Quetzal: a transposon of the Tcl family in the mosquito Anopheles albimanus. Genetica. 98:141-147.
    [100] Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. et al. 1999. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell. 99:133-141.
    [101] Kidwell, M. G. 1977. Reciprocal differences in female recombination associated with dysgenesis in Drosophila melanogaster. Genet Res. 30:77-88.
    [102] Kidwell, M. G., Lisch, D. R. 2002. Transposable elements as sources of genomic variation. In:Craig, N., Craigie, R., Gellert, M., et al. Mobile DNA II. Washington D.C. : Am. Soc. Microbiol.Press. 59-90.
    [103] Kumar, S., Tamura, K., and Nei, M., 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5, 150-163.
    [104] Kumaresan G, Mathavan S. 2004. Molecular diversity and phylogenetic analysis of mariner-like transposons in the genome of the silkworm Bombyx mori. Insect Mot Biol. 13:259-71.
    [105] Labrador, M., Corces, V. 2002. Interactions between transposable elements and the host genome.In: Craig, N.,Craigie, R., Gellert, M. et al. Mobile DNA II. Washington D. C. : Am. Soc.Microbiol. Press. 1008-1023.
    [106] Lampe DJ, Churchill ME, Robertson HM. 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15:5470-5479.
    [107] Lampe, D. J., Willis, J. H.1994. Characterization of a cDNA and gene encoding a cuticular protein from rigid cuticles of the giant silkmoth, Hyalophora cecropia. Insect Biochem. Mol. Biol. 24:419-435.
    [108] Langin T, Capy P, Daboussi MJ. 1995.The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet.246:19-28.
    [109] Lee, S. H., Clark, J. B., Kidwell, M. G. 1999. AP element-homologous sequence in the house fly,Musca domestica. Insect Mol. Biol. 8:491-500.
    [110] Liao, C., Rovira, C, He, H. et al. 1998. Site-specific insertion of a SINE-like element, Cp1, into centromeric tandem repeats from Chironomus pallidivittatus. J. Mol. Biol. 280:811-821.
    [111] Lidholm, D.-A., Lohe, A.R., Hartl, D.L., 1993. The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics 134, 859-868.
    [112] Li ,X., Lobo, N., Bauser, C.A., Fraser, MJ Jr.,2001. The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol Genet Genomics 266:190-198.
    [113] Lobo, N., Li, X., Fraser, M.J. Jr, 1999. Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol. Gen. Genet. 261, 803-810.
    [114] Locke, J., Howard, L. T., Aippershach, N. et al. 1999. The characterization of DINE-1, a short,interspersed repetitive element present on chromosome and in the centric heterochromatin of Drosophila melanogaster. Chromosoma.l08:356-366.
    [115] Lohe, A.R., Hartl, D.L., 1996a. Germline transformation of Drosophila virilis with the transposable element mariner. Genetics 143:365-374.
    [116] Loukeris, T.G., Livadaras, I., Arca, B., Zabalou, S., Savakis, C., 1995. Gene transfer into the Medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270,2002-2005.
    [117] Lozovskaya, E.R., Nurminsky, D.I., Hartl, D.L., Sullivan, D.T., 1996. Germline transformation of Drosophila virilis mediated by the transposable element hobo. Genetics 142:173-177.
    [118] Luckhart, S., Rosenberg, R. 1999. Gene structure and polymorphism of an invertebrate nitric oxide synthase gene. Gene. 232:25-34.
    [119] Matuyama, K. and Hartl, D.L., 1991. Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J Mol Evol. 33, 514-524.
    [120] McClintock, B. 1948. Mutable loci in maize. Carnegie Inst. Wash. Year Book. 47: 155-169.
    [121] McClintock, B. 1950. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci.USA. 36: 344-355.
    [122] Medhora M., Maruyama K., and Hartl DL, 1991. Molecular and functional analysis of the mariner mutator element Mosl in Drosophila. Genetics, 128:311-318.
    [123] Michael, J.L., 2001. A family of Tc1-like transposons from the genomes of fishes and frogs:evidence for horizontal transmission. Gene 271, 203-214.
    [124] Mikitani, K., Sugasaki, T., Shimada, T. et al. 2000. The chitinase gene of the silkworm, Bombyx mori, contains a novel Tc-like transposable element. J. Biol. Chem. 275: 37725-37732.
    [125] Miller, D.M., Miller, L.K., 1982. A virus mutant with an insertion of a copia-like transposable element. Nature (London) 299, 562-564.
    [126] Miller, W. J., Nagel, A., Bachmann, J. et al. 2000. Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. Mol. Biol. Evol. 17:1597-1609.
    [127] Misquitta, L., Paterson, B. M. 1999. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad.Sci. USA. 96:1451-1456.
    [128] Mouches, C., Bensaadi, N., Salvado, J. C. 1992. Characterization of a LINE retroposon dispersed in the genome of three non-sibling Aedes mosquito species. Gene. 120:183-190.
    [129] Murata, S., Takasaki, N., Saitoh, M. et al. 1993. Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. Proc. Natl. Acad. Sci. USA. 90:6995-6999.
    [130] Nikaido, M., Rooney, A. P., Okada, N. 1999. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc. Natl. Acad. Sci. USA. 96:10261-10266.
    [131] Nuzhdin, S. V. 1999. Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica. 107:129-137.
    [132] O'Brochta, D.A., Atkinson, P.W., 1996. Transposable elements and gene transformation in non-drosophilids. Insect Biochem. Mol. Biol. 26, 739-753.
    [133] O'Brochta, D.A., Atkinson, P.W., Lehane, M.J., 2000. Transformation of Stomoxys calcitrans with a Hermes gene vector. Insect Mol.Biol. 9, 531-538.
    [134] Ohbayashi, F., Shimada, T., Sugasaki, T. et al. 1998. Molecular structure of the copia-like retrotransposable element Yokozuna on the W chromosome of the silkworm, Bombyx mori.Genes Genet Syst. 73:345-352.
    
    [135] Orgel, L., Crick, F. 1980. Selfish DNA: the ultimate parasite. Nature. 284: 604-607.
    [136] Osada,N., Hirata,M., Tanuma,R., Kusuda,J., Hida,M., Suzuki,Y., Sugano,S., Gojobori,T.,Shen,C.-K.J., Wu,C.I. and Hashimoto,K. 2005. Substitution rate and structural divergence of 5'UTR evolution: comparative analysis between human and cynomolgus monkey cDNAs. Mol.Biol. 22:1976-1982.
    [137] Peloquin, J.J., Thibault, S.T., Staten, R., Miller, T.A., 2000. Germline transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by the piggyBac transposable element. Insect Mol.Biol. 9, 323-333.
    [138] Penton,E.H., Sullender,B.W. and Crease,T.J. 2002. Pokey, a new DNA transposon in Daphnia (Cladocera: Crustacea) J. Mol. Evol. 55: 664-673.
    [139] Perkins, H. D., Howells, A. J. 1992. Genomic sequences with homology to the P element of Drosophila melanogaster occur in the blowfly Lucilia cuprina. Proc. Natl. Acad. Sci. USA. 89:10753-10757.
    [140] Peterson, D. G., Schulze, S. R., Sciara, E. B. et al. 2002. Integration of Cot analysis, DNA cloning,and high-throughput facilitates genome characterization and gene discovery. Genome Res. 12:795-807.
    [141] Petrov, D. A., Aminetzach, Y. T., Davis, J. C. et al. 2003. Size Matters: Non-LTR Retrotransposable Elements and Ectopic Recombination in Drosophila. Mol. Biol. Evol. 20:880-892.
    [142] Pfeifer, T. A., Ring, M., Grigliatti, T. A. 2000. Identification and analysis of Lydia, a LTR retrotransposon from Ly-mantria dispar. Insect Mol. Biol. 9: 349-356.
    [143] Pinkerton, A. C, Whyard, S., Mende, H. A. et al. 1999. The Queensland fruit fly, Bactrocera tryoni, contains multiple members of the hAT family of transposable elements. Insect Mol. Biol. 8:423-434.
    [144] Pritham FJ, Feschotte C, and Wessler SR, 2005. Unexpected diversity and differential success of DNA transposons in four species of entamoeba protozoans. Mol. Biol. Evol, 22: 1751-1763.
    [145] Raphael K.A., Whyard S., Shearman D., et al., 2004. Bactrocera tryoni and closely related pest tephritids-molecular analysis and prospects for transgenic control strategies. Insect Biochem. Mol.Biol. 34:167-176.
    [146] Rizzon, C., Marais, G., Gouy, M. et al. 2002. Recombination rate and the distribution of transposable elements Drosophila melanogaster genome. Genome Res. 12: 400-407.
    [147] Robertson, H. 2002. Evolution of DNA transposons in eukaryotes. In: Craig, N., Craigie, R.,Gellert, M. et al. Mobile DNA II. Washington D. C.: Am. Soc. Microbiol. Press.1093-1110.
    [148] Robertson, H. M., Walden, K.K. 2003. Bmmar6, a second mori subfamily mariner transposon from the Bombyx mori. Insect Mol. Biol. 12:167-171.
    [149] Robertson, H. M.1993.The mariner transposable element is widespread in insects. Nature. 362:241-245.
    [150] Robertson HM, Lampe DJ. 1995. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera.. Mol Biol Evol. 12:850-862.
    [151] Robertson HM, Zumpano KL. 1997. Molecular evolution of an ancient mariner transposon,Hsmar1, in the human genome. Gene. 205:203-217.
    [152] Robinson A.S., Franz G, Atkinson P.W., 2004. Insect transgenesis and its potential role in agriculture and human health. Insect Biochem. Mol. Biol. 34: 113-120.
    [153] Romans, P., Bhattacharyya, R. K., Colavita, A. 1998. Ikirara, a novel transposon family from the malaria vector mosquito, Anopheles gambiae. Insect Mol. 7:1-10.
    [154] Rubin, G.M., Spradling, A.C., 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348-353.
    [155] Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A. 96:1645-1650.
    [156] Sarkar A, Coates CJ, Whyard S, Willhoeft U, Atkinson PW, O'Brochta DA. 1997. The Hermes element from Musca domestica can transpose in four families of cyclorrhaphan flies.Genetica.99:15-29.
    [157] Sarkar A., Sim C, Hong Y.S., et al., 2003. Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences. Mol. Genet. Genomics 270:173-180.
    [158] Sarkar, A., Sengupta, R., Krzywinski, J. et al. 2003. P elements are found in the genomes of nematoceran insects of the genus Anopheles. Insect Biochem. Mol. Biol. 33: 381-387.
    [159] Severson, D. W., Mori, A., Zhang, Y. et al. 1993. Linkage map for Aecles aegypti using restriction fragment length polymorphisms. J. Hered. 84:241-247.
    [160] Shao, H., Qi, Y., Tu, Z. 2001. MsqTc3, a Tc3-like transposon in the yellow fever mosquito Aedes.Insect Mol. Biol. 10:421-425.
    [161] Shao, H., Tu, Z. 2001. Expanding the diversity of the IS630-Tcl-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons.Genetics. 159:1103-1115.
    [162] Scavarda, N.J., Hartl, D.L., 1984. Interspecific DNA transformation in Drosophila. Proc. Natl.Acad. Sci. USA 81:7515-7519.
    [163] Shimamura, M., Yasue, H., Ohshima, K. et al. 1997. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature. 388: 666-670.
    [164] Shinmyo Y, Mito T, Matsushita T, et al., 2004. piggyBac-mediated somatic transformation of the two-spotted cricket, Gryllus bimaculatus.Dev. Growth Differ., 46(4):343-349.
    [165] Stoneking, M., Fontius, J. J., Clifford, S. L. et al. 1997. Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa. Genome Res. 7:1061-1071.
    [166] Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L,Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, BhatNK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ,Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD,Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X,Gibbs RA, Fahey J,E, Ketteman M, Madan A, Rodrigues S, Sanchez A,Whiting M, Madan A,Young AC, Shevchenko Y, BouVard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC,Rodriguez AC, Grimwood J, Schmutz J, Myers RM, ButterWeld YS, Krzywinski MI, Skalska U,Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99(26):16899-16903
    [167] Sun, S. C., Asling, B., Faye, I. 1991. Organization and expression of the immunoresponsive lysozyme gene in the giant silk moth, Hyalophora cecropia. J. Biol. Chem. 266:6644-6649.
    [168] Sundararajan, P., Atkinson, P. W., O'Brochta, D. A. 1999. Transposable element interactions in insects: crossmobi-lization of hobo and Hermes. Insect Mol. Biol. 8:359-368.
    [169] Sun, Z.C., Wu, M., Miller, T.A., Han, Z.J. 2008.piggyBac-like elements in cotton bollworm,Helicoverpa armigera (H(?)bner). Insect Mol. Biol. 1:9-18.
    [170] Tabara, H., Sarkissian, M., Kelly, W. G. et al. 1999. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell. 99:123-132.
    [171] Li, X., M. Noll. 1994. Evolution of distinct developmental function of three Drosophila genes by acquisition of different cis-regulatory regions. Nature. 367:83-87.
    [172] Tamura, T., Thibert, T., Royer, C., Kanda, T., Eappen, A., Kamba, M., Ko(?)moto, N., Thomas,J.-L., Mauchamp, B., Chavancy, G., Shirk, P., Fraser, M., Prud'homme, J.-C., Couble, P., 2000. A piggybac element-derived vector efficiently promotes germ-line transformation in the silkworm Bombyx mori L. Nature Biotech. 18:81-84.
    [173] Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882.
    [174] Tu, Z. 1997. Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA.94:7475-7480.
    [175] Tu, Z. 1999. Genomic and evolutionary analysis of Feilai, a diverse family of highly reiterated SINEs in the yellow fever mosquito, Aedes aegypti. Mol. Biol. Evol. 16:760-772.
    [176] Tu, Z. 2000. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Mol.Biol. Evol. 17:1313-1325.
    [177] Tu, Z. 2001a. Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc. Natl. Acad. Sci. USA. 98:1699-1704.
    [178] Tu, Z. 2001b. Maque, a family of extremely short interspersed repetitive elements:characterization, possible mechanism of transposition, and evolutionary implications. Gene.263:247-253.
    [179] Tu, Z., Isoe, J., Guzova, J. A. 1998. Structural, genomic, and phylogenetic analysis of Lian, a novel family of non-LTR retrotransposons in the yellow fever mosquito, Aedes aegypti. Mol. Biol.Evol. 15: 837-853.
    [180] Tu, Z., Orphanidis, S. P. 2001. Microuli, a family of miniature subterminal inverted-repeat transposable elements (MSITEs): transposition without terminal inverted repeats. Mol. Biol. Evol.18: 893-895.
    [181] Tudor, M., Lobocka, M., Goodell, M. et al. 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232:126-134.
    [182] Wang, J., Ren, X., Miller, T.A., and Park, Y. (2006) piggyBac-like elements in the tobacco budworm, Heliothis virescens (Fabricius). Insect Mol Biol. 15, 435-443.
    [183] Wang J, Du Y, Wang S, Brown SJ, Park Y.2008. Large diversity of the piggyBac-like elements in the genome of Tribolium castaneum. Insect Biochem Mol Biol. 38:490-498.
    [184] Warren, A. M., Hughes, M. A., Crampton, J. M. 1997. Zebedee: a novel copia-Tyl family of transposable elements in the genome of the medically important mosquito Aedes aegypti. Mol.Gen. Genet. 254:505-513.
    [185] Warren, W. D., Atkinson, P. W., O'Brochta, D. A. 1994. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet. Res. 64:87-97.
    [186] Watkins, W. S., Ricker, C. E., Bamshad, M. J. et al. 2001. Patterns of ancestral human diversity:an analysis of Alu-insertion and restriction-site polymorphisms. Am. J. Hum. Genet. 68: 738-752.
    [187] Wobus, U., Baumlein, H., Bogachev, S. S. et al. 1990. A new transposable element in Chironomus thummi'. Mol. Gen. Genet. 222:311-316.
    [188] Xiong, Y., Eickbush, T. H. 1988. The site-specific ribosomal DNA insertion element RIBm belongs to a class of non-long-terminal-repeat retrotransposons. Mol. Cell Biol. 8: 114-123.
    [189] Xiong, Y., Eickbush, T. H. 1993. Dong, a non-long terminal repeat (non-LTR) retrotransposable element from Bombyx mori. Nucleic Acids. Res. 21:1318.
    [190] Xu H.F., Xia Q.Y., Liu C, et al., 2006. Identification and characterization of piggyBac-like elements in the genome of domesticated silkworm, Bombyx mori. Mol. Genet. Genomics.276:31-40.
    [191]Yan, G., Romero-Severson, J., Walton, M. et al. 1999. Population genetics of the yellow fever mosquito in Trinidad: comparisons of amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. Mol. Ecol. 8:951-963.
    [192] York, D. S., Blum, V. M., Low, J. A. et al. 1999. Phylogenetic signals from point mutations and polymorphic Alu insertions. Genetica. 107:163-170.
    [193] Zagoraiou L, Drabek D, Alexaki S, Guy JA, Klinakis AG, Langeveld A, Skavdis G, Mamalaki C,Grosveld F, Savakis C. 2001.In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proc Natl Acad Sci U S A. 98:11474-11478.
    [194] Zhang L, Sankar U, Lampe DJ, Robertson HM, Graham FL. 1998. The Himarl mariner transposase cloned in a recombinant adenovirus vector is functional in mammalian cells. Nucleic Acids Res. 26:3687-3693.
    [195] Zhou, Q., Haymer, D. S. 1997. Molecular structure of yoyo, a gypsy-like retrotransposon from the mediterranean fruit fly, Ceratitis capitata. Genetica. 101:167-178.
    [196] Zimowska G,J, Handler A.M., 2006. Highly conserved piggybac elements in noctuid species of Lepidoptera. Insect Biochem. Mol. Biol. 36: 421-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700