用户名: 密码: 验证码:
蚌埠隆起区花岗岩的年代学和地球化学:对华北克拉通东部构造演化的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以蚌埠隆起区花岗岩为研究对象,利用锆石SHRIMP和LA-ICP-MS U-Pb定年方法,确定了花岗岩的形成时代;利用花岗岩的主量、痕量元素和Sr-Nd-Pb同位素以及继承锆石和锆石Hf同位素的示踪技术,讨论了蚌埠隆起区不同时代花岗岩的成因类型和岩浆源区性质及其花岗岩形成的构造背景。提出了扬子克拉通与华北克拉通在中生代早期的俯冲碰撞是由南东向北西方向发生的,郯庐断裂带在中生代时期可能并不存在巨大的左行平移的认识。这对揭示华北克拉通东部的构造演化具有重要意义。
     锆石U-Pb定年结果表明,蚌埠隆起区花岗岩的形成时代为古元古代(2100 Ma~2200 Ma)、中生代的晚侏罗世(160 Ma)、早白垩世早期(130 Ma)和早白垩世晚期(110 Ma)。古元古代以庄子里、磨盘山正长花岗岩为代表;晚侏罗世以荆山正长花岗岩为代表;早白垩世早期以淮光花岗闪长岩和西庐山、女山正长花岗岩为代表;早白垩世晚期以曹山、锥山二长花岗岩和蚂蚁山正长花岗岩为代表。
     主量、痕量元素和Sr-Nd-Pb同位素以及继承锆石和锆石Hf同位素综合研究表明,(1)古元古代正长花岗岩为“A”型花岗岩,它们的原始岩浆起源于有少量古老地壳物质涉入的新生下地壳的部分熔融,古元古代正长花岗岩形成于伸展环境;(2)中生代花岗岩属于准铝质-弱过铝质岩石,具有“I”型花岗岩的成因特征,其岩浆源区既涉及了遭受超高压变质作用改造的扬子克拉通基底,又涉及了古老的华北克拉通基底。晚侏罗世花岗岩形成于造山后伸展环境,而早白垩世花岗岩形成于强烈的伸展构造背景。
     蚌埠隆起区深部地壳中扬子克拉通基底物质的存在,暗示扬子克拉通与华北克拉通在中生代早期的俯冲碰撞应首先发生在两陆块的东部,并以郯庐断裂带为拼合带由南东向北西方向俯冲。然后,因扬子克拉通(顺时针方向)与华北克拉通的相对旋转造成大别地区的剪刀式闭合与碰撞。郯庐断裂带中南段应为两陆块碰撞的缝合线,郯庐断裂带在中生代时期可能并不存在巨大的左行平移。
This thesis studies the formation time of the granitoids in the Bengbu uplift, the nature of magma sources, and their tectonic setting based on SHRIMP and LA-ICP-MS zircon U-Pb chronology, major- and trace- elements, and Sr-Nd-Pb isotope as well as zircon Hf isotopic geochemistry for these granitoids. These chronological and geochemical data, together with regional tectonic analysis, provide constraints on the petrogenesis of the granitoids in the Bengbu uplift, which is of significant implications for revealing tectonic evolution in the eastern North China Craton (NCC). Main achievements are as follows:
     1. The granitoids in the Bengbu uplift are mainly composed of syenogranite-monzogranite- granodiorite. Zircons from these granitoids display a typical fine-scale oscillatory zoning, implying a magmatic origin. SHRIMP and LA-ICP-MS zircon U-Pb dating results indicate that the granitoids in the Bengbu uplift formed in the Paleoproterozoic (2100 to 2200 Ma) including the Zhuangzili and Mopanshan syenogranite, Late Jurassic (160 Ma) including the Jingshan syenogranite, early stage of the Early Cretaceous (130 Ma) including the Huaiguang granodiorite, Xilushan and Nushan syenogranite, and late stage of the Early Cretaceous (110 Ma) including the Caoshan and Zhuishan monzogranite, Mayishan syenogranite. They were not previously believed as the Neoarchean granitoids.
     2. The granitoids intruded into the country rocks (the Wuhe Complex) and display typical granitic textures. Zircons from them show typical fine-scale oscillatory zoning and high Th/U ratios (0.1 to 1.6). Taken together, it is suggested that they formed from crystallization of magma rather than migmatization.
     3. The Paleoproterozoic granitoids have SiO2=69.65-77.95 %, K2O=4.98-5.17 % and are characterized by enrichment in light rare earth elements (LREEs), Zr, Hf, Rb, Th, U, depletion in heavy REE (HREEs), Ba, Sr, Eu, P and Ti, and obviously negative Eu anomalies. TheirεNd(t) values and Nd two-stage model ages range from -3.4 to +3.2 and from 2.31 to 2.79 Ga, respectively. TheεHf(t) values of zircons and Hf two-stage model ages are between -5.1 and +7.8 and between 2.26 and 2.83 Ga, respectively. Taken together, it is suggested that the primary magma for the Paleoproterozoic granitoids could be derived from partial melting of the Paleoproterzoic and Neoarchean juvenile crust and minor amount of ancient crustal material. Chemically, these Paleoproterozoic granitoids are“A-type”granites, implying that they formed under an extensional tectonic setting.
     4. The Mesozoic granitoids belong chemically to metaluminous-weak peraluminous series and exhibit characteristics of“I-type”granites. They are enriched in SiO2, LREEs, and large ion lithophile elements (LILEs) (Rb, Ba, U, Sr) and depleted in MgO, HREEs, and high field strength elements (HFSEs) (Nb, Ta). The existence of the Neoproterozoic magmatic (700 to 850 Ma) and the early Mesozoic metamorphic (206 to 231 Ma) inherited zircons from the Late Jurassic Jingshan intrusion and Early Cretaceous Nushan and Xilushan intrusions, together with the high initial Pb isotopic ratios [(206Pb/204Pb)t=17.883-17.905>17.8)] of the Nushan granites and their lowεHf(t) values (-16.1 to -18.4) of zircons, suggests that their primary magma could be derived from partial melting of the Yangtze Craton (YC) basement. In contrast, the occurrence of the Paleoproterozoic (2300 to 2500 Ma, 1800 to 1900 Ma) and Paleoarchean (3400 Ma) inherited (captured) zircons for the Huaiguang and Nushan intrusions, together with low initial Pb isotopic ratios [(206Pb/204Pb)t=16.567-16.633)] of the Huaiguang and Caoshan intrusions, and lowεHf(t) values (-21.1 to -28.1) of zircons from Huaiguang, Caoshan, Zhuishan and Mayishan intrusions, indicate that their primary magmas could be dominantly originated from the partial melting of the NCC basement. The generation of primary magma for the Nushan intrusion could also involved in the NCC basement.
     5. Based on association and geochemistry of these Mesozoic granitoids in the Bengbu uplift, it is concluded that that the Late Jurassic granites could form under an post-collsional extensional setting between the YC and the NCC, and that the Early Cretaceous granitoids could formed under an intra-continental extensional environment.
     6. The existence of the YC basement within the lower continental crust of the NCC in the Bengbu area, combined with the discovery of the eclogite xenoliths in the Early Cretaceous adakitic rocks from the Xu-Huai area, the studies on the Mesozoic high-Mg diorites and the peridotite xenoliths, as well as Fangcheng and Feixian basalts in western Shangdong, implies that the subduction and collision of the YC beneath the NCC could firstly happen in the eastern margin of the NCC oriented in a NW direction in the early Mesozoic, then they progressively scissored together as the YC rotated clockwise relative to the NCC. Subduction of the YC beneath the NCC could have taken place along the Tan-Lu fault zone oriented in a NW direction in the Early Mesozoic and that the huge strike-slip of the Tan-Lu fault zone did not occur in the Mesozoic.
引文
1. Amelin Y, Lee DC, Halliday AN. Early-middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 2000, 64: 4205-4225.
    2. Ames L, Tilton GR, Zhou GZ. Timing of collision of the Sino-Korean and Yangtze cratons: U-Pb zircon dating of coesite-bearing eclogites[J]. Geology, 1993, 21(4): 339-342.
    3. Ames L, Zhou GZ, Xiong BC. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, Central China[J]. Tectonics, 1996, 15(2): 472-489.
    4. Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192: 59-79.
    5. Atherton MP, Ghani AA. Slab breakoff: A model for Caledonian, Late granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland[J]. Lithos, 2002, 62: 65-85.
    6. Barbarin B. A reviwe of the relationship berween granitoids types, their origins and their geodynamic environments[J]. Lithos, 1999, 46: 605-626.
    7. Bizzarro M, Simonetti A, Stevenson RK, et al. Hf isotope evidence for a hidden mantle reservoir[J]. Geology, 2002, 30: 711-714.
    8. Black LP. Recent Pb loss in zircon: A natural or laboratory-induced phenomenon[J]? Chemical Geology, 1987, 65: 25-33.
    9. Boynton WV. Cosmochemistry of the rare earth elements: Meteorite studies[C]. In: Henderson P, ed. Rare earth element geochemistry, Elsevier Science Publishing Company Inc. New York, 1984, 63-114.
    10. Chappell BW, White AJR. Tow contrasting granite types[J]. Pacific Geology, 1974, 8: 173-174.
    11. Chavagnac V, Jahn BM. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications[J]. Chemical Geology, 1996, 133: 29-51.
    12. Chavagnac V, Jahn BM, Villa IM, et al. Multichronometric evidence for an in situorigin of the ultrahigh-pressure metamorphic terrane of Dabieshan[J]. China J. Geol. 2001, 109: 633-646.
    13. Chen FK, Siebel W, Satir M. Zircon U-Pb and Pb-isotope fractionation during stepwise HF acid leaching and geochronological implications[J]. Chemical Geology, 2002, 191: 155-164.
    14. Chen JF, Jahn BM. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 1998, 284: 101-133.
    15. Chen JF, Xie Z, Li HM, et al. U-Pb zircon ages for a collisionrelated K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China[J]. Geochem. J., 2003, 37: 35-46.
    16. Cherniak DJ, Watson EB. Pb diffusion in zircon[J]. Chemical Geology, 2000, 172: 5-24.
    17. Chu NC, Taylor RN, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. J. Anal At Spectrom, 2002, 17: 1567-1574.
    18. Chung SL. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu fault with implications for the Eastern plate boundary between North and South China[J]. J. of Geology, 1999, 107: 301-312.
    19. Compston W, Froude DO, Reland TR, et al. The age of (a tiny part of ) the Australian continent[J]. Nature, 1985, 317: 359-360.
    20. Compston W, Pidgeon RT. Jack Hills, evidence of more very old detrital zircons in western Australian[J]. Nature, 1986, 321: 766-769.
    21. Condie KC. Episodic continental growth and supercontinents: A mantle avalanche connection[J]? Earth and Planetary Science Letter, 1998, 163: 97-108.
    22. Condie KC, Des Marais DJ, Abbot D. Precambrian superplumes and supercontinents: A record in black shales, carbon isotopes and paleoclimates[J]. Precambrian Research, 2001, 106: 239-260.
    23. Davis GA, Zheng YD, Wang C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[M]. In: Hendrix MS, Davis GA. Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation. Geological Society of America, Memoir, 2001, 194: 171-198.
    24. Drummond MS, Defant MJ. A model for trondhjemite-tonalitedacite genesis and crustalgrowth via slab melting: Archean to modern comparisons[J]. Journal of Geophysical Research, 1990, 95(B13): 21503-2152l.
    25. Eby, GN. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26: 115-134.
    26. Eby, GN. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644.
    27. Engebretson DC, Cox A, Gordon RG. Relative motions between oceanic and continental plates in the Pacific basin[J]. Geol. Soc. Spec. Paper, 1985, 206: 1-59.
    28. Enkin RJ, Yang ZY, Chen Y, et al. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present[J]. Journal of Geophysical Research, 1992, 97: 13953-13989.
    29. Faure M, Lin W, Sch?rer U, et al. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China)[J]. Lithos, 2003, 70: 213-241.
    30. Feng R, Machado N, Ludden JN. Lead geochronology of zircon by laser probeinductively coupled plasma mass spectrometry (LA-ICP MS)[J]. Geochimica et Cosmochimica Acta, 1993, 35: 3479-3486.
    31. Froude DO, Itreland TR, Kinny PD. Ion microprobe identification of 4, 100-4, 200 Myrold terrestrial zircons[J]. Nature, 1983, 304: 616-618.
    32. Fryer BJ, Jackson SE, Longerich HP. The application of laser ablation microprobe inductively coupled plasmamass spectrometry (LAM-ICP MS) to in situ U-Pb geochronology[J]. Chemical Geology, 1993, 109: 1-8.
    33. Gao S, Rudnick RL, Yuan HL, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432: 892-897.
    34. Gao S, Rudnick RL, Xu WL, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J]. Earth and Planetary Science Letters, 2008, 270: 41-53.
    35. Gebauer D, Grunenfelder M. U-Pb zircon and Rb-Sr whole rock dating of low-grade metasediments, example: Montagne Noir (Southern France)[J]. Contributions to Mineralogy and Petrology, 1976, 59: 13-32.
    36. Gilder SA, Courtillot V. Timing of the North-South China collision from new middle tolate Mesozoic paleomagnetic data from the North China Block[J]. Journal of Geophysical Research, 1997, 102(B8): 17713-17727.
    37. Gilder SA, Leloup PH, Courtillo V, et al. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Trassic to Early Cenozoic paleomagnetic data[J]. Journal of Geophysical Research, 1999, 104: 15365-15390.
    38. Goldstein SL, O Nions RK, Hamilton PJ. A Sm-Nd study of atmospheric dusts and particulates from major river systems[J]. Earth and Planetary Science Letters, 1984, 70: 221-236.
    39. Griffin WL, Wang X, Jackson SE, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61: 237-269.
    40. Griffin WL, Pearson NJ, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICP-MS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2003, 64: 133-147.
    41. Hacker BR, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China[J]. Earth and Planetary Science Letters, 1998, 161: 215-230.
    42. Hacker BR, Ratschbacher L, Webb L, et al. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing[J]. Journal of Geophysical Research, 2000, B105: 13339-13364.
    43. Harris NBW, Pearce JA, Tindle AG. Geochemical characteristics of collision-zone magmatism[J]. In: Coward MP, Reis AC (Eds.). Collision tectonics. Spec. Publ. Grol. Soc. Lond., 1986, 19: 67-71.
    44. Harrison TM, Aleinikoff JN, Compston W. Observations and controls on the occurrence of inherited zircon in concord-type granitoids, NewHampshire[J]. Geochmica et Cosmochimica Acta, 1987, 52: 2549-2558.
    45. Huang J, Zheng YF, Zhao ZF, et al. Melting of subducted continent: Element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen[J]. Chemical Geology, 2006, 229: 227-256.
    46. Ishihara S. The Magnetite series and ilmenite-seties granitic rocks[J]. Mining Geol., 1977, 27: 293-305.
    47. Isley AE, Abbot DH. Plume-related mafic volcanism and the deposition of banded iron formation[J]. Journal of Geophysical Research, 1999, 104: 461-477.
    48. Jahn BM, Auvray B, Shen QH, et al. Archean crustal evolution in China: The Taishan complex, and evidence for Juvenile crustal addition from long-term depleted mantle[J]. Precambrian Research, 1988, 38: 381-403.
    49. Jahn BM. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen: Implications for continental subduction and collisional tectonics[J]. In: Hacker BR, Liou JG (Eds.). When continents collide: Geodynamics and geochemistry of ultrahigh-pressure rocks. Kluwer Academic Publishers, Dordrecht, 1998, 203-239.
    50. Jahn BM, Wu FY, Lo CH, et al. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 1999a, 157: 119-146.
    51. Jahn BM. Sm-Nd isotope tracer study of UHP metamorphic rocks: Implication for continental subduction and collisional tectonics[J]. International Geology Review, 1999b, 41: 859-885.
    52. Jahn BM, Chen B, Li HY, et al. Continental subduction and mantle metasomatism: Consequence on the Cretaceous magmatism and implications for the architecture of the Dabie Orogen[C]. UHPM Workshop at Waseda University, August, 30-31, 2001, Japan.
    53. Ji WQ, Xu WL, Yang DB, et al. Chronology and Geochemistry of Volcanic Rocks in the Cretaceous Suifenhe Formation in Eastern Heilongjiang, China[J]. Acta Geologica Sinica, 2007, 81(2): 266-277.
    54. Keay S, Steele D, Compston W. Identifing granite sources by SHRIMP U-Pb zircon geochronology: An application to the Lachlan foldbelt[J]. Contributions to Mineralogy and Petrology, 1999, 137(4): 323-341.
    55. King PL, White AJR, Chappell BW, et al. Characterization and Origin of Alumious A-type from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391.
    56. Klemperer S. Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China, from seismic reflection profiling. International Workshop onGeophysics & Structure Geology of UHPM terranes, Sep, 20-21, 2002[C], Beijing, China.
    57. Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 1993, 171: 223-232.
    58. Lanyon R, Black RP, Seitz HM. U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestford Hills, East Antarctica[J]. Contributions to Mineralogy and Petrology, 1993, 115: 84-203.
    59. Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature zircon[J]. Nature, 1997, 390(13): 159-162.
    60. Li RW, Wan YS, Chen ZY, et al. The Dabie Orogen as the early Jurassic sedimentary provenance: Constraints from the detrital zircon SHRIMP U-Pb dating[J]. Science in China (Series D), 2005, 48(2): 145-155.
    61. Li SG, Harte S, Zheng S, et al. Timing of collision between the North and South China blocks-The Sm-Nd isotopic age evidence[J]. Science in China (Series B), 1989, 32: 1393-1400.
    62. Li SG, Xiao YL, Liou DL, et al. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites: Timing and processes[J]. Chemical Geology, 1993, 109: 89-111.
    63. Li SG, Jagoutz E, Lo CH, et al. Sm/Nd, Rb/Sr, and 40Ar/39Ar isotopic systematics of the ultrahigh-pressure metamorphic rocks in the Dabie-Sulu belt, Central China: A retrospective view[J]. International Geology Review, 1999, 41: 1114-1124.
    64. Li SG, Jagoutz E, Chen YZ, et al. Sm/Nd and Rb/Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie terrain, central China[J]. Geochimica et Cosmochimica Acta, 2000, 64: 1077-1093.
    65. Li SG, Yang W. Decoupling of surface and subsurface sutures in the Dabie orogen and a continental-collisional lithospheric-weding model: Sr-Nd-Pb isotopic evidences of Mesozoic igneous rocks in eastern China[J]. Chinese Science Bulletin, 2003, 48: 831-838.
    66. Li SZ, Zhao GC, Sun M, et al. Mesozoic, not Paleoproterozoic SHRIMP U-Pb zircon ages of two Liaoji granites, eastern block, North China Craton[J]. International GeologyReview, 2004, 46: 162-176.
    67. Li SZ, Zhao GC. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton[J]. Precambrian Research, 2007, 158: 1-16.
    68. Li ZX. Collision between the North and South China blocks: A crust-detachment model for suturing in the region east of the Talu fault[J]. Geology, 1994, 22: 739-742.
    69. Li ZX, Li XH, Kinny PD. The breakup of Rodinia: Did it start with a mantle plume beneath South China[J]? Earth and Planetary Science Letters, 1999, 173: 171-181.
    70. Liou JG, Zhang RY, Eide EA, et al. Metamorphism and tectonics of high-pressure and ultra-high-belts in the Dabie-Sulu region, China[J]. In: Harrison MT, Yin A (Eds.). The Tectonics of Asia. Cambridge University Press, Cambridge, 1996, 300-344.
    71. Liu FL, Gerdes A, Zeng LS, et al. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China[J]. Geochimica et Cosmochimica Acta, 2008, 72: 2973-3000.
    72. Liu JL, Davis GA, Lin ZY, et al. The Liaonan metamor-phic core complex, southeastern Liaoning Province, north China: A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas[J]. Tectonophysics, 2005, 407: 65-80.
    73. Liu XM, Gao S, Ling WL, et al. Identification of 3.5 Ga detrital zircons from Yangtze craton in south China and the implication for Archean crust evolution[J]. Progress in Natural Science, 2006, 16(6): 663-666.
    74. Lu XP, Wu FY, Guo JH, et al. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton[J]. Precambrian Research, 2006, 146: 138-164.
    75. Ludwig KR. Users manual for Isoplot/Ex (rev. 2.49): A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2001, 1: 55.
    76. Luo Y, Sun M, Zhao GC, et al. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt[J]. Precambrian Research, 2004, 134: 349-371.
    77. Ma CQ, Li ZC, Ehlers C, et al. A post-collisional magmatic pluming system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphiczone, east-central China[J]. Lithos, 1998, 45: 431-456.
    78. Ma X, Bai J. Precambrian crustal evolution of China[M]. Springer, Berlin, Geological Publication House, 1998: 1-331.
    79. Maniar PD, Piccoli PM. Tectonic discrimination of granitoids[J]. Geological society of America Bulletin, 1987, 101: 635-643.
    80. Maruyama S, Seno T. Orogeny and relative plate motion: Example of the Japanese islands[J]. Tectonophysics, 1986, 127: 305-329.
    81. Mezger K, Krogstad EJ. Interpretation of discordant U-Pb zircon ages: An evaluation[J]. J. Metamorphic Geol., 1997, 15: 127-140.
    82. Nie S, Yin A, Rowley DB, et al. Exhumation of the Dabie Shan ultrahigh-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, central China[J]. Geology, 1994, 22: 999-1002.
    83. Okay A, Xu S, Sengor AMC. Coesite from the Dabie Shan eclogites, central China[J]. Eur. Jour. Mineral., 1989, 1: 595-598.
    84. Okay A, Seng?r AMC. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China[J]. Geology, 1992, 20: 411-414.
    85. Pearce JA, Cann JR. Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y[J]. Earth and Planetary Science Letters, 1971, 12: 339-349.
    86. Pearce JA, Cann JR. Tectonic setting of basic volcanic rocks determined using trace element analysis[J]. Earth and Planetary Science Letters, 1973, 19: 290-300.
    87. Pearce JA , Harris NBW, Tindle AG. Trece element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983.
    88. Peter DK, Roland M. Lu-Hf and Sm-Nd isotope systems in zircon[J]. In: Hanchar JM, Hoskin, Paul WO. America: Mineralgical society of America, 2003, 327-341.
    89. Pitcher WS. Granites and yet more granites forty years on[J]. Geology Rund, 1987, 76: 51-79.
    90. Pitcher WS. The nature and origin of granite[M]. London: Blackie Academic and Professional, 1993: 321.
    91. Rogers JJW, Santosh M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5: 5-22.
    92. Rowley DB, Xue F, Tucker RD, et al. Ages of ultrahigh pressure metamorphism andprotolith orthogneisses from the eastern Dabie Shan: U-Pb zircon geochronology[J]. Earth and Planetary Science Letters, 1997, 151: 191-203.
    93. Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from the western Alps[J]. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany, 2000, 373-400.
    94. Scherer EE, Cameron KL, Blichert-Toft J. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J]. Geochimica et Cosmochimica Acta, 2000, 64: 3413-3432.
    95. Schmitz MD, Vervoot JD, Bowring SA, et al. Decoupling of the Lu-Hf and Sm-Nd isotope system during the evolution of granulitic lower crust beneath southern Africa[J]. Geology, 2004, 32: 405-408.
    96. Soderlund U, Patchett PJ, Vervoort JD, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219: 311-324.
    97. Stephens WE, Sial AN, Ferreira VP. Granites and associated mineralization[J]. Lithos, 1999, 46: 335-626.
    98. Stern TW, Goldich SS, Newel MF. Effect of weathering on the U-Pb zircon ages from the Morton gneiss, Minnesota[J]. Earth and Planetary Science Letters, 1966, 1: 369-378.
    99. Sun M, Armstrong RL, Lambert RS, et al. Petrochemistry and Sr, Pb and Nd isotopic geochemistry of the Paleoproterozoic Kuandian Complex, the eastern Liaoning Province, China[J]. Precambrian Research, 1993, 62: 171-190.
    100.Sun SS, Mc Donough WF. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[M]. In: Saunders AD, Norry MJ (Eds.). Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42: 313-345.
    101.Sun WD, Li SG, Chen YD, et al. Timing of synorogenic granitoids in the South Qinling, Central China: Constraints on the evolution of the Qinling-Dabie orogenic belt[J]. J. Geol, 2002, 110: 457-468.
    102.Vervoort JD, Pachett PJ, Gehrels GE, et al. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379: 624-627.
    103.Wang LG, Yiu YM, McNaughton NJ, et al. Constraints on crustal evolution and goldmetallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids[J]. Ore Geol. Rev., 1998, 13: 275-291.
    104.Wang QC, Cong BL. Exhumation of UHP terranes: A case study from the Dabie Mountains, eastern China[J]. International Geology Review, 1999, 41: 994-1004.
    105.Wang WF, Jin Q, Ma ZJ. Meso-Cenozoic evolution of the Tanlu fault and formation of sedimentary basins[J]. Acta Geologica Sinica, 1998, 72(4): 350-362.
    106.Webb LE, Hacker BR, Ratschbacher L, et al. Thermochronologic constraints on deformation and cooling history of high- and ultrahighpressure rocks in the Qinling-Dabie orogen, eastern China[J]. Tectonics, 1999, 18: 621-638.
    107.Whalen JB, Currie KL, Chappell BW. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419.
    108.Williams IS. Some observations on the use of zircon U-Pb geochronology on the study of granitic rocks[J]. Transactions of the Royal Society of Edinburge: Earth Sciences, 1992, 83: 447-458.
    109.Wu FY, Yang JH, Wilde SA, et al. Geochronology, petrogenesis and tectonic implications of the Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology, 2005a, 221: 127-156.
    110.Wu FY, Lin JQ, Wilde SA, et al. Nature and significance of the Early Cretaceous giant igneous event in Eastern China[J]. Earth and Planetary Science Letters, 2005b, 233(1-2): 103-119.
    111.Wu FY, Yang JH, Liu XM, et al. Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the North China Craton[J]. Chinese Science Bulletin, 2005c, 50(21): 2473-2480.
    112.Xu B, Grove M, Wang C, et al. 40Ar-39Ar thermochronology from the northwestern Dabie Shan: Constraints on the evolution of Qinling-Dabie orogenic orogenic belt, east-central China[J]. Tectonophysics, 2000, 322: 279-301.
    113.Xu JW, Zhu G, Tong WX, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the northeast of the Pacific Ocean[J]. Tectonophysics, 1987, 134(4): 273-310.
    114.Xu JW, Zhu G. Tectonic models of the Tan-Lu fault zone, eastern China[J]. InternationalGeology Review, 1994, 36: 771-784.
    115.Xu P, Wu FY, Xie LW, et al. Hf isotopic compositions of the standard zircons for U-Pb dating[J]. Chinese Science Bulletin, 2004, 49(15): 1642-1648.
    116.Xu ST. Architecture of the Dabie Mountains orogen. International Workshop on Geophysics & Structure Geology of UHPM terranes, Sep, 20-21, 2002[C], Beijing, China.
    117.Xu WL, Wang DY, Liu XC, et al. Discovery of eclogite inclusions and its geological significance in early Jurassic intrusive complex in Xuzhou northern Anhui, eastern China[J]. Chinese Science Bulletin, 2002, 47(12): 1212-1216.
    118.Xu WL, Wang DY, Gao S, et al. Discovery of dunite and pyroxenite xenoliths in Mesozoic diorite at Jinling, western Shandong and its significance[J]. Chinese Science Bulletin, 2003, 48: 1599-1603.
    119.Xu WL, Liu XC, Wang QH, et al. Garnet exsolution in garnet clinopyroxenite and clinopyroxenite xenoliths in Early Cretaceous intrusions from the Xuzhou region, eastern China[J]. Mineralogical Magazine, 2004a, 68(3): 443-453.
    120.Xu WL, Wang QH, Liu XC, et al. Chronology and sources of Mesozoic intrusive complex in Xu-Huai region, central China: Constraints from SHRIMP zircon U-Pb dating[J]. Acta Geologica Sinica, 2004b, 78(1): 96-106.
    121.Xu WL, Wang QH, Yang DB, et al. SHRIMP zircon U-Pb dating in Jingshan“migmatitic granite”, Bengbu and its geological significance[J]. Science in China (Series D), 2005, 48(2): 185-191.
    122.Xu WL, Gao S, Wang QH, et al. Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications[J]. Geology, 2006a, 34(9): 721-724.
    123.Xu WL, Wang QH, Wang DY, et al. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminated lower continental crust[J]. Journal of Asian Earth Sciences, 2006b, 27: 230-240.
    124.Xu WL, Hergt JM, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton[J]. Earth and Planetary Science Letters, 2008, 265: 123-137.
    125.Xu WL, Gao S, Yang DB, et al. Geochemistry of eclogite xenoliths in Mesozoic adakiticrocks from Xuzhou-Suzhou area in central China and their tectonic implications[J]. Lithos, 2009, 107: 269-280.
    126.Xu YG, Huang XL, Ma JL, et al. Crust-mantle interaction during the tectono-thermal reactiovation of the North China Craton: Constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong[J]. Contributions to Mineralogy and Petrology, 2004, 147: 750-767.
    127.Yang CH, Xu WL, Yang DB, et al. Petrogenesis of Mesozoic high-Mg diorites in western Shandong: Evidence from chronology and petro-geochemistry[J]. Journal of China University of Geoscience, 2005, 16(4): 297-308.
    128.Yang CH, Xu WL, Yang DB, et al. Petrogenesis of Shangyu gabbro-diorites in western Shandong: Geochronological and geochemical evidence[J]. Science in China (Series D), 2008, 51(4): 481-492.
    129.Yang JH, Chung SL, Wilde SA, et al. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronology, geochemical and Nd-Sr isotopic evidence[J]. Chemical Geology, 2005, 214: 99-125.
    130.Yang JH, Sun JF, Chen FK, et al. Sources and petrogenesis of Late Triassic dolerite dikes in the Liaodong peninsula: Implications for post-collisional lithosphere thinning of the eastern North China Craton. Journal of Petrology, 2007, 48: 1973-1997.
    131.Yang JS. A 4000 km ultrahigh-pressure metamorphic belt in China: New evidence. International Workshop on Geophysics & Structure Geology of UHPM terranes, Sep, 20-21, 2002[C], Beijing, China.
    132.Yang W, Li SG. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton[J]. Lithos, 2008, 9-18.
    133.Yang WC. Geophysical profiling across the Sulu ultrahigh-pressure metamorphic belt, eastern China. International Workshop on Geophysics & Structure Geology of UHPM terranes, Sep, 20-21, 2002[C], Beijing, China.
    134.Ye K, Cong BL, Ye DN. The possible subduction of continental materials to depths greater than 200 km[J]. Nature, 2000a, 407: 734-736.
    135.Ye K, Yao YP, Katayama IK, et al. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: New implicationsfrom coesite and omphacite inclusions in zircon granitic gneiss[J]. Lithos, 2000b, 52: 157-164.
    136.Yin A, Nie S. An indentation model for the north China and the south China collision and the development of Tanlu and Honam fault system, eastern Asia[J]. Tectonics, 1993, 12: 801-813.
    137.Ying JF, Zhang HF, Kita N, et al. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong province, China[J]. Earth and Planetary Science Letters, 2006, 244: 622-638.
    138.Yu Y, Xu WL,? Pei FP, et al. Mesozoic volcanic rocks in Linjiang area, Jilin Province: Chronology, geochemistry and their tectonic implications[J]. Acta Geologica Sinica, 2009, 83(2): 801-813.
    139.Yuan HL, Gao S, Liu XM, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry[J]. Geostandards newsletter-the journal of geostandards and geoanalysis, 2004, 28: 353-370.
    140.Zartman RE, Doe BR. Plumbotectonics-the model[J]. Tectonophysics, 1981, 75: 135-162.
    141.Zhang HF, Sun M, Zhou XH, et al. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts[J]. Contributions to Mineralogy and Petrology, 2002, 144: 241-253.
    142.Zhang HF, Ying JF, Xu P, et al. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton: Implication for replacement process of lithospheric mantle[J]. Chinese Science Bulletin, 2004, 49(9): 961-966.
    143.Zhang HF. Importance of melt circulation and crust-mantle interaction in the lithospheric evolution beneath the North China Craton: Evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths[J]. Lithos, 2007, 96: 67-89.
    144.Zhang KJ. North and South China collision along the eastern and southern North China margins[J]. Tectonophysics, 1997, 270: 145-156.
    145.Zhang KJ. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu fault with implications for the eastern plate boundary between North and South China: An extended discussion[J]. J. Geology, 2000, 108: 739-743.
    146.Zhang RY, Liou JG. Exsolution lamellae in minerals from ultrahigh-pressure rocks[J]. International Geology Review, 1999, 41: 981-993.
    147.Zhang RY, Shua YH, Liou JG, et al. Discovery of clinoenstatite in garnet pyroxenites from the Dabie-Sulu ultrahigh-pressure terrane, east-central China[J]. Am. Mineral., 2002, 87: 867-874.
    148.Zhang SB, Zheng YF, Wu YB, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters, 2006, 252: 56-71.
    149.Zhang XO. Setting and timing of gold mineralization in the Jiaodong and Liaodong Peninsulas, North China Craton: Doctoral Dissertation[D]. Curtin University of Technology, 2002.
    150.Zhang XO, Cawood PA, Wilde SA, et al. Geology and timing ofmineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China[J]. Mineral Dep., 2003, 38: 141-153.
    151.Zhao GC, Wilde SA, Cawood PA, et al. Archean blocks and their boundaries in the North China craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1-2): 45-73.
    152.Zhao GC, Cawood PA, Wilde SA, et al. Review of Global 2.1-l.8Ga orogens: Implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59: 125-162.
    153.Zhao GC, Sun M, Wilde SA, et al. Assembly, Accretion and breakup of the Paleoproterozoic Columbia supercontinent: Records in the North China craton[J]. Gondwana Research, 2003, 6: 417-434.
    154.Zhao XX, Coe RS. Paleomagnetic constraints on the collision and rotation of north and south China[J]. Nature, 1987, 327: 141-144.
    155.Zhao XX, Coe RS. Tectonic implications of Permo-Triassic paleomagnetic results from north and south China[C]. In: Hillhouse JW (Ed.). Deep Structure and Past Kinematics of Accreted Terranes, Geophys. Monogr. Washington, D.C., AGU, 1989, 50: 267-283.
    156.Zheng JP, Lu FX, Yu CM, et al. An in situ zircon Hf isotopic, U-Pb age and trace element study of banded granulite xenolith from Hannuoba basalt: Tracking the early evolution of the lower crust in the North China craton[J]. Chinese Science Bulletin, 2004, 49(3): 277-285.
    157.Zheng JP, Griffin WL, O’Reilly SY, et al. Widespread Archean basement beneath the Yangtze craton[J]. Geology, 2006, 34: 417-420.
    158.Zheng YF. Neoproterozoic magmatic activity and global change[J]. Chinese Science Bulletin, 2003, 48(16): 1369-1656.
    159.Zheng YF, Zhou JB, Wu YB, et al. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction[J]. International Geology Review, 2005a, 47: 851-871.
    160.Zheng YF, Wu YB, Zhao ZF, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite[J]. Earth and Planetary Science Letters, 2005b, 240: 378-400.
    161.Zheng YF, Zhang SB. Formation and evolution of Precambrian continental crust in South China[J]. Chinese Science Bulletin, 2007, 52(1): 1-12.
    162.Zindler A, Hart SR. Chemical geodynamics[J]. Ann. Rev. Earth Planet. Sci., 1986, 14: 493-571.
    163.安徽省地质矿产局.安徽省区域地质志[M].北京:地质出版社, 1987: 262-468.
    164.安徽省地质矿产局区域地质调查队. 1: 20万蚌埠幅区域地质调查报告[M]. 1979.
    165.白瑾,黄学元,戴凤岩,等.中国前寒武纪地壳演化[M].北京:地质出版社, 1993: 36-38.
    166.白瑾,黄学光,王惠初,等.中国前寒武纪地壳演化(第二版)[M].北京:地质出版社, 1996: 1-259.
    167.陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述―兼论大别造山带锆石定年[J].岩石学报, 2001, 17(1): 129-138.
    168.陈廷愚,牛宝贵,刘志刚,等.大别山腹地岩石圈岩浆作用和变质作用的同位素年代学研究及其地质意义[J].地质学报, 1999, 73(4): 329-336.
    169.陈文寄, Harrison TH, Heizler MT,等.苏北-胶南构造混杂岩冷却历史的多重扩散域40Ar/39Ar热年代学研究[J].岩石学报, 1992, 8(1): 1-17.
    170.陈义贤,陈文寄.辽西及邻区中生代火山岩-年代学、地球化学和构造背景[M].北京:地震出版社, 1997: 141-201.
    171.陈志刚,李献华,李武显,等.赣南全南正长岩的SHRIMP锆石U-Pb年龄及其对华南燕山早期构造背景的制约[J].地球化学, 2003, 32(3): 223-229.
    172.从柏林,王清晨.大别山-苏鲁超高压变质带研究的最新进展[J].科学通报, 1999, 44(11): 1127-1141.
    173.戴圣潜,邓晋福,吴宗絮,等.大别造山带燕山期造山作用的岩浆岩石学证据[J].中国地质, 2003, 30(2): 59-165.
    174.董树文,孙先如,张勇,等.大别山造山带的基本结构[J].科学通报, 1993, 38(6): 542-545.
    175.董树文,吴宣志,高锐,等.大别山造山带地壳结构与动力学[J].地球物理学报, 1998, 41(3): 349-361.
    176.葛宁洁,侯振辉,李惠民,等.大别造山带岳西沙村镁铁-超镁铁岩体的锆石U-Pb年龄[J].科学通报, 1999, 44(19): 2110-2114.
    177.耿元生,杨崇辉,万渝生.吕梁地区古元古代花岗岩浆作用-来自同位素年代学的证据[J].岩石学报, 2006, 22(2): 305-314.
    178.郭春丽,吴福元,杨进辉,等.中国东部早白垩世岩浆作用的伸展构造性质-以辽东半岛南部饮马湾山岩体为例[J].岩石学报, 2004, 20(5): 1193-1204.
    179.郭敬辉,陈福坤,张晓曼,等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学[J].岩石学报, 2005, 21(4): 1281-1301.
    180.韩宗珠,付强.青岛和诸城深源脉岩和包体的成因与构造背景[J].海洋湖沼通报, 1993, 2: 50-58.
    181.郝德峰,李三忠,赵国春,等.辽吉地区古元古代花岗岩成因及对构造演化的制约[J].岩石学报, 2004, 20(6): 1409-1416.
    182.洪大卫.花岗岩研究的最新进展及发展趋势[J].地学前缘, 1994, 1: 79-86.
    183.胡华斌,毛景文,刘敦一,等.鲁西铜石岩体的锆石SHRIMP U-Pb年龄及其地质意义[J].地学前缘, 2004, 11: 453-460.
    184.季强,陈文,王五力,等.中国辽西中生代热河生物群[M].北京:地质出版社, 2004: 1-375.
    185.靳克,许文良,王清海,等.蚌埠淮光“混合花岗闪长岩”的形成时代及源岩:锆石SHRIMP U-Pb地质年代学证据[J].地球学报, 2003, 24(4): 331-335.
    186.景立珍,郭裕嘉,丁彩霞.辽宁赛马碱性岩的年代学及碱性岩浆的形成[J].辽宁地质, 1995, (4): 257-271.
    187.李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社, 1992: 133-143.
    188.李三忠,杨振升.华北地台东部古元古代构造格架[J].长春地质学院学报, 1995, 25(1):14-21.
    189.李三忠,刘永江.胶辽地块古元古代沉积组台:年代与层序[J].西北地质, 1997, 18(3): 13-20.
    190.李三忠,郝德峰,韩宗珠,等.胶辽地块古元古代构造-热演化与深部过程[J].地质学报, 2003, 77(3): 380-404.
    191.李曙光, Jagoutz E,肖益林,等.苏鲁-大别地体超高压变质年代学-Sm-Nd同位素体系[J].中国科学(D辑), 1996, 26(3): 249-257.
    192.李曙光,洪吉安,李惠民,等.大别山辉石岩-辉长岩体的锆石U-Pb年龄及其地质意义[J].高校地质学报, 1999, 5(3): 351-355.
    193.李思田,路凤香.中国东部及邻区中新生代盆地演化及地球动力学背景[M].武汉:中国地质大学出版社, 1997.
    194.李献华,周汉文,刘颖,等.桂东南钾玄质侵入岩带及其岩石学和地球化学特征[J].科学通报, 1999, 44(18): 1992-1998.
    195.辽宁省地质矿产局.辽宁省区域地质志[M].北京:地质出版社, 1989: 256.
    196.林景仟,谭东娟,金烨.鲁西地区中生代火成活动的40Ar/39Ar年龄[J].岩石矿物学杂志, 1996, 15(3): 213-220.
    197.林强,葛文春,曹林,等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学, 2003, 32(3): 208-222.
    198.刘海巨,朱炳泉,张展霞. LAM-ICP-MS法用于单颗粒锆石定年研究[J].科学通报, 1998, 43: 1103-1106.
    199.刘新秒.后碰撞岩浆岩的大地构造环境及特征.前寒武纪研究进展[J], 2000, 23(2): 121-127.
    200.刘永江,李三忠.辽宁海城-大石桥-吉洞地区早元古代花岗岩[J].辽宁地质, 1996, 13: 10-18.
    201.柳小明.华北克拉通中生代壳幔交换作用的地球化学研究:博士学位论文[D].西安:西北大学, 2004.
    202.陆松年,杨春亮,蒋明媚,等.前寒武纪大陆地壳演化示踪[M].北京:地质出版社, 1996: 137-140.
    203.路凤香,桑隆康.岩石学[M].北京:地质出版社, 2002: 92-95.
    204.路孝平,吴福元,赵成弼,等.通化地区印支期花岗岩锆石U-Pb年龄及其与大别-苏鲁超高压带碰撞造山作用之间的关系[J].科学通报, 2003, 48(8): 843-849.
    205.路孝平,吴福元,张艳斌,等.吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景[J].岩石学报, 2004a, 20(3): 381-392.
    206.路孝平,吴福元,林景仟,等.辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架.地质科学[J]. 2004b, 39(1): 123-138.
    207.罗镇宽,苗来成.胶东招莱地区花岗岩和金矿床[M].北京:冶金工业出版社, 2002: 20-57.
    208.马昌前,杨坤光,许长海,等.大别山中生代钾质岩浆作用与超高压变质地体的剥露机理[J].岩石学报, 1999, 1(1): 379-395.
    209.马杏垣,刘昌铨,刘国栋.江苏响水至内蒙古满都拉地学断面[J].地质学报, 1991, 3: 199-215.
    210.牟保磊,阎国翰.燕辽三叠纪碱性偏碱性杂岩体地球化学特征及意义[J].地质学报, 1992, 2: 108-121.
    211.穆克敏,林景仟.华北地台区花岗岩石的成因[M].长春:吉林科技出版社, 1989.
    212.裴福萍,许文良,王清海,等.鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学:对岩石圈地幔性质的制约[J].高校地质学报, 2004, 10(1): 88-97.
    213.裴福萍.吉南地区中生代火山岩的岩石学和地球化学特征:硕士学位论文[D].长春:吉林大学, 2005.
    214.裴福萍,许文良,于洋,等.吉林南部晚三叠世蚂蚁河岩体的成因:锆石U-Pb年代学和地球化学证据[J].吉林大学学报(地球科学版), 2008, 38(3): 351-362.
    215.裴福萍.辽南-吉南中生代侵入岩锆石U-Pb年代学和地球化学:对华北克拉通破坏时空范围的制约:博士学位论文[D].长春:吉林大学, 2008.
    216.乔秀夫.对郯-庐断裂巨大平移之质疑[J].地质论评, 1981, 27(3): 222-224.
    217.乔秀夫,高林志,彭阳.古郯庐带新元古界-灾变?层序?生物[M].北京:地质出版社, 2001a: 1-128.
    218.乔秀夫,高林志,彭阳,等.古郯庐带沧浪铺阶地震事件、层序及构造意义[J].中国科学(D辑), 2001b, 31(11): 911-918.
    219.乔秀夫,张安棣.华北块体、胶辽朝块体与郯庐断裂[J].中国地质, 2002, 29(4): 337-345.
    220.邱检生,王德滋,周金城,等.山东中生代橄榄安粗岩系火山岩的地质、地球化学特征及岩石成因[J].地球科学, 1996, 21(5) : 546-552.
    221.邱检生,徐夕生,罗清华.鲁西富钾火山岩和煌斑岩的40Ar-39Ar定年及源区示踪[J].科学通报, 2001, 46(18): 1500-1508.
    222.邱瑞龙,徐祥,黄得志.华北地块东南缘蚌埠地区荆山岩体同位素年龄及其地质意义[J].安徽地质, 1999, 9(3): 161-164.
    223.桑宝梁.蚌埠-五河地区主要金矿类型的成矿条件及其预测[M].研究报告, 1994.
    224.邵济安,李献华,张履桥,等.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约[J].地球化学, 2001, 30(6): 517-524.
    225.邵济安,孟庆任,魏海泉,等.冀西北晚侏罗世火山-沉积盆地的性质及构造环境[J].地质通报, 2003, 22(10): 751-761.
    226.邵济安,杨蔚.关于辽西北票地区兴隆沟组火山岩时代的再认识[J].地质通报, 2008, 27(6): 912-916.
    227.沈其韩,耿元生,宋彪,等.华北和扬子陆块及秦岭-大别造山带地表和深部太古宙基底的新信息[J].地质学报, 2005, 79(5): 616-627.
    228.宋彪,张玉海,刘敦一.微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学[J].质谱学报, 2002, 23(1): 58-62.
    229.苏玉平,唐红峰. A型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报, 2005, 24(3): 245-251.
    230.孙德有,铃木和博,吴福元,等.吉林省南部荒沟山地区中生代花岗岩CHIME定年[J].地球化学, 2005a, 34(4): 305-310.
    231.孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘, 2005b, 12(2): 263-275.
    232.孙敏,张立飞,吴家弘.早元古代宽甸杂岩的成因:地球化学证据[J].地质学报, 1996, 70(3): 207-222.
    233.索书田,钟曾球,游振东.大别-苏鲁超高压-高压变质带伸展构造格架及其动力学意义[J].地质学报, 2001, 75(1): 14-24.
    234.索书田,钟增球,周汉文,等.大别-苏鲁超高压和高压变质带构造演化[J].地学前缘, 2004, 11(3): 71-82.
    235.汤加富,侯明金,高天山.郯庐断裂带的主要特征与性质讨论[J].安徽地质, 1995, 5(3): 60-63.
    236.汤加富,许卫.郯庐断裂带南段并无巨大平移-来自安徽境内的证据[J].地质论评, 2002, 48(5): 449-456.
    237.汪方跃,高山,牛宝贵,等.河北承德盆地114 Ma大北沟组玄武岩地球化学及其对华北克拉通岩石圈地幔减薄作用的制约[J].地学前缘, 2007, 14(2): 98-108.
    238.王德滋,周新民.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化[M].北京:科学出版社, 2002: 256-295.
    239.王东方.辽西热河群的时代归属问题[J].中国地质科学院院报, 1983, 7: 57-64.
    240.王冬艳,许文良,冯宏,等.辽西中生代晚期岩石圈地幔的性质:来自玄武岩和地幔捕虏体的证据[J].吉林大学学报(地球科学版), 2002, 32(4): 319-324.
    241.王桂梁,姜波,曹代勇,等.徐州-宿州弧形双冲-叠瓦扇逆冲断层系统[J].地质学报, 1998, 72(3): 228-236.
    242.王强,赵振华,简平.华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约[J].岩石学报, 2005, 21(3): 795-808.
    243.王清晨,林伟.大别山碰撞造山带的地球动力学[J].地学前缘, 2002, 9(4): 257-265.
    244.王清海,许文良,王冬艳,等.徐淮地区镁铁质岩石捕虏体单斜辉石中石榴石和石英的出溶[J].高校地质学报, 2002, 8(4): 407-415.
    245.王松山,王元青,胡华光,等.辽西四合屯脊椎动物生存时代:锆石U-Pb年龄证据[J].科学通报, 2001, 46(4): 330-333.
    246.王微,许文良,纪伟强,等.辽东中生代晚期和古近纪玄武岩及深源捕虏晶对岩石圈地幔性质的制约[J].高校地质学报, 2006, 12(1): 30-40.
    247.王微.华北克拉通东部中新生代岩石圈演化—来自火成岩与深源捕虏体(晶)证据:博士学位论文[D].长春:吉林大学, 2008.
    248.王晓蕊.辽西早白垩世四合屯组火山岩地球化学研究:硕士学位论文[D].西安:西北大学, 2005.
    249.韦忠良,张宏,郭文敏,等. LA-ICP-MS锆石U-Pb测年对辽西-冀北地区晚中生代区域性角度不整合时代的约束[J].自然科学进展, 2008, 18(10): 1119-1127.
    250.魏春景,张立飞,王式洸.安徽省大别山东段中生代高钾花岗质岩石及其地质意义[J].中国科学(D辑), 2000, 30(4): 355-363.
    251.吴福元,江博明,林强.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J].科学通报, 1997, 42(20): 2188-2192.
    252.吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 1999, 15(2): 181-189.
    253.吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报, 1999, 29(4): 313-318.
    254.吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘, 2003, 10(3): 51-60.
    255.吴福元,杨进辉,柳小明.辽东半岛中生代花岗质岩浆作用的年代学格架[J].高校地质学报, 2005, 11(3): 305-317.
    256.吴福元,杨进辉,张艳斌,等.辽西东南部中生代花岗岩时代[J].岩石学报, 2006, 22(2): 315-325.
    257.吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报, 2007a, 23(6): 1217-1238.
    258.吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007b, 23(2): 185-220.
    259.吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16): 1589-1604.
    260.邢历生,李中坚,王小凤,等.郯庐断裂带东侧华南地块部分逆时针转动-古地磁新证据[J].地质力学学报, 1995, 1(3): 31-37.
    261.徐贵忠,王艺芬,佘宏全,等.华北克拉通西北缘中元古代特征与成矿作用[J].地质论评, 1999 45(增刊): 495-502.
    262.徐贵忠,周瑞,闫臻,等.论胶东地区中生代岩石圈减薄的证据及其动力学机制[J].大地构造与成矿学, 2001, 25(4): 368-380.
    263.徐贵忠,蔡燕杰,周瑞,等.山东蓬莱盆地形成的动力学条件及其与金成矿作用的相关性讨论[J].现代地质, 2004, 18(1): 8-16.
    264.徐嘉炜.郯城-庐江断裂带的平移运动[J].华东地质, 1964, (5): 18-31.
    265.徐嘉炜.试论郯城-庐江断裂带的平移及其地质意义[J].地质矿产研究, 1978, 5: 130.
    266.徐佩芬,孙若昧,刘福田,等.扬子板块俯冲、断离的地震层析成象证据[J].科学通报, 1999, 44(15): 1658-1661.
    267.徐佩芬,刘福田,王清晨,等.大别-苏鲁碰撞造山带的地震层析成像研究-岩石圈三维速度结构[J].地球物理学报, 2000, 43(3): 377-385.
    268.徐树桐.大别山构造格局与演化[M].北京:科学出版社, 1993: 26-35.
    269.徐树桐.中国东部徐-淮地区构造格局及其形成背景[M].北京:地质出版社, 1994: 10-25.
    270.徐祥,侯明金,邱瑞龙,等.华北陆块东南缘蚌埠地区花岗岩与相关脉岩40Ar-39Ar定年[J].中国地质, 2005, 32(4): 588-595.
    271.许文良,孙德有,周燕.满洲里-绥芬河地学断面岩浆作用与地壳结构[M].北京:地质出版社, 1994: 94.
    272.许文良,王冬艳,王嗣敏.中国东部中新生代火山作用的PTtC模型与岩石圈演化[J].长春科技大学学报, 2000, 30(4): 329-335.
    273.许文良,王清海,刘晓春,等.徐-淮地区早侏罗世侵入杂岩体中单斜辉石岩捕虏体的矿物组合及演化[J].地球科学-中国地质大学学报, 2003, 28(2): 173-178.
    274.许文良,王冬艳,王清海,等.华北克拉通中东部中生代侵入杂岩中角闪石和黑云母的40Ar/39Ar定年:对岩石圈减薄时间的制约[J].地球化学, 2004, 33(3): 221-231.
    275.许文良,杨德彬,裴福萍,等.蚌埠隆起区五河杂岩的形成时代锆石LA-ICP-MS U-Pb定年证据[J].中国地质, 2006, 33(1): 132-137.
    276.许文良,杨德彬,裴福萍,等.华北克拉通东部中生代高镁闪长岩和榴辉岩包体Pb同位素组成:对源岩性质和岩石圈演化的制约[C]. 2007年全国岩石学与地球动力学暨化学地球动力学研讨会论文集,武汉, 2007: 297-298.
    277.闫峻,陈江峰,谢智,等.鲁东晚白垩世玄武岩中的幔源包体:对中国东部岩石圈减薄时间制约的新证据[J].科学通报, 2003, 48(14): 1570-1574.
    278.阎国翰,牟保磊,许保良,等.燕辽阴山三叠纪碱性侵入岩年代学Sr、Nd、Pb同位素特征及意义[J].中国科学(D辑), 2000, 30: 383-387.
    279.阎欣,储著银,孙敏,等.激光探针等离子质谱锆石微区207Pb/206Pb测定尝试[J].科学通报, 1998, 43: 2101-2105.
    280.杨承海,许文良,杨德彬,等.鲁西济南辉长岩的形成时代:锆石LA-ICP-MS U-Pb定年证据[J].地球学报, 2005, 26(4): 321-325.
    281.杨德彬,许文良,裴福萍,等.蚌埠隆起区花岗岩形成时代及岩浆源区性质:锆石LA-ICP MS U-Pb定年与示踪[J].地球化学, 2005, 34(5): 443-454.
    282.杨德彬,许文良,王清海,等.安徽省蚌埠荆山晚侏罗世花岗岩岩体的成因-来自地球化学和锆石Hf同位素的制约[J].岩石学报, 2006, 22(12): 2923-2932.
    283.杨德彬,许文良,王清海,等.蚌埠隆起区中生代花岗岩的岩石成因:锆石Hf同位素的证据[J].岩石学报, 2007, 23(2): 381-392.
    284.杨德彬,许文良,裴福萍,等.徐淮地区早白垩世adakitic岩石的年代学和Pb同位素组成:对岩浆源区与华北克拉通东部构造演化的制约[J].岩石学报, 2008, 24(8): 1745-1758.
    285.杨建军.中国东部山东和江苏北部的榴辉岩和有关的超基性岩[M].北京:地质出版社, 1991: 56-78.
    286.杨进辉,朱美妃,刘伟,等.胶东地区郭家岭花岗闪长岩的地球化学特征及成因[J].岩石学报, 2003, 19(4): 692-700.
    287.杨经绥,徐志琴,吴才来,等.含柯石英锆石的SHRIMP U-Pb定年:胶东印支期超高压变质作用的证据[J].地质学报, 2002, 76(3): 354-372.
    288.杨文采,胡振远,程振炎,等.郯城-涟水综合地球物理剖面[J].地球物理学报, 1999, 42(2): 206-217.
    289.杨文采.从地球物理资料看大别-苏鲁超高压变质带演化的运动学与动力学[J].地球物理学报, 2001, 44(3): 61-75.
    290.游振东,索书田,钟增球,等.大别山超高压变质岩的退变质显微构造:折返过程的启示[J].地质学报, 2000, 74(3): 224-233.
    291.于介江,杨德彬,冯虹,等.辽南海城斜长角闪岩原岩的形成时代:锆石LA-ICP-MS U-Pb定年证据[J].世界地质, 2007, 26(4): 391-396.
    292.翟明国,彭澎.华北克拉通古元古代构造事件[J].岩石学报, 2007, 23(11): 2665-2682.
    293.张本仁,高山,张宏飞.秦岭造山带地球化学[M].北京:科学出版社, 2002: 1-87.
    294.张宏飞,钟增球,高山,等.大别山西部面理化含榴花岗岩锆石U-Pb年龄[J].科学通报, 2001, 46: 843-846.
    295.张瑾,张宏福.青岛地区晚白垩世基性脉岩中麻粒岩捕虏体的成分特征及其温压条件[J].岩石学报, 2007, 23(5): 1133-1140.
    296.张理刚,刘敬秀,王可法,等.东亚岩石圈块体地质-上地幔、基底和花岗岩同位素地球化学及其动力学[M].北京:科学出版社, 1995: 1-252.
    297.张旗,钱青,王二七,等.燕山中晚期的中国东部高原:埃达克岩的启示[J].地质科学, 2001, 36(2): 248-255.
    298.张岳桥,董树文,赵越,等.华北侏罗纪大地构造:综评与新认识[J].地质学报, 2007, 81(11): 1462-1480.
    299.赵宗溥.中朝准地台前寒武纪地壳演化[M].北京:科学出版社, 1993: 357-364.
    300.周建波,郑永飞,赵子福.山东五莲中生代岩浆岩的锆石U-Pb年龄[J].高校地质学报, 2003, 9: 185-194.
    301.周玲棣,赵振华,周国富.我国一些碱性岩的同位素年龄学研究[J].地球化学, 1996, 25: 164-171.
    302.朱光,徐嘉炜,孙世群.郯庐断裂带平移时代的同位素年龄证据[J].地质论评, 1995,41(5): 452-456.
    303.朱光,宋传中,王道轩,等.郯庐断裂带走滑时代的40Ar/39Ar年代学研究及其构造意义[J].中国科学(D辑), 2001, 31(3): 250-256.
    304.朱光,牛漫兰,刘国生,等.郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件[J].地质学报, 2002, 76(3): 325-334.
    305.朱日祥,潘永信,史瑞萍,等.辽西白垩纪火山岩古地磁测定与陆内旋转运动[J].科学通报, 2002, 47: 1335-1340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700